
Porting Large Fortran Codebases to
GPUs

Andrew Corrigan and Rainald Löhner

Center for Computational Fluid DynamicsCenter for Computational Fluid Dynamics
Department of Computational and Data Sciences

George Mason University
Fairfax, VA USA

Collaborators

• Eric Mestreau
• Fernando Camelli• Fernando Camelli
• Fernando Mut

Outline

• Background (FEFLO)
• Porting Strategies• Porting Strategies
• Performance
• Parallelization
• Array tracking
• Misc. Issues
• Results• Results
• Conclusions

FEFLO

A large-scale, actively developed and deployed, legacy,
Fortran computational fluid dynamics code

FEFLO-GPU
Goals

• Full GPU performance
• Port ~1 million lines of code (~11,000 parallel

loops)
• Continue development in Fortran using

established coding practices.established coding practices.
• A single, unified codebase.

Porting Strategies

• Manual porting• Manual porting
o Rewrite the code from scratch

• Automatic porting
o Use a translator or compiler to largely automate

the task.

Manual Porting

• Too much effort required.
1 million lines / 11,000 parallel loops.o1 million lines / 11,000 parallel loops.

o Intricate array bookkeeping
• Perpetual process
o Fortran development will continue

• Error Prone.
• Separate codebases• Separate codebases
• CUDA or OpenCL or CUDA Fortran or ?

Not Feasible

Automatic Porting

• Continued Fortran development.
• Single codebase.• Single codebase.
• Reliable: No new bugs.

• Either works perfectly,
• Or fails catastrophically (easy to catch).
• Actually, catches many old bugs.

• Supports CUDA.• Supports CUDA.
• Excellent option now: maturity, library support.
• CUDA Fortran and OpenCL are partially supported.
• Extensible to future platforms.

Using a Python script

• O(1000) line Python script based on FParser
• Developed in a few months.• Developed in a few months.
• Generates an optimized, running code.

• Does much more than translate loops in isolation.

• Generates CUDA kernels from existing OpenMP
and vector loops.

• Tracks array usage across the entire code.
• By far the most difficult task.• By far the most difficult task.

• Many other tasks.

FParser: http://code.google.com/p/f2py [Peterson, 2009]

Performance

The performance issues of primary concern The performance issues of primary concern
for GPUs are

• Achieving fine-grained parallelism.
• Avoiding CPU �� GPU data transfer.
• Achieving coalesced memory access.• Achieving coalesced memory access.
• Exploiting shared memory.

• Not considered here.

Fine-Grained Parallelism

• CPUs achieve high performance by reducing • CPUs achieve high performance by reducing
memory latency: accessing memory in cache.

• GPUs achieve high performance by hiding
memory latency: overlap memory access with
computation

� Need finer-grained parallelism to keep GPUs
busy.

Fine-Grained Parallelism

• In the context of a CFD code, fine-grained • In the context of a CFD code, fine-grained
parallelism corresponds to processing each cell,
face, edge, or point in parallel.

�If there are 1 million grid cells, then there
should be 1 million threads running in parallel.should be 1 million threads running in parallel.

�Domain decomposition is probably an
insufficient level of parallelism.

Data Transfer

• CPUs and GPUs have separate memory spaces.• CPUs and GPUs have separate memory spaces.
• Transfer between them is slow:

• <10 GB/s

• Internal GPU bandwidth > 100 GB/s

�Just porting “bottleneck subroutines” will �Just porting “bottleneck subroutines” will
often eliminate any potential performance gain.

�All parallel loops should run on the GPU
�Transfer of large arrays, ideally, should be

limited to startup and shutdown.

Coalescing

• Memory bandwidth is more often than not a • Memory bandwidth is more often than not a
bottleneck.

• Coalesced memory access is typically the
determining factor in comparison to cache behavior.

• For many applications performance scales with the
degree to which coalescing achieved.

• Technical specifications of coalescing requirements • Technical specifications of coalescing requirements
imply that arrays are transposed.

� Transposing arrays is crucial to avoid needlessly

incurring a substantial performance penalty.

Coalescing

• Given a Fortran array x(2,n) the standard • Given a Fortran array x(2,n) the standard
layout in memory is x(1,1), x(2,1), x(1,2),x(2,2),
etc…

Coalescing

• The preferred layout for meeting GPU • The preferred layout for meeting GPU
coalescing requirements is
x(1,1),x(1,2),….x(1,n),x(2,1),….x(2,n)

Parallelization

• A CUDA kernel is generated for each OpenMP • A CUDA kernel is generated for each OpenMP
loop.

• OpenMP private items � Per-thread variables
• The array layout and indexes in kernel code are

transposed.
• Reductions are performed after writing to a • Reductions are performed after writing to a

temporary buffer using Thrust

http://code.google.com/p/thrust [Hoberock, Bell, 2009]

Parallelization

!$omp parallel do private (ip,cmmat)

!cdir inner

•This parallel loop over the

points of a mesh, taken
!cdir inner

!cdir concur

c

do 1600 ip=npami,npamx

cmmat=mmatm(ip)

delun(1,ip)=cmmat*delun(1,ip)

delun(2,ip)=cmmat*delun(2,ip)

points of a mesh, taken

from FEFLO’s flux-corrected

transport, compressible

flow module, is

straightforward, yet tedious

to translate.

•It already exhibits fine-

grained parallelism so a
delun(2,ip)=cmmat*delun(2,ip)

delun(3,ip)=cmmat*delun(3,ip)

delun(4,ip)=cmmat*delun(4,ip)

delun(5,ip)=cmmat*delun(5,ip)

1600 continue

grained parallelism so a

direct translation is

sufficient.

Parallelization

__global__

void locfct_loop2(double* delun, int delun_s1, double* mmatm,

int npami, int npamx)

{

•This CUDA kernel is a
direct translation of the
original OpenMP loop.

•The indexes are
transposed to ensure
coalescing.{

double cmmat;

const unsigned int ip = blockDim.x*blockIdx.x+threadIdx.x+npami;

if(ip > npamx) return;

cmmat=mmatm[ip-1];

delun[ip-1+delun_s1*(1-1)]=cmmat*delun[ip-1+delun_s1*(1-1)];

delun[ip-1+delun_s1*(2-1)]=cmmat*delun[ip-1+delun_s1*(2-1)];

coalescing.

•Array indexes are
decremented by 1 to
use 0-based indexing.

•The required per-
thread variables ip,
cmmat were detected
from the OpenMP
directive and locally
declared.

delun[ip-1+delun_s1*(3-1)]=cmmat*delun[ip-1+delun_s1*(3-1)];

delun[ip-1+delun_s1*(4-1)]=cmmat*delun[ip-1+delun_s1*(4-1)];

delun[ip-1+delun_s1*(5-1)]=cmmat*delun[ip-1+delun_s1*(5-1)];

}

declared.

•The required arrays
delun and mmatm and
parameters npami, and
npamx are
automatically detected
and passed in.

Parallelization

extern "C"

void locfct_loop2_(da_double2* delun, da_double1* mmatm,

•This kernel wrapper
function invokes the
CUDA kernel.void locfct_loop2_(da_double2* delun, da_double1* mmatm,

int* npami, int* npamx)

{

dim3 dimGrid=dim3(round_up((*npamx)-((*npami))+1),1,1);

dim3 dimBlock=dim3(256,1,1);

locfct_loop2<<<dimGrid,dimBlock>>>

(delun->a,delun->shape[1],mmatm->a,*npami,*npamx);

}

CUDA kernel.

•A call to this wrapper
function replaces the
original parallel loop in
the Fortran code.

•delun and mmatm are

call locfct_loop2(delun,mmatm,npami,npamx)

•delun and mmatm are
now GPU arrays and
array shape and offset
information is tracked
using a simple C-
struct/Fortran-derived
type .

Parallelization

• The previous example already exhibited fine-grained
parallelism and was directly converted.parallelism and was directly converted.

• All point loops in FEFLO are treated this way.
• The edge loops in FEFLO are parallelized with

OpenMP but only in a coarse-grained way

�Requires restructuring the loops, manually or
automatically, to expose fine-grained parallelism.automatically, to expose fine-grained parallelism.

Parallelization

• Due to FEFLO’s uniform coding conventions,
automatic restructuring was possible for edge loops, automatic restructuring was possible for edge loops,
requiring an additional ~200 lines of FEFLO-specific
conversion code.

• This typically involved parallelizing inner loop(s),
indicated by
• Not containing any sub-loops.

Vectorization directives.• Vectorization directives.
• Certain loop variable names

• It is conceivable a similar approach could be applied
to other codes.

Tracking Arrays

• Uses a transposed GPU layout for coalescing • Uses a transposed GPU layout for coalescing
requirements

• Determines memory space placement (GPU or CPU).
• Enforces consistent placement to avoid expensive data

transfer.
• Handles memory transfer when explicitly requested.
• Handles different sub-array semantics depending on • Handles different sub-array semantics depending on

the context.

• Placement of arrays in constant memory.
• And more…

Array Placement

• CPUs and GPUs have separate memory spaces, memory • CPUs and GPUs have separate memory spaces, memory
transfer is slow and avoided.

Criterion: An array used in a single parallel loop is

designated as a GPU array throughout the entire code.

�The converter strictly enforces this and reports any �The converter strictly enforces this and reports any
inconsistent usage as errors.

Array Transfer

• Some CPU �� GPU transfer is necessary:• Some CPU �� GPU transfer is necessary:
• Serial Code

• Certain portions of the code (e.g., mesh generation) are
intentionally left as serial, CPU code, and not converted.

• Also needed for incremental GPU porting.
• Calls made to these subroutines are automatically wrapped with

data transfer and transposition calls.

• Input/Output• Input/Output
• Results of reduction loops
• When explicitly requested via custom directives.

Sub-arrays

• In Fortran, a particular memory layout is relied upon when • In Fortran, a particular memory layout is relied upon when
passing an array to another subroutine expecting a sub-
array or an array with a different shape

Dilemma: Is a logically offset, non-contiguous sub-array

intended OR is a contiguous sub-array intended?

�Due to the transposed, coalesced GPU array layout , the two �Due to the transposed, coalesced GPU array layout , the two
cases are NOT always equivalent and can lead to subtle bugs
if the wrong approach is taken.

Sub-arrays: Case 1

• In Fortran 77 sub-arrays
may be passed to other

subroutine rfilfmc(m,n,rma)
implicit real*8 (a-h,o-z) may be passed to other

subroutines with an
offset index

• In this example a 3x95
subarray of a 3x100
array is being passed to

implicit real*8 (a-h,o-z)
real*8 rma(m,n)
...

program main

real*8 x(3,100)
array is being passed to
a subroutine, starting at
index (1,5).

real*8 x(3,100)

call rfilfmc(3,95,x(1,5))

end

Sub-arrays: Case 1

• A logical, non-
contiguous offset is only

subroutine rfilfmc(m,n,rma)
implicit real*8 (a-h,o-z) contiguous offset is only

meaningful if all but the
last dimensions of the
array and sub-array are
equal

• And the offset is only

implicit real*8 (a-h,o-z)
real*8 rma(m,n)
...

program main

real*8 x(3,100)
• And the offset is only

made in the last
dimension.

real*8 x(3,100)

call rfilfmc(3,95,x(1,5))

end

Sub-arrays: Case 2

• In Fortran 77, sub-arrays
are allowed to be

subroutine rfilvc(n,rva)
implicit real*8 (a-h,o-z) are allowed to be

passed to other
subroutines with a
different shape

• In this the example a
2x100 array is being

implicit real*8 (a-h,o-z)
real*8 rva(n)
...

program main

real*8 x(2,100)
2x100 array is being
passed as a contiguous
1D array of length 200
to a subroutine.

real*8 x(2,100)

call rfilvc(200,x)

end

Sub-arrays: Case 2

• A contiguous offset is
meaningful if a non-

subroutine rfilvc(n,rva)
implicit real*8 (a-h,o-z) meaningful if a non-

contiguous logical offset
has not already been
performed.

• To avoid obscure bugs this
behavior is only invoked
when a sub-array is

implicit real*8 (a-h,o-z)
real*8 rva(n)

program main

real*8 x(2,100) when a sub-array is
explicitly requested and
the logical offset of Case 1
is not possible.

real*8 x(2,100)

call rfilvc(200,x(1,1))

end

Sub-arrays

• All of these issues are handled automatically by the converter.• All of these issues are handled automatically by the converter.
• Each case must be distinguished based on FEFLO-specific conventions.
• Pointer arithmetic corresponding to multi-dimensional offsets performed.
• Array dimensions and offsets are tracked.
• Various conversion-time and run-time checks are performed.

• Relies upon FEFLO-specific conventions.
� This issue would seem to hinder the efforts of a fully general � This issue would seem to hinder the efforts of a fully general
Fortran GPU compiler from using a coalesced memory layout while
simultaneously avoiding injecting unnecessary transposition or
transfer calls.

� A complicated but essential requirement for achieving full
GPU performance.

Custom GPU Code

• Automatic translation in this case produced the • Automatic translation in this case produced the
same code that would have resulted from a
manual translation, without the bugs.

• Any loops/subroutines which not can be handled
automatically can be overridden with custom
implementations.implementations.

• In the case of FEFLO, the cases that arose were
general-purpose, well-studied algorithms, with
implementations provided by Thrust.

Summary of Performance Issues

• Fine-Grained Parallelism• Fine-Grained Parallelism
• Point loops are translated directly.
• Edge loops are restructured automatically to expose fine-grained

parallelism..
• Difficult data-parallel algorithms are overridden with custom

implementations based on Thrust

• Avoiding GPU �� CPU data transfer
• Arrays are restricted to one memory space.
• Memory transfer is only performed when explicitly requested.• Memory transfer is only performed when explicitly requested.

• Coalesced Memory Access
• Arrays use a transposed layout, throughout the entire code.
• Numbering schemes tailored to meet coalescing requirements

are an open problem and have the potential to drastically
improve performance.

Multiple Output Targets

• Completely rewriting FEFLO the next time a new • Completely rewriting FEFLO the next time a new
architecture comes out is not a good option.

• OpenCL is not a completely satisfactory solution to this issue.
� Portable code, not necessarily portable performance.

• The converter has varying degrees of support for outputting
to:

• CUDA
• PGI CUDA Fortran• PGI CUDA Fortran
• OpenCL

• Targets can be added very rapidly.

MPI Integration

• CUDA = Fine-grained parallelism• CUDA = Fine-grained parallelism
• Granularity of individual mesh points, edges, elements, etc.

• MPI = Coarse-grained parallelism
• Decomposes meshes into sub-domains based on partitioning.

� Complementary forms of parallelism.

�Use existing MPI code to achieve multi-GPU parallelization.�Use existing MPI code to achieve multi-GPU parallelization.

• The MPI wrapper subroutines are not processed by the converter, and the
converter automatically places appropriate data transfer calls .

Manual Effort Required

• Exposing fine-grained parallelism sufficient for running on • Exposing fine-grained parallelism sufficient for running on
GPUs.

• Ensuring consistent array placement
• Any errors regarding inconsistencies in array usage reported by

the converter must be resolved.

• Removing assumptions regarding memory layout
• Certain sub-array tricks must be prohibited or only interpreted

based on conventions being followed.based on conventions being followed.

Limitations

• Requires code to already express fine-grained parallelism.• Requires code to already express fine-grained parallelism.
• Conversion of arbitrary, serial Fortran code is not attempted.

• Requires code to primarily use data on the GPU or CPU,
not both.

• Shared memory management code is not generated.
• Not relevant to FEFLO, but important for other codes.

• Only the subset of Fortran needed by FEFLO supported.
• Support could be broadened as needed. • Support could be broadened as needed.

• C/C++ not supported

Results

• Many solver options are ported.
• All parallel loops are automatically converted • All parallel loops are automatically converted

to GPU code.
• No large data transfer during time-stepping.

• Compressible Cases:
• Shock Tube
• Blast
• NACA 0012 Air Foil• NACA 0012 Air Foil

• Incompressible Cases:
• Pipe Flow
• Dam Break with a free surface.

Shock Tube:
GPU and CPU comparison

Blast in a Room
• Compressible Euler
• Ideal Gas Equation of State
• Flux-Corrected Transport• Flux-Corrected Transport
• 1 million elements
• 60 Time Steps
• Double Precision

CPU/GPU Time (s)

Core i7 940 (1) 35

Core i7 940 (2) 32

Core i7 940 (4) 18

Core i7 940 (8) 17

GTX 285 10

NACA 0012 Air Foil
• Steady State Compressible Euler
• Ideal Gas Equation of State
• HLLC Riemann Solver• HLLC Riemann Solver
• 1 million elements
• 100 Time Steps
• Double Precision

CPU/GPU Time (s)

Core i7 940 (1) 184

Core i7 940 (2) 104

Core i7 940 (4) 60

Core i7 940 (8) 52

GTX 285 32

Pipe
• Steady-State Incompressible Navier-Stokes + Heat Transfer
• Advection: Roe solver
• Pressure: Poisson (Projection), DPCG(Scalar Products)• Pressure: Poisson (Projection), DPCG(Scalar Products)
• 0.6 million elements
• 100 Time Steps
• Double Precision

CPU/GPU Time (s)

Core i7 940 (1) 300

Core i7 940 (2) 179

Core i7 940 (4) 126

Core i7 940 (8) 121

GTX 285 115

Dam Break
• Transient Incompressible Navier-Stokes
• VOF for Free Surface
• 0.7 million elements• 0.7 million elements
• 100 Time Steps
• Double Precision

CPU/GPU Time (s)

Core i7 940 (1) 93

Core i7 940 (2) 58

Core i7 940 (4) 42

Core i7 940 (8) 42

GTX 285 42

Conclusions

• It is possible to automatically generate running GPU • It is possible to automatically generate running GPU
code from a large-scale legacy Fortran code, which
allows for continued development in single codebase.

• Sufficient fine-grained parallelism must be expressed in
the original Fortran code.

• Coding conventions should be employed consistently to • Coding conventions should be employed consistently to
ease any necessary custom restructuring of the code, or
to allow for assumptions to be made when tracking
arrays across subroutine calls.

