<
=
=
®

10NS

t

imiza

OpenCL Opt

San Jose, CA| September 23, 2010

()
()
Peng Wang, NVIDIA

2008

Optimization Overview

» GPU Architecture

* Memory Optimization

= Execution Configuration
= [nstruction Throughput

PRESENTED BY @ NVIDIA.

Fermi Multiprocessor
= 2 Warp Scheduler

— In-order issue, up to 1536 concurrent threads

= 32 CUDA Cores
— Full IEEE 754-2008 FP32 and FP64
— 32 FP32 ops/clock, 16 FP64 ops/clock

= 48 KB shared memory
=16 KB L1 cache

= 4 FP32 SFUs

» 32K 32-bit registers

— Up to 63 registers per thread rresewreosy @4 NVIDIA.

GPU and Programming Model <3

NVIDIA.
Software GPU
[] Work-items are executed by CUDA cores
CUDA core
Work-item

Work-groups are executed on multiprocessors

Work-groups do not migrate

QKL

Several concurrent work-groups can reside on
Work-group Multiprocessor one multiprocessor - limited by multiprocessor
resources

A kernel is launched as a grid of work-groups

Grid Device
PRESENTED BY @ NVIDIA.

32 work-items

Warp and SIMT =

Warps

Work-group

® Work-groups divide into groups of 32
work-items called warps.

Warps are basic scheduling units
Warps always perform same
instruction (SIMT)

Each work-item CAN execute its own
code path

Fermi SM has 2 warp schedulers
QESELESRE

Context switching is free

A lot of warps can hide memory
latency

PRESENTED BY @ NVIDIA.

OpenCL Memory Hierarchy

® Global: R/W per-kernel

— High latency: 400-800 cycles

— Throughput: 1.5 GHz * (384 / 8)
Bytes *2 = 144 GB/s

® Constant : R per-kernel
® Local memory: R/W per-group

— Low latency: a few cycles
— High throughput: 73.6 GB/s per

Sh (1.03 T8/5 per GPU)

Compute Device Memory ® Private: R/W per-th read

PRESENTED BY @ NVIDIA.

Mapping OpenCL to the CUDA Architecture

OpenCL CUDA Architecture

Global Memory Global/Local Memory
Compute Device Memory Compute Device Memory

PRESENTED BY @ NVIDIA.

General Optimization Strategies
» Find out the limiting factor in kernel performance
— Memory bandwidth/latency/instruction throughput bound

— How

= Rule-of-thumb: compare your code’s instruction-to-byte accessed to Fermi’s peak
instruction-issue-rate/bw-~3.5.

= Have good memory access pattern but effective memory throughput is low

» Manually comment out computation and memory access: watch out for compiler
tricks

= Measure effective memory/instruction throughput.

» Optimize for peak memory/instruction throughput

— Finding out the bottleneck
— Typically an iterative process resacosr 3 NVIDIA.

Minimizing CPU-GPU data transfer

= Host<->device data transfer has much lower bandwidth than
global memory access.

— 8 GB/s (PCle x16 Gen2) vs 156 GB/s & 515 Ginst/s

= Minimize transfer

— Intermediate data can be allocated, operated, de-allocated directly
on GPU

— Sometimes it’s even better to recompute on GPU

— Move CPU codes to GPU that do not have performance gains if it can
reduce data transfer

» Group transfer

— One large transfer much better than many small ones: 10 microsec
latency, 8 GB/s => latency dominated if data size < 80 KB....... & nvipia.

Coalescing
= Global memory latency: 400-800 cycles.

= Global memory access by a warp (half-warp in pre-Fermi)
can be coalesced to one transaction for word of size 8-bit,
16-bit, 32-bit, 64-bit or two transactions for 128-bit.

PRESENTED BY @ NVIDIA.

Coalescing criterion on compute

capability 2.0

= Coalescing for any pattern of access that fits into a L1 cache
line (128B)

= # of transactions = # of accessed L1 cache line

PRESENTED BY @ NVIDIA.

Example of Misaligned Accesses

__kernel void offsetCopy(float *odata,
float* idata,
int offset)

{
int xid = get_global_id(0) + offset;
odata[xid] = idata[xid];

FEHA

Data reuse
among warps:
L1 helps on
misalgned

A R r access.

== C10&0

Misaligned Copy

a1 2 3% 4 5 6 7 8 9 101112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 20 31 32

Offset eressnreney. 24 MVIDIAL,

Example of Strided Accesses

__kernel void strideCopy(float *odata,
float* idata,
int stride)

{
int xid = get_global _id(0)*stride;
odata[xid] = idata[xid];

Strided Copy NoO reuse among warps

Large strides often arise in
_ applications. However, strides
MW may be avoided using local
memory.

Bandwidth [GBys)

Stride

eressnreney. 24 MVIDIAL,

Local Memory

» Low latency: a few cycles
» High throughput: 73.6 GB/s per SM (1.03 TB/s per GPU)
* Main use

— Inter-work-group communication

— User-managed cache to reduce redundant global memory accesses
— Avoid non-coalesced access

PRESENTED BY @ NVIDIA.

Local Memory Example: Matrix
Multiplication

C=AXxB

eresenenay. 8 MVIDIA.

Uncached Kernel

__kernel void simpleMultiply(__global float* a,
__global float* b,
__global float* c,

int N)

int row = get_global id(1);

int col =get _global id(0);
float sum = 0.0f;
for (inti =0; i <TILE_DIM; i++) {
sum += a[row*TILE_DIM+i] * b[i*N+col];

}

c[row*N+col] = sum;

Every thread corresponds to one entry in C.

PRESENTED BY @ nVIDIA.

Blocked Matrix Multiplication

C=AXxB

Data reuse in the blocked version

PRESENTED BY @ NVIDIA.

Blocked and cached kernel

__kernel void coalescedMultiply(double*a,
double* b,
double*c,
int N)

{
__local float aTile[TILE_DIM][TILE_DIM];

__local double bTile[TILE_DIM][TILE_DIM];

int row = get_global_id(1);
int col = get_global_id(0);
float sum = 0.0f;
for (intk=0; k< N; k+=TILE_DIM) {
aTile[threadldx.y][threadldx.x] = a[row*TILE_DIM+threadldx.x];
bTile[threadldx.y][threadldx.x] = b[threadldx.y*N+col];
barrier(CLK_LOCAL MEM_FENCE);
for (inti=k; i < k+TILE_DIM; i++) {
sum += aTile[threadldx.y][i]* bTile[i][threadldx.x];
}
c[row*N+col] = sum;

}

eresenenay. 8 MVIDIA.

Performance Results

Coalescing Example: Matrix Transpose
A B B=A’

Strided global mem access in naive
Implementation, resulting in 32
transactions if stride > 32

Move the strided access into
local memory read

PRESENTED BY @ nVIDIA.

Matrix Transpose Performance

eresenenay. 8 MVIDIA.

Bank Conflicts

Local memory
» Local memory is divide into banks.

Bank0 |
— Successive 32-bit words assigned to H
successive banks H

_ — : | Bank4
Number of banks = 32 (Fermi), 16 (Tesla) H

. . e . | Bank6
Bank conflict: two R/W fall in ’ghe same i

bank, the access will be serialized. .

Bank 32

PRESENTED BY @ NVIDIA.

Bank Conflicts

= Special cases

— If all threads in a warp access the same word,
one broadcast. Fermi can also do multi-broadcast.

— If reading continuous byte, no conflict on Fermi
— If reading double, no conflict on Fermi
» Some tricks
— Use array[N_BANK][N_BANK+1];
— Change local memory reads to the same value to see the impact

PRESENTED BY @ NVIDIA.

Memory Optimizations

= Strive for perfect coalescing
— Transpose the data structure, e.g. AOS to SOA; padding

= Launch enough threads per SM to cover latency
» Process several elements per thread
— Multiple loads get pipelined; indexing calculation may be reused

= [ssue global loads as early as possible
— Group together; prefetch

= Use local memory to reduce global memory access, avoid non-
coalesced access.

PRESENTED BY @ NVIDIA.

Global Memory Throughput Metric

» Many codes are memory throughput bound
» Measuring effective memory throughput:

— From the app point of view (“useful” bytes): number of bytes
needed by the algorithm divided by kernel time

— Compare to the theoretical bandwidth
= 70-80% is very good

» Finding out bottleneck

— Start with global memory operations, achieve good throughput
— Add arithmetic, local memory, etc, measuring perf as you go

PRESENTED BY @ NVIDIA.

Visual Profiler

= | atest Visual Profiler reports memory throughput

— From point of view: count load/store bus transactions of each size
(32, 64, 128B) on the TPC

— Based on counters for one extrapolate to the
whole GPU

— Need or higher GPU

» The effective and HW memory throughputs are likely to be
different

glob rem read throughput | glab mem write throughput | glob e overall Ehrothegout
(GEfs) (GB)s) (GE[s)

" | inskruction throughput

11.6771 55.8236 0.763973

PRESENTED BY Q2 VIDIA

Grid Size Heuristics

= # of work-groups / # of SM > 2
— Multi blocks can run concurrently on a SM

— Work on another work-group if one work-group is waiting on
barrier

= # of work-groups / # of SM > 100 to scale well to future
device

PRESENTED BY @ NVIDIA.

Work-group Size Heuristics

» Work-group size should be a multiple of 32 (warp size)

= Want as many warps running as possible to hide latencies

* Minimum: 64. | generally use 128 or 256. But use whatever
is best for your app.

= Depends on the problem, do experiments!

PRESENTED BY @ NVIDIA.

Latency Hiding

= Key to understanding:
— Instructions are issued in order
— A work-item blocks when one of the operands isn’t ready:
— Latency is hidden by switching warps
= Conclusion:
— Need enough warps to hide latency

PRESENTED BY @ NVIDIA.

Occupancy

» Occupancy: ratio of active warps per SM to the maximum
number of allowed warps

* Maximum number: 32 in pre-Fermi, 48 in Fermi

PRESENTED BY @ NVIDIA.

Dynamical Partitioning of SM Resources

= Local memory is partitioned among blocks

» Registers are partitioned among threads: <= 63
= Work-group slots: <=8

* Work-item slots: <= 1536

= Any of those can be the limiting factor on how many
work-items can be launched at the same time on a SM

PRESENTED BY @ NVIDIA.

Latency Hiding Occupancy Calculation

» Assume global memory takes 400 cycles, we need 400
arithmetic instructions to hide the latency.

» For example, assume the code has 16 independent
arithmetic instructions for every one global memory access.
Thus 400/16~26 warps would be enough (54% occupancy).

= Note beyond 54%, in this example higher occupancy won’t
lead to performance increase.

EEEEEEEEE <A NVIDIA.

Register Dependency Latency Hiding

= [f an instruction uses a result stored in a register written by
an instruction before it, this is ~ 24 cycles latency

» 50 in the worst case, we need 24 warps to hide register
dependency latency. This corresponds to 50% occupancy

PRESENTED BY @ NVIDIA.

Occupancy Optimizations

= |[ncrease occupancy to achieve latency hiding

= [f adding a single instruction leads to significant perf drop,
occupancy is the primary suspect

= Qutput resource usage info
— Dump ptx, then pass to ptxas with option -v

= Compiler option -nv-cl-maxrregcount=n
= Dynamical allocating local memory

» After some point (generally 50%), further increase in
occupancy won’t lead to performance increase

PRESENTED BY @ n‘"DlA.

Occupancy Calculator

Microsoft Excel - CUDA_Occupancy_calculator.xls

:-ﬂ_] Eile Edit ¥iew Insert Format Tools Data Window Help d- &

NN RN NN A O NN s A 2, = - 51 &M 43 sew - @ [-6 B 7 U
MyRegCount | A 20

A B C D E F G H | J 33 L 11 i} =] F =] R = T
CUDA GPU Occupancy Calculator pcuere ror det

For_ more information on HVIDIA CUDA, visit

Your chosen resource usage is indicated by the red triangle on the graphs.
The other data points represent the range of possible block sizes, register counts, and shared memory allocation.

Just follow steps 1, 2, and 3 below! (or click here for help)
1.) Select a GPU from the list (click): [Help)

2.) Enter your resource usage:
Threads Per Block el E
Registers Per Thread 24 q

Shared Memory Per Block (bytes)

Varying Block Size Varying Register Count

(Don't edit anything below this line)

@
=

15 [3.) GPU O Data is di: here and in the graphs:
16 |Active Threads per Multiprocessor 384| [Hel
17 | Active Warps per Multiprocessor 12
15 | Active Thread Blocks per Multiprocessor 2
19 Occupancy of each Multiprocessor 50%
20 |Maximum Simultaneous Blocks per GPU 32
21 |{Note: This assumes there are at least this many blocks)

4 My Block Size

VW
44
Physical Limits for GPU:

24 Muttiprocessors per GPU 16 a

& J<u Fegister
T countzo

Multiprocessor
Warp Oceupancy
=

Multiprocessor
‘Warp Oceupancy
o]

@
@

55 | Threads fviarn 2= 15 a0 144 208 272 336 400 454 o + 2 12 A 20 21 25 a2
26 [Warps f Mulliprocessar 24 Threads Per Block Registers Per Thread
27 | Threads [Multiprocessor TES
28 | Thread Blocks [Multiprocessor g
29 |Total # of 32-bit registers § Multiprocessor G192
Shared Memory / Multiprocessor (hytes) 16384 Varying Shared Memory Usage

Allocation Per Thread Block
33 [Warps B

34 |Registers 3840 _—
35 |Shared Memor 512 E g
36 | These data are used in computing the occupancy data in blue n 5
a7 H 2 1z hared
2 F

. -] lemory 63
38 |Maximum Thread Blocks Per Multiprocessor Blocks s e
39 |Limited by Max Warps £ Multiprocessor 4 £3
40 |Limited by Redisters / Multiprocessor 2 €
41 |Limited by Shared Memory £ hultiprocessar 32
42 |Thread Block Limit Per Multiprocessor is the minimum of these 3 a
43 S 02 B g £ 2 = oA B @ = =2 B oz B & 5
44 [CUDA Ocoupancy Calculstor | * E d B EFEE RS g 2 3 2 8§ 8 2

“ersion: | 11 Registers Per Thread
Copyright and License

4« » w [cCalculator GHelp £ GPY Data /| Copyright §license [/
- -

[) A

ressnreney. 24 NVIDIA.,

Instruction Optimization

= [f you find out the code is instruction bound

— Compute-intensive algorithm can easily become memory-bound if
not careful enough

— Typically, worry about instruction optimization after memory and
execution configuration optimizations

PRESENTED BY @ NVIDIA.

Fermi Arithmetic Instruction
Throughputs

* Int & fp32: 2 cycles

= fp64: 2 cycles

» Fp32 transendental: 8 cycles

* [nt divide and modulo are expensive

— Divide by 2”n, use “>>n”
— Modulo 2”n, use “& (2"n - 1)”

» Avoid automatic conversion of double to float
— Adding “f” to floating literals (e.g. 1.0f)

PRESENTED BY @ NVIDIA.

Runtime Math Library and Intrinsics

= Two types of runtime math library functions
— func():

= Slower but higher accuracy (5 ulp or less)

= Examples: sin(x), exp(x), pow(X, Y)

— native__func():
= Fast but lower accuracy (see prog. guide for full details)

= Examples: __sin(x), __exp(x), __pow(X, Y)
= A number of additional intrinsics:

— native__sincos(), native__rcp(), ...

= Use -cl-fast-relaxed-math
PRESENTED BY @nV|D|A.

Control Flow
» |nstructions are issued per 32 threads (warp)
» Divergent branches:
— Threads within a single warp take different paths
= if-else, ...
— Different execution paths within a warp are serialized

» Different warps can execute different code with no impact on
performance

PRESENTED BY @ NVIDIA.

Control Flow

= Avoid diverging within a warp
— Example with divergence:
"if (get local 1d(0) > 2) {...} else {...}
= Branch granularity < warp size

— Example without divergence:

"if (get local id(0) / WARP SIZE > 2) {...}
else {...}

= Branch granularity is a whole multiple of warp size

PRESENTED BY @ NVIDIA.

Profiler and Instruction Throughput

= Visual Profiler derives:
— Instruction throughput

= Fraction of SP arithmetic instructions that could have been issued in the same
amount of time

— So, not a good metric for code with DP arithmetic or transcendentals

— Extrapolated from one multiprocessor to GPU

* Change the conditional statement and see how that affect the
instruction throughput

glob mem read throughput | glob mem write throughput | glob mem owverall throughg
(GE/[s) (i56)=) [56)=)

11.6771 53,6236

“iaiaPL Einne

PRESENTED BY 3

Summary

» Optimization needs an understanding of GPU architecture
= Memory optimization: coalescing, local memory

= Execution configuration: latency hiding

= [nstruction throughput: use high throughput inst

— Use the Profiler, simple code modifications
— Compare to theoretical peaks

PRESENTED BY @ NVIDIA.

Coalescing on compute capability 1.2,
1.3

= Coalescing for each half-warp (16 threads)

= Possible GPU transaction size: 32B, 64B, or 128B

= Reduce transaction size when possible
— Find the segment that contains the address requested
— If only half of the segments are used, reduce the transaction size

PRESENTED BY @ NVIDIA.

Coalescing example

1 transaction - 64B segment

1]

2 transactions - 64B and 32B segments

15 .

5
eresenrener 8 MVIDIA.

|7

