Porting Large Fortran Codebases to
GPUs

Andrew Corrigan and Rainald Lohner

Center for Computational Fluid Dynamics
Department of Computational and Data Sciences
George Mason University
Fairfax, VA USA

Collaborators

e Eric Mestreau
e Fernando Camelli
e Fernando Mut

Outline

e Background (FEFLO)
e Porting Strategies

e Performance

e Parallelization

e Array tracking

e Misc. Issues

e Results

e Conclusions

FEFLO

A large-scale, actively developed and deployed, legacy,
Fortran computational fluid dynamics code

FEFLO-GPU

Goals

e Full GPU performance

e Port ~1 million lines of code (~11,000 parallel
loops)

e Continue development in Fortran using
established coding practices.

e Asingle, unified codebase.

Porting Strategies

e Manual porting
o Rewrite the code from scratch

e Automatic porting
o Use a translator or compiler to largely automate
the task.

Manual Porting

e Too much effort required.
o 1 million lines / 11,000 parallel loops.
o Intricate array bookkeeping

e Perpetual process
o Fortran development will continue

e Error Prone.

e Separate codebases

e CUDA or OpenCL or CUDA Fortran or ?

:> Not Feasible

Automatic Porting

e Continued Fortran development.
e Single codebase.

e Reliable: No new bugs.
e Either works perfectly,
e Or fails catastrophically (easy to catch).
e Actually, catches many old bugs.

e Supports CUDA.

e Excellent option now: maturity, library support.
e CUDA Fortran and OpenCL are partially supported.
e Extensible to future platforms.

Using a Python script

e O(1000) line Python script based on FParser
e Developed in a few months.

e Generates an optimized, running code.
e Does much more than translate loops in isolation.

e Generates CUDA kernels from existing OpenMP
and vector loops.

e Tracks array usage across the entire code.
e By far the most difficult task.

e Many other tasks.

FParser: http://code.google.com/p/f2py [Peterson, 2009]

Performance

The performance issues of primary concern
for GPUs are

e Achieving fine-grained parallelism.
e Avoiding CPU €< -2 GPU data transfer.
e Achieving coalesced memory access.

e Exploiting shared memory.
e Not considered here.

Fine-Grained Parallelism

 CPUs achieve high performance by reducing
memory latency: accessing memory in cache.
 GPUs achieve high performance by hiding

memory latency: overlap memory access with
computation

- Need finer-grained parallelism to keep GPUs
busy.

Fine-Grained Parallelism

* |[n the context of a CFD code, fine-grained

parallelism corresponc

s to processing each cell,

face, edge, or point in

narallel.

—21f there are 1 million grid cells, then there
should be 1 million threads running in parallel.

—>Domain decomposition is probably an
insufficient level of parallelism.

Data Transfer

e CPUs and GPUs have separate memory spaces.

* Transfer between them is slow:
e <10 GB/s

e Internal GPU bandwidth > 100 GB/s

—Just porting “bottleneck subroutines” will
often eliminate any potential performance gain.

- All parallel loops should run on the GPU

—>Transfer of large arrays, ideally, should be
limited to startup and shutdown.

Coalescing

Memory bandwidth is more often than not a
bottleneck.

Coalesced memory access is typically the
determining factor in comparison to cache behavior.
For many applications performance scales with the
degree to which coalescing achieved.

Technical specifications of coalescing requirements
imply that arrays are transposed.

- Transposing arrays is crucial to avoid needlessly
incurring a substantial performance penalty.

Coalescing

e Given a Fortran array x(2,n) the standard
layout in memory is x(1,1), x(2,1), x(1,2),x(2,2),
etc...

Coalescing

 The preferred layout for meeting GPU
coalescing requirements is
x(1,1),x(1,2),....x(1,n),x(2,1),....x(2,n)

Parallelization

e A CUDA kernel is generated for each OpenMP
loop.

e OpenMP private items = Per-thread variables

e The array layout and indexes in kernel code are
transposed.

e Reductions are performed after writing to a
temporary buffer using Thrust

http://code.google.com/p/thrust [Hoberock, Bell, 2009]

Parallelization

ISomp parallel do private (ip,cmmat)

lcdir inner

lcdir concur

C
do 1600 ip=npami,npamx
cmmat=mmatm(ip)
delun(1,ip)=cmmat*delun(1,ip)
delun(2,ip)=cmmat*delun(2,ip)
delun(3,ip)=cmmat*delun(3,ip)
delun(4,ip)=cmmat*delun(4,ip)
delun(5,ip)=cmmat*delun(5,ip)

1600 continue

*This parallel loop over the
points of a mesh, taken
from FEFLO’s flux-corrected
transport, compressible
flow module, is
straightforward, yet tedious
to translate.

eIt already exhibits fine-
grained parallelism so a
direct translation is
sufficient.

Parallelization

__global__
void locfct_loop2(double™ delun, int delun_s1, double* mmatm,
int npami, int npamx)

double cmmat;
const unsigned int ip = blockDim.x*blockldx.x+threadldx.x+npami;
if(ip > npamx) return;

cmmat=mmatm[ip-1];

delun[ip-1+delun_s1*(1-1)]=cmmat*delun[ip-1+delun_s1*(1-1)];
delun[ip-1+delun_s1*(2-1)]=cmmat*delun[ip-1+delun_s1*(2-1)];
delun[ip-1+delun_s1*(3-1)]=cmmat*delun[ip-1+delun_s1*(3-1)];
delun[ip-1+delun_s1*(4-1)]=cmmat*delun[ip-1+delun_s1*(4-1)];
delun[ip-1+delun_s1*(5-1)]=cmmat*delun[ip-1+delun_s1*(5-1)];

*This CUDA kernel is a
direct translation of the
original OpenMP loop.

*The indexes are
transposed to ensure
coalescing.

*Array indexes are
decremented by 1 to
use 0-based indexing.

*The required per-
thread variables ip,
cmmat were detected
from the OpenMP
directive and locally
declared.

*The required arrays
delun and mmatm and
parameters npami, and
npamx are
automatically detected
and passed in.

Parallelization

extern "C"
void locfct_loop2_ (da_double2* delun, da_doublel* mmatm,
int* npami, int* npamx)

dim3 dimGrid=dim3(round_up((*npamx)-((*npami))+1),1,1);

dim3 dimBlock=dim3(256,1,1);

locfct_loop2<<<dimGrid,dimBlock>>>
(delun->a,delun->shape[1],mmatm->a,*npami,*npamx);

call locfct_loop2(delun,mmatm,npami,npamx)

*This kernel wrapper
function invokes the
CUDA kernel.

A call to this wrapper
function replaces the
original parallel loop in
the Fortran code.

edelun and mmatm are
now GPU arrays and
array shape and offset
information is tracked
using a simple C-
struct/Fortran-derived
type.

Parallelization

e The previous example already exhibited fine-grained
parallelism and was directly converted.

e All point loops in FEFLO are treated this way.

e The edge loops in FEFLO are parallelized with
OpenMP but only in a coarse-grained way

—>Requires restructuring the loops, manually or
automatically, to expose fine-grained parallelism.

Parallelization

e Due to FEFLO’s uniform coding conventions,
automatic restructuring was possible for edge loops,
requiring an additional ~200 lines of FEFLO-specific

conversion code.
e This typically involved parallelizing inner loop(s),

indicated by
 Not containing any sub-loops.
* Vectorization directives.
e Certain loop variable names

e |tis conceivable a similar approach could be applied
to other codes.

Tracking Arrays

Uses a transposed GPU layout for coalescing
requirements

Determines memory space placement (GPU or CPU).
Enforces consistent placement to avoid expensive data
transfer.

Handles memory transfer when explicitly requested.
Handles different sub-array semantics depending on
the context.

Placement of arrays in constant memory.

And more...

Array Placement

e CPUs and GPUs have separate memory spaces, memory
transfer is slow and avoided.

Criterion: An array used in a single parallel loop is

designated as a GPU array throughout the entire code.

—The converter strictly enforces this and reports any
Inconsistent usage as errors.

Array Transfer

Some CPU <> GPU transfer is necessary:

Serial Code
e Certain portions of the code (e.g., mesh generation) are
intentionally left as serial, CPU code, and not converted.
e Also needed for incremental GPU porting.
e (Calls made to these subroutines are automatically wrapped with
data transfer and transposition calls.
Input/Output
Results of reduction loops
When explicitly requested via custom directives.

Sub-arrays

e |n Fortran, a particular memory layout is relied upon when
passing an array to another subroutine expecting a sub-
array or an array with a different shape

Dilemma: Is a logically offset, non-contiguous sub-array
intended OR is a contiguous sub-array intended?

—>Due to the transposed, coalesced GPU array layout , the two
cases are NOT always equivalent and can lead to subtle bugs

if the wrong approach is taken.

Sub-arrays: Case 1

subroutine rfilfmc(m,n,rma) * In Fortran 77 sub-arrays

implicit real*8 (a-h,o0-z)

real*8 rmacm,n) may be passec! to other
subroutines with an
offset index

e |n this example a 3x95
program main subarray of a 3x100
array is being passed to

a subroutine, starting at
call rfilfmc(3,95,x(1,5)) index (1,5).

real*8 x(3,100)

end

Sub-arrays: Case 1

subroutine rfﬂfmc?n,rma) ‘A logical, non-

implicit real*8 (a-h,o0-z) - '

real*8 rma@n) contlguous foset is only
meaningful if all but the
last dimensions of the
array and sub-array are
equal

program main

ran]*8 xOlOO) And the offset is only
made in the last

call rfﬂfmc‘95,x(1,5)) dimension.

end

Sub-arrays: Case 2

subl{outine rfﬂvz(nﬁrva)) * In Fortran 77, sub-arrays

implicit real*8 (a-h,o0-z

real*8 rva(n) are allowed to be
passed to other
subroutines with a

different shape

program main e |n this the example a
2x100 array is being
passed as a contiguous
call rfilvc(200,x) 1D array of length 200

to a subroutine.

real*8 x(2,100)

end

Sub-arrays: Case 2

subroutine rfilvc(n,rva) e A contiguous offset is

real*8 rva(n) . :
contiguous logical offset
has not already been
performed.

To avoid obscure bugs this
behavior is only invoked
real*8 x(2,100) when a sub-array is
explicitly requested and
the logical offset of Case 1
is not possible.

program main

call rfilvc(200,x(1,1))

end

Sub-arrays

e All of these issues are handled automatically by the converter.

e Each case must be distinguished based on FEFLO-specific conventions.
e Pointer arithmetic corresponding to multi-dimensional offsets performed.

e Array dimensions and offsets are tracked.
e Various conversion-time and run-time checks are performed.

e Relies upon FEFLO-specific conventions.
— This issue would seem to hinder the efforts of a fully general
Fortran GPU compiler from using a coalesced memory layout while
simultaneously avoiding injecting unnecessary transposition or

transfer calls.

- A complicated but essential requirement for achieving full
GPU performance.

Custom GPU Code

e Automatic translation in this case produced the
same code that would have resulted from a
manual translation, without the bugs.

e Any loops/subroutines which not can be handled
automatically can be overridden with custom
implementations.

e |n the case of FEFLO, the cases that arose were
general-purpose, well-studied algorithms, with
implementations provided by Thrust.

Summary of Performance Issues

e Fine-Grained Parallelism
e Point loops are translated directly.

e Edge loops are restructured automatically to expose fine-grained
parallelism..

e Difficult data-parallel algorithms are overridden with custom
implementations based on Thrust

e Avoiding GPU <—> CPU data transfer

e Arrays are restricted to one memory space.

e Memory transfer is only performed when explicitly requested.
 Coalesced Memory Access

e Arrays use a transposed layout, throughout the entire code.

e Numbering schemes tailored to meet coalescing requirements

are an open problem and have the potential to drastically
improve performance.

Multiple Output Targets

Completely rewriting FEFLO the next time a new
architecture comes out is not a good option.
OpenCL is not a completely satisfactory solution to this issue.
— Portable code, not necessarily portable performance.
The converter has varying degrees of support for outputting
to:
e CUDA
e PGI CUDA Fortran
e OpenCL
Targets can be added very rapidly.

MPI Integration

e CUDA =Fine-grained parallelism
e Granularity of individual mesh points, edges, elements, etc.

e MPI = Coarse-grained parallelism
e Decomposes meshes into sub-domains based on partitioning.

- Complementary forms of parallelism.

- Use existing MPI code to achieve multi-GPU parallelization.

e The MPI wrapper subroutines are not processed by the converter, and the
converter automatically places appropriate data transfer calls .

Manual Effort Required

e Exposing fine-grained parallelism sufficient for running on
GPUs.

e Ensuring consistent array placement
e Any errors regarding inconsistencies in array usage reported by
the converter must be resolved.
e Removing assumptions regarding memory layout
e Certain sub-array tricks must be prohibited or only interpreted
based on conventions being followed.

Limitations

Requires code to already express fine-grained parallelism.
e Conversion of arbitrary, serial Fortran code is not attempted.

Requires code to primarily use data on the GPU or CPU,
not both.

Shared memory management code is not generated.
e Not relevant to FEFLO, but important for other codes.

Only the subset of Fortran needed by FEFLO supported.

e Support could be broadened as needed.
C/C++ not supported

Results

e Many solver options are ported.

e All parallel loops are automatically converted

to GPU code.

e No large data transfer during time-stepping.
e Compressible Cases:

e Shock Tube

e Blast

e NACA 0012 Air Foail
e |[ncompressible Cases:

e Pipe Flow

e Dam Break with a free surface.

Shock Tube:
GPU and CPU comparison

density
1.000e-+00
7. 750e-01
5.500e-01
3.250e-01
e 1.000e-01

ahs{vel)
o
. [<L)
5.000e-01
2.500e-01
e .000e +00

pressur

e
1.000e+00

7. 750e-01
5.500e-01
3.250e-01

s 1.000e-01

Blast in a Room

e Compressible Euler

e |deal Gas Equation of State
e Flux-Corrected Transport

e 1 million elements

e 60 Time Steps

e Double Precision

Core i7 940 (1) 35

Core i7 940 (2) 32
Core i7 940 (4) 18
Core i7 940 (8) 17

GTX 285 10

NACA 0012 Air Foil

e Steady State Compressible Euler
e |deal Gas Equation of State
e HLLC Riemann Solver

e 1 million elements

e 100 Time Steps

e Double Precision

Core i7 940 (1) 184

Core i7 940 (2) 104
Core i7 940 (4) 60

Core i7 940 (8) 52

GTX 285 32

Pipe

e Steady-State Incompressible Navier-Stokes + Heat Transfer

e Advection: Roe solver

Pressure: Poisson (Projection)
0.6 million elements

100 Time Steps

Double Precision

Core i7 940 (1) 300
Core i7 940 (2) 179
Core i7 940 (4) 126
Core i7 940 (8) 121

GTX 285 115

, DPCG(Scalar Products)

ahs(vel)
1.877e+00

1.408e-+00
9.3585e-01

f 4.693e-01

-ll.lllllle+llll

Dam Break

e Transient Incompressible Navier-Stokes
e \VVOF for Free Surface
e 0.7 million elements Time=7.990600¢-01
e 100 Time Steps

e Double Precision

Core i7 940 (1) 93

Core i7 940 (2) 58
Core i7 940 (4) 42
Core i7 940 (8) 42

GTX 285 42

Conclusions

e |tis possible to automatically generate running GPU
code from a large-scale legacy Fortran code, which
allows for continued development in single codebase.

e Sufficient fine-grained parallelism must be expressed in
the original Fortran code.

e Coding conventions should be employed consistently to
ease any necessary custom restructuring of the code, or
to allow for assumptions to be made when tracking
arrays across subroutine calls.

