
San Jose, CA| September 23, 2010
Peng Wang, NVIDIA

2008: OpenCL Optimizations

Optimization Overview

 GPU Architecture

 Memory Optimization

 Execution Configuration

 Instruction Throughput

Fermi Multiprocessor

 2 Warp Scheduler

— In-order issue, up to 1536 concurrent threads

 32 CUDA Cores

— Full IEEE 754-2008 FP32 and FP64

— 32 FP32 ops/clock, 16 FP64 ops/clock

 48 KB shared memory

 16 KB L1 cache

 4 FP32 SFUs

 32K 32-bit registers

— Up to 63 registers per thread
Uniform Cache

64K Configurable

Cache / Shared Mem

Load/Store Units x 16

Core

Special Func Units x 4

Interconnect Network

Instruction Cache

Scheduler Scheduler

Dispatch Dispatch

Register File

Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

GPU and Programming Model

Software GPU

Work-items are executed by CUDA cores

Work-item

CUDA core

Work-group Multiprocessor

Work-groups are executed on multiprocessors

Work-groups do not migrate

Several concurrent work-groups can reside on

one multiprocessor - limited by multiprocessor

resources

...

Grid Device

A kernel is launched as a grid of work-groups

Warp and SIMT

• Work-groups divide into groups of 32

work-items called warps.

• Warps are basic scheduling units

• Warps always perform same

instruction (SIMT)

• Each work-item CAN execute its own

code path

• Fermi SM has 2 warp schedulers

(Tesla has 1).

• Context switching is free

• A lot of warps can hide memory

latency

Work-group

32 work-items

32 work-items

32 work-items

...

Warps

=

OpenCL Memory Hierarchy

• Global: R/W per-kernel

— High latency: 400-800 cycles

— Throughput: 1.5 GHz * (384 / 8)

Bytes * 2 = 144 GB/s

• Constant : R per-kernel

• Local memory: R/W per-group

— Low latency: a few cycles

— High throughput: 73.6 GB/s per

SM (1.03 TB/s per GPU)

• Private: R/W per-thread

Compute Unit 1

Private

Memory

Private

Memory

Work Item 1 Work Item M

Compute Unit N

Private

Memory

Private

Memory

Work Item 1 Work Item M

Local Memory Local Memory

Global / Constant Memory Data Cache

Global Memory

Compute Device Memory

Compute Device

PE PE PE PE

Mapping OpenCL to the CUDA Architecture

Compute Unit 1

Private

Memory

Private

Memory

Work Item 1 Work Item M

Compute Unit N

Private

Memory

Private

Memory

Work Item 1 Work Item M

Local Memory Local Memory

Global / Constant Memory Data Cache

Global Memory

Compute Device Memory

Compute Device

PE PE PE PE

Multiprocessor

Registers Registers

Thread

Processor

Thread

Processor

Multiprocessor

Registers Registers

Thread

Processor

Thread

Processor

Shared Memory Shared Memory

Global / Constant Memory Data Cache

Global/Local Memory

Compute Device Memory

Compute Device

OpenCL CUDA Architecture

General Optimization Strategies
 Find out the limiting factor in kernel performance

— Memory bandwidth/latency/instruction throughput bound

— How

 Rule-of-thumb: compare your code’s instruction-to-byte accessed to Fermi’s peak

instruction-issue-rate/bw~3.5.

 Have good memory access pattern but effective memory throughput is low

 Manually comment out computation and memory access: watch out for compiler

tricks

 Measure effective memory/instruction throughput.

 Optimize for peak memory/instruction throughput

— Finding out the bottleneck

— Typically an iterative process

Minimizing CPU-GPU data transfer

 Host<->device data transfer has much lower bandwidth than

global memory access.

— 8 GB/s (PCIe x16 Gen2) vs 156 GB/s & 515 Ginst/s

 Minimize transfer

— Intermediate data can be allocated, operated, de-allocated directly

on GPU

— Sometimes it’s even better to recompute on GPU

— Move CPU codes to GPU that do not have performance gains if it can

reduce data transfer

 Group transfer

— One large transfer much better than many small ones: 10 microsec

latency, 8 GB/s => latency dominated if data size < 80 KB

Coalescing
 Global memory latency: 400-800 cycles.

The single most important performance consideration!

 Global memory access by a warp (half-warp in pre-Fermi)

can be coalesced to one transaction for word of size 8-bit,

16-bit, 32-bit, 64-bit or two transactions for 128-bit.

Coalescing criterion on compute
capability 2.0

 Coalescing for any pattern of access that fits into a L1 cache

line (128B)

 # of transactions = # of accessed L1 cache line

Example of Misaligned Accesses
__kernel void offsetCopy(float *odata,

float* idata,

int offset)

{

int xid = get_global_id(0) + offset;

odata[xid] = idata[xid];

}

offset=1

Data reuse

among warps:

L1 helps on

misalgned

access.

Example of Strided Accesses
__kernel void strideCopy(float *odata,

float* idata,

int stride)

{

int xid = get_global_id(0)*stride;

odata[xid] = idata[xid];

}

stride=2

Large strides often arise in

applications. However, strides

may be avoided using local

memory.

No reuse among warps

Local Memory

 Low latency: a few cycles

 High throughput: 73.6 GB/s per SM (1.03 TB/s per GPU)

 Main use

— Inter-work-group communication

— User-managed cache to reduce redundant global memory accesses

— Avoid non-coalesced access

Local Memory Example: Matrix
Multiplication

A

B

C

C=AxB

Every thread corresponds to one entry in C.

Uncached Kernel

__kernel void simpleMultiply(__global float* a,

__global float* b,

__global float* c,

int N)

{

int row = get_global_id(1);

int col = get_global_id(0);

float sum = 0.0f;

for (int i = 0; i < TILE_DIM; i++) {

sum += a[row*TILE_DIM+i] * b[i*N+col];

}

c[row*N+col] = sum;

}

Every thread corresponds to one entry in C.

Blocked Matrix Multiplication

A

B

C

C=AxB

Data reuse in the blocked version

Blocked and cached kernel
__kernel void coalescedMultiply(double*a,

double* b,

double*c,

int N)

{

__local float aTile[TILE_DIM][TILE_DIM];

__local double bTile[TILE_DIM][TILE_DIM];

int row = get_global_id(1);

int col = get_global_id(0);

float sum = 0.0f;

for (int k = 0; k < N; k += TILE_DIM) {

aTile[threadIdx.y][threadIdx.x] = a[row*TILE_DIM+threadIdx.x];

bTile[threadIdx.y][threadIdx.x] = b[threadIdx.y*N+col];

barrier(CLK_LOCAL_MEM_FENCE);

for (int i = k; i < k+TILE_DIM; i++) {

sum += aTile[threadIdx.y][i]* bTile[i][threadIdx.x];

}

c[row*N+col] = sum;

}

Performance Results

Optimization C1060 C2050

A, B in global

12 Gflop/s 57 Gflop/s

A, B in local

125 Gflop/s 181 Gflop/s

M=N=K=512

Coalescing Example: Matrix Transpose

tile

Move the strided access into

local memory read

Strided global mem access in naïve

implementation, resulting in 32

transactions if stride > 32

B=A’BA

A B

Matrix Transpose Performance

Optimization C1060 C2050

No optimization
1.6 GB/s 24 GB/s

Using local

memory to

coalesce global

reads

13.4 GB/s 38.8 GB/s

Bank Conflicts

 Local memory is divide into banks.

— Successive 32-bit words assigned to

successive banks

— Number of banks = 32 (Fermi), 16 (Tesla)

 Bank conflict: two R/W fall in the same

bank, the access will be serialized.

Bank 32

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Local memory

Bank Conflicts

 Special cases

— If all threads in a warp access the same word,

one broadcast. Fermi can also do multi-broadcast.

— If reading continuous byte, no conflict on Fermi

— If reading double, no conflict on Fermi

 Some tricks

— Use array[N_BANK][N_BANK+1];

— Change local memory reads to the same value to see the impact

Memory Optimizations

 Strive for perfect coalescing

— Transpose the data structure, e.g. AOS to SOA; padding

 Launch enough threads per SM to cover latency

 Process several elements per thread

— Multiple loads get pipelined; indexing calculation may be reused

 Issue global loads as early as possible

— Group together; prefetch

 Use local memory to reduce global memory access, avoid non-

coalesced access.

Global Memory Throughput Metric

 Many codes are memory throughput bound

 Measuring effective memory throughput:

— From the app point of view (―useful‖ bytes): number of bytes

needed by the algorithm divided by kernel time

— Compare to the theoretical bandwidth

 70-80% is very good

 Finding out bottleneck

— Start with global memory operations, achieve good throughput

— Add arithmetic, local memory, etc, measuring perf as you go

Visual Profiler

 Latest Visual Profiler reports memory throughput

— From HW point of view: count load/store bus transactions of each size

(32, 64, 128B) on the TPC

— Based on counters for one TPC (3 multiprocessors), extrapolate to the

whole GPU

— Need compute capability 1.2 or higher GPU

 The effective and HW memory throughputs are likely to be

different

— Due to coalescing, discrete bus transaction sizes

— The ratio is the amount of ―wasted‖ memory bandwidth

Grid Size Heuristics

 # of work-groups / # of SM > 2

— Multi blocks can run concurrently on a SM

— Work on another work-group if one work-group is waiting on

barrier

 # of work-groups / # of SM > 100 to scale well to future

device

Work-group Size Heuristics

Work-group size should be a multiple of 32 (warp size)

Want as many warps running as possible to hide latencies

 Minimum: 64. I generally use 128 or 256. But use whatever

is best for your app.

 Depends on the problem, do experiments!

Latency Hiding

 Key to understanding:

— Instructions are issued in order

— A work-item blocks when one of the operands isn’t ready:

— Latency is hidden by switching warps

 Conclusion:

— Need enough warps to hide latency

Occupancy

 Occupancy: ratio of active warps per SM to the maximum

number of allowed warps

 Maximum number: 32 in pre-Fermi, 48 in Fermi

Dynamical Partitioning of SM Resources

 Local memory is partitioned among blocks

 Registers are partitioned among threads: <= 63

Work-group slots: <= 8

Work-item slots: <= 1536

 Any of those can be the limiting factor on how many

work-items can be launched at the same time on a SM

Latency Hiding Occupancy Calculation

 Assume global memory takes 400 cycles, we need 400

arithmetic instructions to hide the latency.

 For example, assume the code has 16 independent

arithmetic instructions for every one global memory access.

Thus 400/16~26 warps would be enough (54% occupancy).

 Note beyond 54%, in this example higher occupancy won’t

lead to performance increase.

Register Dependency Latency Hiding

 If an instruction uses a result stored in a register written by

an instruction before it, this is ~ 24 cycles latency

 So in the worst case, we need 24 warps to hide register

dependency latency. This corresponds to 50% occupancy

Occupancy Optimizations

 Increase occupancy to achieve latency hiding

 If adding a single instruction leads to significant perf drop,

occupancy is the primary suspect

 Output resource usage info

— Dump ptx, then pass to ptxas with option -v

 Compiler option –nv-cl-maxrregcount=n

 Dynamical allocating local memory

 After some point (generally 50%), further increase in

occupancy won’t lead to performance increase

Occupancy Calculator

http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls

Instruction Optimization

 If you find out the code is instruction bound

— Compute-intensive algorithm can easily become memory-bound if

not careful enough

— Typically, worry about instruction optimization after memory and

execution configuration optimizations

Fermi Arithmetic Instruction
Throughputs

 Int & fp32: 2 cycles

 fp64: 2 cycles

 Fp32 transendental: 8 cycles

 Int divide and modulo are expensive

— Divide by 2^n, use ―>> n‖

— Modulo 2^n, use ―& (2^n – 1)‖

 Avoid automatic conversion of double to float

— Adding ―f‖ to floating literals (e.g. 1.0f)

Runtime Math Library and Intrinsics

 Two types of runtime math library functions

— func():

 Slower but higher accuracy (5 ulp or less)

 Examples: sin(x), exp(x), pow(x, y)

— native__func():

 Fast but lower accuracy (see prog. guide for full details)

 Examples: __sin(x), __exp(x), __pow(x, y)

 A number of additional intrinsics:

— native__sincos(), native__rcp(), ...

 Use –cl-fast-relaxed-math

Control Flow
 Instructions are issued per 32 threads (warp)

 Divergent branches:

— Threads within a single warp take different paths

 if-else, ...

— Different execution paths within a warp are serialized

 Different warps can execute different code with no impact on

performance

Control Flow

 Avoid diverging within a warp

— Example with divergence:

 if (get_local_id(0) > 2) {...} else {...}

 Branch granularity < warp size

— Example without divergence:

 if (get_local_id(0) / WARP_SIZE > 2) {...}

else {...}

 Branch granularity is a whole multiple of warp size

Profiler and Instruction Throughput

 Visual Profiler derives:

— Instruction throughput

 Fraction of SP arithmetic instructions that could have been issued in the same

amount of time

— So, not a good metric for code with DP arithmetic or transcendentals

— Extrapolated from one multiprocessor to GPU

 Change the conditional statement and see how that affect the

instruction throughput

Summary

 Optimization needs an understanding of GPU architecture

 Memory optimization: coalescing, local memory

 Execution configuration: latency hiding

 Instruction throughput: use high throughput inst

 Do measurements!

— Use the Profiler, simple code modifications

— Compare to theoretical peaks

Coalescing on compute capability 1.2,
1.3
 Coalescing for each half-warp (16 threads)

 Possible GPU transaction size: 32B, 64B, or 128B

 Reduce transaction size when possible

— Find the segment that contains the address requested

— If only half of the segments are used, reduce the transaction size

Coalescing example

