1CS ONn

<
=
=
®

Short-Range Molecular Dynam

(]
o
San Jose, CA | September 22, 2010

y{0]0]
GPU

Overview

* The LAMMPS molecular dynamics (MD) code

= Cell-list generation and force calculation
— Algorithm & performance analysis

= Neighbor-list generation and force calculation
— Algorithm & performance analysis

= Neighbor-list data structure for special cases

PRESENTED BY @ NVIDIA.

LAMMPS

» Classical MD code in C++
— Particles interact with neighbors within some cutoff
— Gradient of the potential energy surface gives forces
— Simulate by integrating equations of motion at timestep

= Open source, freely available for download under GPL

= MPl-parallelized using spatial-decomposition

= Atomistic, mesoscale, and coarse-grain simulations

= Variety of potentials (including many-body and coarse-grain)

= Variety of boundary conditions, constraints, etc
PRESENTED BY @nVIDIA.

GPU-LAMMPS strategy

= Enable LAMMPS to run efficiently on
GPU clusters.

= Not aiming for running on a single GPU.
= Not aiming to rewrite all of LAMMPS

= Rewrite only the most compute-intensive
LAMMPS kernels in CUDA.

= At each time-step, ship particle positions
from CPU to GPU, compute forces on the
GPU, and then ship forces back to the CPU

(the rest of the CPU/GPU cluster)

[Inter-node MPI
commmumcation

CPU

Most of
LANDMPS code

CPU-GPU

£. communication }:-
each
time-step

GPU
Compute-
intensive kernels

PRESENTED BY @ n‘"D'A.

MD algorithm

* N-body with a cutoff distance and a different force formula
= Naive O(N"2) N-body like algorithm: not practical for large
problems
» Avoiding searching all other particles
— Cell-list (link-list)
— Neighbor-list
» Arithmetic intensity depends on the force formula
— Leonard-Jones among the least arithmetic intensity
— Higher arithmetic intensity force will get better results

PRESENTED BY @ NVIDIA.

Leonard-Jones

» |J CPU profile on a single Nehalem core

— 108K atoms, ortho box (0, 50.4), lattice spacing 1.6796,
cutoff=2.5, skin=0.3, neighbor_modify every 20, run=100

— Total time: 10.85 sec.

— Pair time (%) = 9.55339 (86.3939)

— Neigh time (%) = 1.1004 (9.95123)

— Comm time (%) = 0.0903673 (0.817216)

— Outpt time (%) = 0.000515938 (0.00466577)
— Other time (%) = 0.313272 (2.833)

» Force + Neighbor time is ~96% of total time

PRESENTED BY @ NVIDIA.

Some notations

» Two kinds of particles
— Active particles: position needs update
— Ghost particles: contribute to force

» Basic calculation:
— Input: particle positions sorted in particle id

= |d 0 to inum-1 is active particles

* |d inum to nall-1 is ghost particles

— QOutput: forces on each active particle

PRESENTED BY @ NVIDIA.

Cell-list

» Decompose the rectangular domain into cells
= Each cell has list of particles belonging to it
= cell length = cutoff distance + skin length

— To avoid reconstruct the cell-list at every time step
— Only need to reconstruct if some particle travel half of skin length

= When calculating force, every particle only needs to look at
the 27 neighboring cells, saving the cost of looking at all
other particles

PRESENTED BY @ NVIDIA.

GPU Data Structure for cell-list

= Most natural one: fixed size for each cell
» Advantage

— Aligned access: the load address for the first thread in a warp is a
multiple of the segment size

» Disadvantage

— Another parameter that is hard to choose universally

— Potentially a lot of wasted storage space, i.e. limit the problem
size

PRESENTED BY @ NVIDIA.

GPU Data Structure for cell-list

» Fixed bin size data structure not really necessary

— Performance drop due to misaligned access is reduced by Fermi’s
new L1 cache

— Force kernels using cell-list is not memory-bound, i.e. additional
load time due to misaligned access is not overall important

PRESENTED BY @ NVIDIA.

Misalighed accesses on Tesla and Fermi

__global__ void offsetCopy(float *odata, offset=1
float* idata,
int offset)

{
int Xid = blockldx.x * blockDim.x + threadldx.x + offset; o . ey b
odata[xid] = idata[xid]; NEEEEEEERE s SN
i [i 8 I A K IS A A G D e

Misaligned Copy

Data reuse among warps:
s0 = L1 helps on misalgned

\ _ access.

OO

T
=
L=
=
-
=
=
=
=
&

& 9 101112 132141516 1718 192 20 21 22 23 24 25 26 27 28 29 30 31 32
eressnreney. 24 MVIDIAL,

Offset

Packed GPU data-structure for cell-list

* Two arrays

typedef struct {
int *cell_list;
int *cell_counts;
} cell_list_gpu;

— cell_list[nall]: list particle id belonging to each cell in a packed
way

— cell_counts[ncell+1]: list starting position of each cell in the
cell_list array

PRESENTED BY @ NVIDIA.

Cell-list build algorithm

“E.g.

eressnreney. 24 MVIDIAL,

Cell-list build algorithm

cell_list . 5 ‘ ‘ 1 ‘ 6 .
cell _counts . 2 ‘ 3 ‘ 5 .ﬂ

eressnreney. 24 MVIDIAL,

1 2 3 4

» Calculate the cell id of each particle, store the cell id to a
temporary array cell_id, particle id to cell_list

One thread per particle
Embarassingly parallel
Fully coalesced R/W

eressnreney. 24 MVIDIAL,

Cell-list build algorithm

= Sort using cell_id as the key and cell_list as the value

— Use CUDPP radix sort
— cell_Llist then has the correct order

cell_id | 3 | 4 | 1 | 2 | 1 . cell_list

cell id ||||||:| cell_list

eressnreney. 24 MVIDIAL,

Cell-list build algorithm

= Calculate cell counts from the sorted cell id
— One thread per particle

— Compare cell id in the left and itself, if different, that’s a cell
boundary

— Adding two special cases to handle the two boundaries

cell_id

cell_counts

eressnreney. 24 MVIDIAL,

Force kernel using cell-list

= One CUDA block per cell, every thread calculating the force
of one particle

= Loop through all the other particles in the 27 neighbors, if
it’s within the cutoff distance, accumulates its force
contribution

= Data reuse: all threads are checking the same cell

— Load the particle positions to shared memory

PRESENTED BY @ NVIDIA.

Force kernel with cell-list

Load position of current particle to P_|I
for k in each 27 neighboring cell
load positions of cell k to shared memory Ps

for each particle jin Ps
calculate r = dist(P_i, P_))
If r < cutoff distance && r > 1le-5
calculate force from j to i

PRESENTED BY @ nVIDIA.

Cell-list performance
» C2050 performance

— Total time: 2.9 sec (3.74x speedup over single Nehalem core)
— Cell-list build time: 0.013 sec (~2.2 ms per cell-list build)
— Force kernel time: 2.3 sec (~23 ms per force calculation)

= Conclusion:
— For LJ force, C2050 is comparable to 4 core Nehalem

— Cell-list build is ~10x cheaper than force kernel computation. So
more frequent cell-list rebuild, even after every time step, is
allowed (for better accuracy/using cell of half-cutoff distance)

— CPU-GPU data transfer overhead not important

PRESENTED BY @ NVIDIA.

Kernel performance tuning mini guide

= Key questions in optimization:
— What to optimize?
— Are we done?
» Find out the limiting factor in kernel performance
— Memory bandwidth/instruction throughput/latency bound

= Rule-of-thumb: compare instruction-to-byte accessed to Fermi’s peak
instruction-issue-rate/bw-~3.5.

= Have good memory access pattern but effective memory throughput is low

= Manually comment out computation and memory access: watch out for
compiler tricks

» Measure effective memory/instruction throughput.
» Optimize for peak memory/instruction throughput..... etnvioia.

Force kernel performance

Load position of current particle to P_i
for k in each 27 neighboring cell
load positions of cell k to shared memory Ps

for each particle jin Ps
calculate r = dist(P_i, P_))
if r < cutoff distance && r > 1e5
calculate force from j to i

» [nside the search loop, comment out force calculation
— By changing r2 > 1e-5 tor2 > 1e5
— Time reduce from 22.5 ms to 20 ms

— Force calculation is NOT the bottleneck (most of the time the
conditional check fails)

PRESENTED BY @ n‘"DlA.

Force kernel performance

Load position of current particleto P_i
for k in each 27 neighboring cell
load positions of cell k to shared memory Ps

for each particle j in Ps
calculater = dist(P_i, P_j)
If r < cutoff distance && r > 1e-5
calculate force from j to |

= Comment out the search on shared memory position but
keep shared memory ld

— By changing end_idx to end_idx/100
— Time reduce from 22.5 ms to 6.5 ms
— The kernel is large bound by instruction issue in the search loop
— Roughly the search loop time is 22.5- 6.5 ~ 15 ms

PRESENTED BY @ nVIDIA.

Force kernel performance

» There are 21 instructions inside the search loop when
conditions fail

= On average 18.8 particles per cell, so each thread needs to
check ~27*18.8~508 times

= Total threads=512K

= The search loop effective instruction throughput:
— 21*508*512000/0.015*1e-9~377 Ginstr/s
— ~73% of the peak instruction issue rate
— We are close to done!

PRESENTED BY @ NVIDIA.

Why cell-list did not fly?

» For this initial condition, each particle has the same 54
neighbors which are within the cutoff distance and 78
neighbors which are within the cutoff + skin

= For cell-list, 54/508~11% of the search are successful, i.e.
90% of the instruction issued are “wasted”

= For neighbor-list, 54/78~70% of the search are successful

= S0 cell-list method just does much more “wasted”
computation than the neighbor-list method

EEEEEEEEE <A NVIDIA.

Neighbor-list

» Neighbor-list: stores the neighbors (particles within cutoff +
skin) of each active particles

» Data structure requirement
— Varying number of neighbors for different particles
— Coalesced memory access

PRESENTED BY @ NVIDIA.

Neighbor-list data structure

= A regular 2D storage in column-majored
way Neigh-List
= Advantage:
— Simple for force kernel
— Fully coalesced access (w/ padding)
» Disadvantage

— Large waste of storage space for some
problem

GPU Neigh-List

— Limit the problem size

Fa
bad
rFea
b
rea
had
Fa
had
Fa
bad
rFea
e

eressnreney. 24 MVIDIAL,

Neighbor-list build

» Unbinned algorithm: search all other particles O(N"2)
— Not efficient for large problems

» Binned algorithm: first build a cell-list, then use that to
build the neighbor-list

» We will use the binned algorithm for its efficiency on large
problems

PRESENTED BY @ NVIDIA.

Neighbor-list build

» Build a cell-list as described in previous slides

= The neighbor-list build kernel is very similar to the force
kernel using cell-list, where except of accumulating a force
when a particle is within the cutoff distance, we add it to
the neighbor-list

PRESENTED BY @ NVIDIA.

Force calculation using neighbor-list

* One thread per particle

= Each thread loops through the neighbor-list of its particle,
accumulating to the force if a neighbor is within the cutoff
distance

Load position of current particle to P_|I
for each particle j in neighbor-list

calculater = dist(P_1I, P_))
If r < cutoff distance && r > 1le-5
calculate force from jto |

PRESENTED BY @ nVIDIA.

Neighbor-list performance

= C2050:

— Total time: 1 sec (11x over a single Nehalem core)
— Force time: 0.24 sec (2.4 ms per force calculation)
— Neighbor-list build time: 0.16 sec (26 ms per build)

= Conclusion

— Neighbor-list build is now ~10x more expensive than force
calculation

— Force + Neighbor is 35x over a single Nehalem core
— Overhead important now

PRESENTED BY @ NVIDIA.

C2050 over Nehalem speedup

Speedup of a C2050
over 4 core Nehalem

Force + Neighbor list

o
-
-
@
2
(%]
E
[}
—
[T
z
.
=
LS
g
(¥

256000 500000 864000 1372000
Ovel’a” Speedup Mumber of Particles
Number of Particles

* LJ speedup will be the least significant.
 Overall speedup limited by Amdahl’s law.

eressnreney. 24 MVIDIAL,

Percentage of Total Running Time

Profile

Mumber of Particles

=#=cudaMalloc
== kernel

CPU-GPU data transfer
=i (i1 fpostprocess

Other CPU part

(integration)

» cudaMalloc important at small np:
user-managed memory

* Perf limited by time integration at
large np: move that to GPU

* Only copy data back to CPU when

MPI communication is required

eressnreney. 24 MVIDIAL,

Force kernel performance

* [n the main loop
— Within cutoff:

= |Instruction: 21
= Memory load: 24
= Ratio: 0.875

— Qutside cutoff:

= |nstruction: 8
= Memory load: 24
= Ratio: 0.33

= Neighbor-list force kernel is memory-bound

PRESENTED BY @ NVIDIA.

Force kernel performance

= Effective bandwidth: 127.8 GB/s

— 84% of peak memory bandwidth
— We are close to be done.

» Flop rate: 90.5 Gflop/s

» Texture is important
— Turn off texture for position, we get only 43.1 GB/s

PRESENTED BY @ NVIDIA.

Tail neighbor-list

» Disadvantage of the NL data structure we are using so far

— Large waste of storage space for some
problem

— Limit the problem size
» |[dea: a hybrid data structure
— Use the padded storage for typical cases (block NL)
— Use a packed storage for exceptional cases (tail NL)
» Balance between performance and storage space
— Most (>90%) of the entries in block NL

PRESENTED BY @ NVIDIA.

Tail neighbor-list

CPU Data Structure: Linked List

TailNeighList |8 |98 ||| o[|s
BlockNeighList TailNeighCounts

TailNeighParticlelD

BlockNeighCounts

eressnreney. 24 MVIDIAL,

Summary

» Short-range MD algorithms can map well to GPU

= Cell-list and neighbor-list have difference performance
characteristics

» Redesign data structure to optimize neighbor-list

PRESENTED BY @ NVIDIA.

Build tail NL |

* [n the NL build kernel, if neighbors > block NL size
append new neighbor id and the corresponding particle id
to two arrays

» Because of using atomic

functions, the tail NL is in a tail_list [3[T]2[5[2]4]4]

random unsorted state

tail_particle_id | 1 | 3 | 1 | 1 | 3 | 1 .

eresenrener 8 MVIDIA.

Build tail NL I

= Sort with tail_particle_id as key and tail_list as value

tail_particle_id | 1 | 3 | 1 | 1 | 3 | 1 . tail_list 3112|524

tail_particle_id ||||||. tail_list |||||||:|

eressnreney. 24 MVIDIAL,

Build tail NL Il

» Calculate tailNeighParticlelD, tailNeighCounts from
tail_particle_id

— Stream compaction

tailNeighParticlelD

tail_particle_id | 1 | 1 | 1 | 1 | 3 | 3 . tailNeighCounts

eressnreney. 24 MVIDIAL,

Force kernel using tail NL

PO P1
* One thread per particle
— Simple to implement TailNL- \
— Uncoalesced access Thread 0 Thread 1
» One warp per particle 56 o1
— Coalesced access
Tail NL

— Use shared memory for reduction

— Waste of thread if # of neighbors is < warp size
warp O warp 1

PRESENTED BY @ NVIDIA.

