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FEFLO

A large-scale, actively developed and deployed, legacy, 
Fortran computational fluid dynamics code



FEFLO-GPU
Goals

• Full GPU performance
• Port ~1 million lines of code (~11,000 parallel 

loops)
• Continue development in Fortran using 

established coding practices.established coding practices.
• A single, unified codebase.



Porting Strategies 

• Manual porting• Manual porting
o Rewrite the code from scratch

• Automatic porting
o Use a translator or compiler to largely automate 

the task.



Manual Porting 

• Too much effort required.
1 million lines / 11,000 parallel loops.o1 million lines / 11,000 parallel loops.

o Intricate array bookkeeping
• Perpetual process
o Fortran development will continue

• Error Prone.
• Separate codebases• Separate codebases
• CUDA or OpenCL or CUDA Fortran or ?

Not Feasible



Automatic Porting 

• Continued Fortran development.
• Single codebase.• Single codebase.
• Reliable: No new bugs.

• Either works perfectly,
• Or fails catastrophically (easy to catch).
• Actually, catches many old bugs.

• Supports CUDA.• Supports CUDA.
• Excellent option now: maturity, library support.
• CUDA Fortran and OpenCL are partially supported.
• Extensible to future platforms.



Using a Python script 

• O(1000) line Python script based on FParser
• Developed in a few months.• Developed in a few months.
• Generates an optimized, running code.

• Does much more than translate loops in isolation.

• Generates CUDA kernels from existing OpenMP 
and vector loops.

• Tracks array usage across the entire code.
• By far the most difficult task.• By far the most difficult task.

• Many other tasks.

FParser:  http://code.google.com/p/f2py [Peterson, 2009]



Performance

The performance issues of primary concern The performance issues of primary concern 
for GPUs are

• Achieving fine-grained parallelism.
• Avoiding CPU �� GPU data transfer.
• Achieving coalesced memory access.• Achieving coalesced memory access.
• Exploiting shared memory.

• Not considered here.



Fine-Grained Parallelism

• CPUs achieve high performance by reducing • CPUs achieve high performance by reducing 
memory latency: accessing memory in cache.

• GPUs achieve high performance by hiding 
memory latency: overlap memory access with 
computation

� Need finer-grained parallelism to keep GPUs 
busy.



Fine-Grained Parallelism

• In the context of a CFD code, fine-grained • In the context of a CFD code, fine-grained 
parallelism corresponds to processing each cell, 
face, edge, or point in parallel.

�If there are 1 million grid cells, then there 
should be 1 million threads running in parallel.should be 1 million threads running in parallel.

�Domain decomposition is probably an 
insufficient level of parallelism.



Data Transfer

• CPUs and GPUs have separate memory spaces.• CPUs and GPUs have separate memory spaces.
• Transfer between them is slow:

• <10 GB/s

• Internal  GPU bandwidth > 100 GB/s

�Just porting “bottleneck subroutines” will �Just porting “bottleneck subroutines” will 
often eliminate any potential performance gain.

�All parallel loops should run on the GPU
�Transfer of large arrays, ideally, should be 

limited to startup and shutdown.



Coalescing

• Memory bandwidth is more often than not a • Memory bandwidth is more often than not a 
bottleneck. 

• Coalesced memory access is typically the 
determining factor in comparison to cache behavior.

• For many applications performance scales with the 
degree to which coalescing achieved.

• Technical specifications of coalescing requirements • Technical specifications of coalescing requirements 
imply that arrays are transposed.

� Transposing arrays is crucial to avoid needlessly 

incurring a substantial performance penalty.



Coalescing

• Given a Fortran array x(2,n) the standard • Given a Fortran array x(2,n) the standard 
layout in memory is x(1,1), x(2,1), x(1,2),x(2,2), 
etc…



Coalescing

• The preferred layout for meeting GPU • The preferred layout for meeting GPU 
coalescing requirements is 
x(1,1),x(1,2),….x(1,n),x(2,1),….x(2,n)



Parallelization

• A CUDA kernel is generated for each OpenMP • A CUDA kernel is generated for each OpenMP 
loop.

• OpenMP private items � Per-thread variables
• The array layout and indexes in kernel code are 

transposed.
• Reductions are performed after writing to a • Reductions are performed after writing to a 

temporary buffer using Thrust

http://code.google.com/p/thrust [Hoberock, Bell, 2009]



Parallelization

!$omp parallel do private (ip,cmmat)

!cdir inner

•This parallel loop over the 

points of a mesh, taken 
!cdir inner

!cdir concur

c

do 1600 ip=npami,npamx

cmmat=mmatm(ip)

delun(1,ip)=cmmat*delun(1,ip)

delun(2,ip)=cmmat*delun(2,ip)

points of a mesh, taken 

from FEFLO’s flux-corrected 

transport, compressible 

flow module, is 

straightforward, yet tedious 

to translate.

•It already exhibits fine-

grained parallelism so a 
delun(2,ip)=cmmat*delun(2,ip)

delun(3,ip)=cmmat*delun(3,ip)

delun(4,ip)=cmmat*delun(4,ip)

delun(5,ip)=cmmat*delun(5,ip)

1600 continue

grained parallelism so a 

direct translation is 

sufficient.



Parallelization

__global__

void locfct_loop2(double* delun, int delun_s1, double* mmatm,

int npami, int npamx)

{

•This CUDA kernel is a 
direct translation of the 
original OpenMP loop.

•The indexes are 
transposed to ensure 
coalescing.{

double cmmat;

const unsigned int ip = blockDim.x*blockIdx.x+threadIdx.x+npami;

if(ip > npamx) return;

cmmat=mmatm[ip-1];

delun[ip-1+delun_s1*(1-1)]=cmmat*delun[ip-1+delun_s1*(1-1)];

delun[ip-1+delun_s1*(2-1)]=cmmat*delun[ip-1+delun_s1*(2-1)];

coalescing.

•Array indexes are 
decremented by 1 to 
use 0-based indexing.

•The required per-
thread variables ip, 
cmmat were detected 
from the OpenMP 
directive and locally 
declared.

delun[ip-1+delun_s1*(3-1)]=cmmat*delun[ip-1+delun_s1*(3-1)];

delun[ip-1+delun_s1*(4-1)]=cmmat*delun[ip-1+delun_s1*(4-1)];

delun[ip-1+delun_s1*(5-1)]=cmmat*delun[ip-1+delun_s1*(5-1)];

}

declared.

•The required arrays 
delun and mmatm and 
parameters npami, and 
npamx are 
automatically detected 
and passed in.



Parallelization

extern "C"

void locfct_loop2_(da_double2* delun, da_double1* mmatm,

•This kernel wrapper 
function invokes the 
CUDA kernel.void locfct_loop2_(da_double2* delun, da_double1* mmatm,

int* npami, int* npamx)

{

dim3 dimGrid=dim3(round_up((*npamx)-((*npami))+1),1,1);

dim3 dimBlock=dim3(256,1,1);

locfct_loop2<<<dimGrid,dimBlock>>>

(delun->a,delun->shape[1],mmatm->a,*npami,*npamx);

}

CUDA kernel.

•A call to this wrapper 
function replaces the 
original parallel loop in 
the Fortran code.

•delun and mmatm are 

call locfct_loop2(delun,mmatm,npami,npamx)

•delun and mmatm are 
now GPU arrays and 
array shape and offset 
information is tracked 
using a simple C-
struct/Fortran-derived 
type . 



Parallelization

• The previous example already exhibited fine-grained 
parallelism and was directly converted.parallelism and was directly converted.

• All point loops in FEFLO are treated this way. 
• The edge loops in FEFLO are parallelized with 

OpenMP but only in a coarse-grained way

�Requires restructuring the loops, manually or 
automatically, to expose fine-grained parallelism.automatically, to expose fine-grained parallelism.



Parallelization

• Due to FEFLO’s uniform coding conventions, 
automatic restructuring was possible for edge loops, automatic restructuring was possible for edge loops, 
requiring an additional ~200 lines of FEFLO-specific 
conversion code.

• This typically involved parallelizing inner loop(s), 
indicated by
• Not containing any sub-loops.

Vectorization directives.• Vectorization directives.
• Certain loop variable names

• It is conceivable a similar approach could be applied 
to other codes.



Tracking Arrays 

• Uses a transposed GPU layout for coalescing • Uses a transposed GPU layout for coalescing 
requirements

• Determines memory space placement (GPU or CPU).
• Enforces consistent placement to avoid expensive data 

transfer.
• Handles memory transfer when explicitly requested.
• Handles different sub-array semantics depending on • Handles different sub-array semantics depending on 

the context.

• Placement of arrays in constant memory.
• And more…



Array Placement

• CPUs and GPUs have separate memory spaces, memory • CPUs and GPUs have separate memory spaces, memory 
transfer is slow and avoided.

Criterion: An array used in a single parallel loop is 

designated as a GPU array throughout the entire code.

�The converter strictly enforces this and reports any �The converter strictly enforces this and reports any 
inconsistent usage as errors.



Array Transfer

• Some CPU �� GPU transfer is necessary:• Some CPU �� GPU transfer is necessary:
• Serial Code

• Certain portions of the code (e.g., mesh generation) are 
intentionally left as serial, CPU code, and not converted.

• Also needed for incremental GPU porting.
• Calls made to these subroutines are automatically wrapped with 

data transfer and transposition calls.

• Input/Output• Input/Output
• Results of reduction loops
• When explicitly requested via custom directives.



Sub-arrays

• In Fortran, a particular memory layout is relied upon when • In Fortran, a particular memory layout is relied upon when 
passing an array to another subroutine expecting a sub-
array or an array with a different shape

Dilemma: Is a logically offset, non-contiguous sub-array 

intended  OR is a contiguous sub-array intended?

�Due to the transposed, coalesced GPU array layout , the two �Due to the transposed, coalesced GPU array layout , the two 
cases are NOT always equivalent and can lead to subtle bugs 
if the wrong approach is taken.



Sub-arrays: Case 1

• In Fortran 77 sub-arrays 
may be passed to other 

subroutine rfilfmc(m,n,rma)
implicit real*8 (a-h,o-z) may be passed to other 

subroutines with an 
offset index

• In this example a 3x95 
subarray of a 3x100 
array is being passed to 

implicit real*8 (a-h,o-z)
real*8 rma(m,n)
...

program main

real*8 x(3,100)
array is being passed to 
a subroutine, starting at 
index (1,5).

real*8 x(3,100)

call rfilfmc(3,95,x(1,5))

end



Sub-arrays: Case 1

• A logical, non-
contiguous offset is only 

subroutine rfilfmc(m,n,rma)
implicit real*8 (a-h,o-z) contiguous offset is only 

meaningful if all but the 
last dimensions of the 
array and sub-array are 
equal

• And the offset is only 

implicit real*8 (a-h,o-z)
real*8 rma(m,n)
...

program main

real*8 x(3,100)
• And the offset is only 

made in the last 
dimension.

real*8 x(3,100)

call rfilfmc(3,95,x(1,5))

end



Sub-arrays: Case 2

• In Fortran 77, sub-arrays 
are allowed to be 

subroutine rfilvc(n,rva)
implicit real*8 (a-h,o-z) are allowed to be 

passed to other 
subroutines with a 
different shape

• In this the example a 
2x100 array is being 

implicit real*8 (a-h,o-z)
real*8 rva(n)
...

program main

real*8 x(2,100)
2x100 array is being 
passed as a contiguous 
1D array of length 200 
to a subroutine.

real*8 x(2,100)

call rfilvc(200,x)

end



Sub-arrays: Case 2

• A contiguous offset is 
meaningful if a non-

subroutine rfilvc(n,rva)
implicit real*8 (a-h,o-z) meaningful if a non-

contiguous logical offset 
has not already been 
performed.

• To avoid obscure bugs this 
behavior is only invoked 
when a sub-array is 

implicit real*8 (a-h,o-z)
real*8 rva(n)

program main

real*8 x(2,100) when a sub-array is 
explicitly requested and 
the logical offset of Case 1 
is not possible.

real*8 x(2,100)

call rfilvc(200,x(1,1))

end



Sub-arrays

• All of these issues are handled automatically by the converter.• All of these issues are handled automatically by the converter.
• Each case must be distinguished based on FEFLO-specific conventions.
• Pointer arithmetic corresponding to multi-dimensional offsets performed.
• Array dimensions and offsets are tracked.
• Various conversion-time and run-time checks are performed.

• Relies upon FEFLO-specific conventions.
� This issue would seem to hinder the efforts of a fully general � This issue would seem to hinder the efforts of a fully general 
Fortran GPU compiler from using a coalesced memory layout while 
simultaneously avoiding injecting unnecessary transposition or 
transfer calls.

� A complicated but essential requirement for achieving full 
GPU performance.



Custom GPU Code

• Automatic translation in this case produced the • Automatic translation in this case produced the 
same code that would have resulted from a 
manual translation, without the bugs.

• Any loops/subroutines which not can be handled 
automatically can be overridden with custom 
implementations.implementations.

• In the case of FEFLO, the cases that arose were 
general-purpose, well-studied algorithms, with 
implementations provided by Thrust.



Summary of Performance Issues

• Fine-Grained Parallelism• Fine-Grained Parallelism
• Point loops are translated directly.
• Edge loops are restructured automatically to expose fine-grained 

parallelism..
• Difficult data-parallel algorithms are overridden with custom 

implementations based on Thrust

• Avoiding GPU �� CPU data transfer
• Arrays are restricted to one memory space.
• Memory transfer is only performed when explicitly requested.• Memory transfer is only performed when explicitly requested.

• Coalesced Memory Access
• Arrays use a transposed layout, throughout the entire code.
• Numbering schemes tailored to meet coalescing requirements 

are an open problem and have the potential to drastically 
improve performance.



Multiple Output Targets

• Completely rewriting FEFLO the next time a new • Completely rewriting FEFLO the next time a new 
architecture comes out is not a good option.

• OpenCL is not a completely satisfactory solution to this issue.
� Portable code, not necessarily portable performance.

• The converter has varying degrees of support for outputting 
to:

• CUDA 
• PGI CUDA Fortran• PGI CUDA Fortran
• OpenCL

• Targets can be added very rapidly.



MPI Integration

• CUDA  = Fine-grained parallelism• CUDA  = Fine-grained parallelism
• Granularity of individual mesh points, edges, elements, etc.

• MPI = Coarse-grained parallelism
• Decomposes meshes into sub-domains based on partitioning.

� Complementary forms of parallelism.

�Use existing MPI code to achieve multi-GPU parallelization.�Use existing MPI code to achieve multi-GPU parallelization.

• The MPI wrapper subroutines are not processed by the converter, and the 
converter automatically places appropriate data transfer calls .



Manual Effort Required

• Exposing fine-grained parallelism sufficient for running on • Exposing fine-grained parallelism sufficient for running on 
GPUs.

• Ensuring consistent array placement
• Any errors regarding inconsistencies in array usage reported by 

the converter must be resolved.

• Removing assumptions regarding memory layout
• Certain sub-array tricks must be prohibited or only interpreted 

based on conventions being followed.based on conventions being followed.



Limitations

• Requires code to already express fine-grained parallelism.• Requires code to already express fine-grained parallelism.
• Conversion of arbitrary, serial Fortran code is not attempted.

• Requires code to primarily use data on the GPU or CPU, 
not both.

• Shared memory management code is not generated.
• Not relevant to FEFLO, but important for other codes.

• Only the subset of Fortran needed by FEFLO supported.
• Support could be broadened as needed. • Support could be broadened as needed. 

• C/C++ not supported



Results

• Many solver options are ported.
• All parallel loops are automatically converted • All parallel loops are automatically converted 

to GPU code.
• No large data transfer during time-stepping.

• Compressible Cases:
• Shock Tube
• Blast
• NACA 0012 Air Foil• NACA 0012 Air Foil

• Incompressible Cases:
• Pipe Flow
• Dam Break with a free surface.



Shock Tube:
GPU and CPU comparison



Blast in a Room
• Compressible Euler
• Ideal Gas Equation of State
• Flux-Corrected Transport• Flux-Corrected Transport
• 1 million elements
• 60 Time Steps
• Double Precision

CPU/GPU Time (s)

Core i7 940 (1) 35

Core i7 940 (2) 32

Core i7 940 (4) 18

Core i7 940 (8) 17

GTX 285 10



NACA 0012 Air Foil
• Steady State Compressible Euler
• Ideal Gas Equation of State
• HLLC Riemann Solver• HLLC Riemann Solver
• 1 million elements
• 100 Time Steps
• Double Precision

CPU/GPU Time (s)

Core i7 940 (1) 184

Core i7 940 (2) 104

Core i7 940 (4) 60

Core i7 940 (8) 52

GTX 285 32



Pipe
• Steady-State Incompressible Navier-Stokes + Heat Transfer
• Advection: Roe solver
• Pressure: Poisson (Projection), DPCG(Scalar Products)• Pressure: Poisson (Projection), DPCG(Scalar Products)
• 0.6 million elements
• 100 Time Steps
• Double Precision

CPU/GPU Time (s)

Core i7 940 (1) 300

Core i7 940 (2) 179

Core i7 940 (4) 126

Core i7 940 (8) 121

GTX 285 115



Dam Break
• Transient Incompressible Navier-Stokes
• VOF for Free Surface
• 0.7 million elements• 0.7 million elements
• 100 Time Steps
• Double Precision

CPU/GPU Time (s)

Core i7 940 (1) 93

Core i7 940 (2) 58

Core i7 940 (4) 42

Core i7 940 (8) 42

GTX 285 42



Conclusions

• It is possible to automatically generate running GPU • It is possible to automatically generate running GPU 
code from a large-scale legacy Fortran code, which 
allows for continued development in single codebase.

• Sufficient fine-grained parallelism must be expressed in 
the original Fortran code.

• Coding conventions should be employed consistently to • Coding conventions should be employed consistently to 
ease any necessary custom restructuring of the code, or 
to allow for assumptions to be made when tracking 
arrays across subroutine calls.


