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Overview

 The LAMMPS molecular dynamics (MD) code

 Cell-list generation and force calculation

— Algorithm & performance analysis

 Neighbor-list generation and force calculation

— Algorithm & performance analysis

 Neighbor-list data structure for special cases



LAMMPS 

 Classical MD code in C++

— Particles interact with neighbors within some cutoff

— Gradient of the potential energy surface gives forces

— Simulate by integrating equations of motion at timestep

 Open source, freely available for download under GPL

 MPI-parallelized using spatial-decomposition

 Atomistic, mesoscale, and coarse-grain simulations

 Variety of potentials (including many-body and coarse-grain)

 Variety of boundary conditions, constraints, etc

http://lammps.sandia.gov 



GPU-LAMMPS strategy

 Enable LAMMPS to run efficiently on 

GPU clusters. 

 Not aiming for running on a single GPU. 

 Not aiming to rewrite all of LAMMPS  

 Rewrite only the most compute-intensive 

LAMMPS kernels in CUDA. 

 At each time-step, ship particle positions 

from CPU to GPU, compute forces on the 

GPU, and then ship forces back to the CPU



MD algorithm

 N-body with a cutoff distance and a different force formula

 Naïve O(N^2) N-body like algorithm: not practical for large 

problems

 Avoiding searching all other particles

— Cell-list (link-list)

— Neighbor-list

 Arithmetic intensity depends on the force formula

— Leonard-Jones among the least arithmetic intensity

— Higher arithmetic intensity force will get better results



Leonard-Jones

 LJ CPU profile on a single Nehalem core

— 108K atoms, ortho box (0, 50.4), lattice spacing 1.6796, 

cutoff=2.5, skin=0.3, neighbor_modify every 20, run=100

— Total time: 10.85 sec.

— Pair  time (%) = 9.55339 (86.3939)

— Neigh time (%) = 1.1004 (9.95123)

— Comm time (%) = 0.0903673 (0.817216)

— Outpt time (%) = 0.000515938 (0.00466577)

— Other time (%) = 0.313272 (2.833)

 Force + Neighbor time is ~96% of total time



Some notations

 Two kinds of particles

— Active particles: position needs update

— Ghost particles: contribute to force

 Basic calculation:

— Input: particle positions sorted in particle id

 Id 0 to inum-1 is active particles

 Id inum to nall-1 is ghost particles 

— Output: forces on each active particle



Cell-list

 Decompose the rectangular domain into cells

 Each cell has list of particles belonging to it

 cell length = cutoff distance + skin length

— To avoid reconstruct the cell-list at every time step

— Only need to reconstruct if some particle travel half of skin length

When calculating force, every particle only needs to look at 

the 27 neighboring cells, saving the cost of looking at all 

other particles



GPU Data Structure for cell-list

 Most natural one: fixed size for each cell

 Advantage

— Aligned access: the load address for the first thread in a warp is a 

multiple of the segment size 

 Disadvantage

— Another parameter that is hard to choose universally

— Potentially a lot of wasted storage space, i.e. limit the problem 

size 



GPU Data Structure for cell-list

 Fixed bin size data structure not really necessary

— Performance drop due to misaligned access is reduced by Fermi’s 

new L1 cache

— Force kernels using cell-list is not memory-bound, i.e. additional 

load time due to misaligned access is not overall important



Misaligned accesses on Tesla and Fermi
__global__ void offsetCopy(float *odata, 

float* idata,

int offset)

{

int xid = blockIdx.x * blockDim.x + threadIdx.x + offset;

odata[xid] = idata[xid];

}

offset=1

Data reuse among warps:

L1 helps on misalgned

access.

offset=1



Packed GPU data-structure for cell-list

 Two arrays

— cell_list[nall]: list particle id belonging to each cell in a packed 

way

— cell_counts[ncell+1]: list starting position of each cell in the 

cell_list array

typedef struct {

int *cell_list;

int *cell_counts;

} cell_list_gpu;



Cell-list build algorithm

 E.g.



Cell-list build algorithm



Cell-list build algorithm 

 Calculate the cell id of each particle, store the cell id to a 

temporary array cell_id, particle id to cell_list

One thread per particle

Embarassingly parallel

Fully coalesced R/W



Cell-list build algorithm 

 Sort using cell_id as the key and cell_list as the value

— Use CUDPP radix sort

— cell_list then has the correct order



Cell-list build algorithm 

 Calculate cell_counts from the sorted cell_id

— One thread per particle

— Compare cell id in the left and itself, if different, that’s a cell 

boundary

— Adding two special cases to handle the two boundaries



Force kernel using cell-list

 One CUDA block per cell, every thread calculating the force 

of one particle

 Loop through all the other particles in the 27 neighbors, if 

it’s within the cutoff distance, accumulates its force 

contribution

 Data reuse: all threads are checking the same cell

— Load the particle positions to shared memory



Force kernel with cell-list

Load position of current particle to P_i

for k in each 27 neighboring cell 

load positions of cell k to shared memory Ps

for each particle j in Ps

calculate r = dist(P_i, P_j)

if r < cutoff distance && r > 1e-5

calculate force from j to i



Cell-list performance

 C2050 performance

— Total time: 2.9 sec (3.74x speedup over single Nehalem core)

— Cell-list build time: 0.013 sec (~2.2 ms per cell-list build)

— Force kernel time: 2.3 sec (~23 ms per force calculation)

 Conclusion:

— For LJ force, C2050 using cell-list is comparable to 4 core Nehalem 

using neighbor-list

— Cell-list build is ~10x cheaper than force kernel computation. So 

more frequent cell-list rebuild, even after every time step, is 

allowed (for better accuracy/using cell of half-cutoff distance)

— CPU-GPU data transfer overhead not important



Kernel performance tuning mini guide

 Key questions in optimization: 

— What to optimize?

— Are we done?

 Find out the limiting factor in kernel performance

— Memory bandwidth/instruction throughput/latency bound

 Rule-of-thumb: compare instruction-to-byte accessed to Fermi’s peak 

instruction-issue-rate/bw~3.5.

 Have good memory access pattern but effective memory throughput is low

 Manually comment out computation and memory access: watch out for 

compiler tricks

 Measure effective memory/instruction throughput.

 Optimize for peak memory/instruction throughput



Force kernel performance

 Inside the search loop, comment out force calculation

— By changing r2 > 1e-5 to r2 > 1e5

— Time reduce from 22.5 ms to 20 ms

— Force calculation is NOT the bottleneck (most of the time the 

conditional check fails)

Load position of current particle to P_i

for k in each 27 neighboring cell 

load positions of cell k to shared memory Ps

for each particle j in Ps

calculate r = dist(P_i, P_j)

if r < cutoff distance && r > 1e5

calculate force from j to i



Force kernel performance 

 Comment out the search on shared memory position but 

keep shared memory ld

— By changing end_idx to end_idx/100

— Time reduce from 22.5 ms to 6.5 ms

— The kernel is large bound by instruction issue in the search loop

— Roughly the search loop time is 22.5 – 6.5 ~ 15 ms

Load position of current particle to P_i

for k in each 27 neighboring cell 

load positions of cell k to shared memory Ps

for each particle j in Ps

calculate r = dist(P_i, P_j)

if r < cutoff distance && r > 1e-5

calculate force from j to i



Force kernel performance

 There are 21 instructions inside the search loop when 

conditions fail

 On average 18.8 particles per cell, so each thread needs to 

check ~27*18.8~508 times

 Total threads=512K

 The search loop effective instruction throughput:

— 21*508*512000/0.015*1e-9~377 Ginstr/s

— ~73% of the peak instruction issue rate

— We are close to done!



Why cell-list did not fly?

 For this initial condition, each particle has the same 54 

neighbors which are within the cutoff distance and 78 

neighbors which are within the cutoff + skin

 For cell-list, 54/508~11% of the search are successful, i.e. 

90% of the instruction issued are ―wasted‖

 For neighbor-list, 54/78~70% of the search are successful

 So cell-list method just does much more ―wasted‖ 

computation than the neighbor-list method



Neighbor-list

 Neighbor-list: stores the neighbors (particles within cutoff + 

skin) of each active particles

 Data structure requirement

— Varying number of neighbors for different particles

— Coalesced memory access



Neighbor-list data structure

 A regular 2D storage in column-majored

way

 Advantage:

— Simple for force kernel

— Fully coalesced access (w/ padding)

 Disadvantage

— Large waste of storage space for some

problem

— Limit the problem size



Neighbor-list build

 Unbinned algorithm: search all other particles O(N^2)

— Not efficient for large problems

 Binned algorithm: first build a cell-list, then use that to 

build the neighbor-list

We will use the binned algorithm for its efficiency on large 

problems



Neighbor-list build

 Build a cell-list as described in previous slides

 The neighbor-list build kernel is very similar to the force 

kernel using cell-list, where except of accumulating a force 

when a particle is within the cutoff distance, we add it to 

the neighbor-list



Force calculation using neighbor-list

 One thread per particle

 Each thread loops through the neighbor-list of its particle, 

accumulating to the force if a neighbor is within the cutoff 

distance

Load position of current particle to P_i

for each particle j in neighbor-list

calculate r = dist(P_i, P_j)

if r < cutoff distance && r > 1e-5

calculate force from j to i



Neighbor-list performance

 C2050:

— Total time: 1 sec (11x over a single Nehalem core)

— Force time: 0.24 sec (2.4 ms per force calculation)

— Neighbor-list build time: 0.16 sec (26 ms per build)

 Conclusion

— Neighbor-list build is now ~10x more expensive than force 

calculation

— Force + Neighbor is 35x over a single Nehalem core

— Overhead important now



C2050 over Nehalem speedup

Force + Neighbor list

Overall speedup

• LJ speedup will be the least significant.

• Overall speedup limited by Amdahl’s law. 

Speedup of a C2050 

over 4 core Nehalem

Number of Particles



Profile

• cudaMalloc important at small np: 

user-managed memory

• Perf limited by time integration at

large np: move that to GPU

• Only copy data back to CPU when

MPI communication is required

(integration)



Force kernel performance

 In the main loop

— Within cutoff:

 Instruction: 21

 Memory load: 24

 Ratio: 0.875

— Outside cutoff:

 Instruction: 8

 Memory load: 24

 Ratio: 0.33

 Neighbor-list force kernel is memory-bound



Force kernel performance

 Effective bandwidth: 127.8 GB/s

— 84% of peak memory bandwidth

— We are close to be done.

 Flop rate: 90.5 Gflop/s

 Texture is important

— Turn off texture for position, we get only 43.1 GB/s



Tail neighbor-list

 Disadvantage of the NL data structure we are using so far

— Large waste of storage space for some

problem

— Limit the problem size

 Idea: a hybrid data structure

— Use the padded storage for typical cases (block NL)

— Use a packed storage for exceptional cases (tail NL)

 Balance between performance and storage space

— Most (>90%) of the entries in block NL



Tail neighbor-list



Summary

 Short-range MD algorithms can map well to GPU

 Cell-list and neighbor-list have difference performance 

characteristics

 Redesign data structure to optimize neighbor-list



Build tail NL I

 In the NL build kernel, if neighbors > block NL size

append new neighbor id and the corresponding particle id 

to two arrays atomically

 Because of using atomic 

functions, the tail NL is in a

random unsorted state



Build tail NL II

 Sort with tail_particle_id as key and tail_list as value



Build tail NL III

 Calculate tailNeighParticleID, tailNeighCounts from 

tail_particle_id

— Stream compaction



Force kernel using tail NL

 One thread per particle

— Simple to implement

— Uncoalesced access

 One warp per particle

— Coalesced access

— Use shared memory for reduction

— Waste of thread if # of neighbors is < warp size

P 0 P 1

Thread 0 Thread 1

P 0 P 1

warp 0 warp 1

……

Tail NL

Tail NL


