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Optimization Overview

 GPU Architecture

 Memory Optimization

 Execution Configuration

 Instruction Throughput



Fermi Multiprocessor

 2 Warp Scheduler

— In-order issue, up to 1536 concurrent threads

 32 CUDA Cores

— Full IEEE 754-2008 FP32 and FP64

— 32 FP32 ops/clock, 16 FP64 ops/clock

 48 KB shared memory

 16 KB L1 cache 

 4 FP32 SFUs

 32K 32-bit registers

— Up to 63 registers per thread
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GPU and Programming Model

Software GPU

Work-items are executed by CUDA cores

Work-item

CUDA core

Work-group Multiprocessor

Work-groups are executed on multiprocessors

Work-groups do not migrate

Several concurrent work-groups can reside on

one multiprocessor - limited by multiprocessor 

resources

...

Grid Device

A kernel is launched as a grid of work-groups



Warp and SIMT

• Work-groups divide into groups of 32 

work-items called warps.

• Warps are basic scheduling units

• Warps always perform same 

instruction (SIMT)

• Each work-item CAN execute its own 

code path

• Fermi SM has 2 warp schedulers 

(Tesla has 1).

• Context switching is free

• A lot of warps can hide memory 

latency

Work-group

32 work-items

32 work-items

32 work-items

...

Warps

=



OpenCL Memory Hierarchy

• Global: R/W per-kernel

— High latency: 400-800 cycles

— Throughput: 1.5 GHz *  (384 / 8) 

Bytes * 2  =  144 GB/s

• Constant : R per-kernel

• Local memory: R/W per-group

— Low latency: a few cycles

— High throughput: 73.6 GB/s per 

SM (1.03 TB/s per GPU)

• Private: R/W per-thread
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Mapping OpenCL to the CUDA Architecture
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General Optimization Strategies
 Find out the limiting factor in kernel performance

— Memory bandwidth/latency/instruction throughput bound

— How

 Rule-of-thumb: compare your code’s instruction-to-byte accessed to Fermi’s peak 

instruction-issue-rate/bw~3.5.

 Have good memory access pattern but effective memory throughput is low

 Manually comment out computation and memory access: watch out for compiler 

tricks

 Measure effective memory/instruction throughput.

 Optimize for peak memory/instruction throughput

— Finding out the bottleneck

— Typically an iterative process



Minimizing CPU-GPU data transfer

 Host<->device data transfer has much lower bandwidth than 

global memory access.

— 8 GB/s (PCIe x16 Gen2) vs 156 GB/s & 515 Ginst/s

 Minimize transfer

— Intermediate data can be allocated, operated, de-allocated directly 

on GPU

— Sometimes it’s even better to recompute on GPU

— Move CPU codes to GPU that do not have performance gains if it can 

reduce data transfer

 Group transfer

— One large transfer much better than many small ones: 10 microsec

latency, 8 GB/s => latency dominated if data size < 80 KB



Coalescing
 Global memory latency: 400-800 cycles.

The single most important performance consideration!

 Global memory access by a warp (half-warp in pre-Fermi) 

can be coalesced to one transaction for word of size 8-bit, 

16-bit, 32-bit, 64-bit or two transactions for 128-bit. 



Coalescing criterion on compute 
capability 2.0

 Coalescing for any pattern of access that fits into a L1 cache 

line (128B)

 # of transactions = # of accessed L1 cache line



Example of Misaligned Accesses
__kernel void offsetCopy(float *odata, 

float* idata,

int offset)

{

int xid = get_global_id(0) + offset;

odata[xid] = idata[xid];

}

offset=1

Data reuse

among warps:

L1 helps on 

misalgned

access.



Example of Strided Accesses
__kernel void strideCopy(float *odata, 

float* idata,

int stride)

{

int xid = get_global_id(0)*stride;

odata[xid] = idata[xid];

}

stride=2

Large strides often arise in 

applications. However, strides

may be avoided using local 

memory.

No reuse among warps



Local Memory

 Low latency: a few cycles

 High throughput: 73.6 GB/s per SM (1.03 TB/s per GPU)

 Main use

— Inter-work-group communication

— User-managed cache to reduce redundant global memory accesses

— Avoid non-coalesced access



Local Memory Example: Matrix 
Multiplication

A

B

C

C=AxB

Every thread corresponds to one entry in C.



Uncached Kernel

__kernel void simpleMultiply(__global float* a,

__global float* b,

__global float* c, 

int N)

{

int row = get_global_id(1);

int col = get_global_id(0);

float sum = 0.0f;

for (int i = 0; i < TILE_DIM; i++) {

sum += a[row*TILE_DIM+i] * b[i*N+col];

}

c[row*N+col] = sum;

}

Every thread corresponds to one entry in C.



Blocked Matrix Multiplication

A

B

C

C=AxB

Data reuse in the blocked version



Blocked and cached kernel
__kernel void coalescedMultiply(double*a, 

double* b, 

double*c,

int N)

{

__local float aTile[TILE_DIM][TILE_DIM];

__local double bTile[TILE_DIM][TILE_DIM];

int row = get_global_id(1);

int col = get_global_id(0);

float sum = 0.0f;

for (int k = 0; k < N; k += TILE_DIM) {

aTile[threadIdx.y][threadIdx.x] = a[row*TILE_DIM+threadIdx.x];

bTile[threadIdx.y][threadIdx.x] = b[threadIdx.y*N+col];

barrier(CLK_LOCAL_MEM_FENCE);

for (int i = k; i < k+TILE_DIM; i++) {

sum += aTile[threadIdx.y][i]* bTile[i][threadIdx.x];

}

c[row*N+col] = sum;

}



Performance Results

Optimization C1060 C2050

A, B in global

12 Gflop/s 57 Gflop/s

A, B in local

125 Gflop/s 181 Gflop/s

M=N=K=512



Coalescing Example: Matrix Transpose

tile

Move the strided access into 

local memory read

Strided global mem access in naïve 

implementation, resulting in 32

transactions if stride > 32

B=A’BA

A B



Matrix Transpose Performance

Optimization C1060 C2050

No optimization
1.6 GB/s 24 GB/s

Using local 

memory to 

coalesce global 

reads

13.4 GB/s 38.8 GB/s



Bank Conflicts

 Local memory is divide into banks.

— Successive 32-bit words assigned to 

successive banks

— Number of banks = 32 (Fermi), 16 (Tesla)

 Bank conflict: two R/W fall in the same 

bank,  the access will be serialized.

Bank 32

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Local memory



Bank Conflicts

 Special cases

— If all threads in a warp access the same word, 

one broadcast. Fermi can also do multi-broadcast.

— If reading continuous byte, no conflict on Fermi

— If reading double, no conflict on Fermi

 Some tricks

— Use array[N_BANK][N_BANK+1];

— Change local memory reads to the same value to see the impact



Memory Optimizations

 Strive for perfect coalescing

— Transpose the data structure, e.g. AOS to SOA; padding

 Launch enough threads per SM to cover latency

 Process several elements per thread

— Multiple loads get pipelined; indexing calculation may be reused

 Issue global loads as early as possible

— Group together; prefetch

 Use local memory to reduce global memory access, avoid non-

coalesced access.



Global Memory Throughput Metric

 Many codes are memory throughput bound

 Measuring effective memory throughput:

— From the app point of view (―useful‖ bytes): number of bytes 

needed by the algorithm divided by kernel time

— Compare to the theoretical bandwidth

 70-80% is very good

 Finding out bottleneck

— Start with global memory operations, achieve good throughput

— Add arithmetic, local memory, etc, measuring perf as you go



Visual Profiler

 Latest Visual Profiler reports memory throughput

— From HW point of view: count load/store bus transactions of each size 

(32, 64, 128B) on the TPC

— Based on counters for one TPC (3 multiprocessors),  extrapolate to the 

whole GPU

— Need compute capability 1.2 or higher GPU

 The effective and HW memory throughputs are likely to be 

different

— Due to coalescing, discrete bus transaction sizes

— The ratio is the amount of ―wasted‖ memory bandwidth



Grid Size Heuristics

 # of work-groups / # of SM > 2

— Multi blocks can run concurrently on a SM

— Work on another work-group if one work-group is waiting on 

barrier

 # of work-groups / # of SM > 100 to scale well to future 

device



Work-group Size Heuristics 

Work-group size should be a multiple of 32 (warp size)

Want as many warps running as possible to hide latencies

 Minimum: 64. I generally use 128 or 256. But use whatever 

is best for your app.

 Depends on the problem, do experiments!



Latency Hiding

 Key to understanding:

— Instructions are issued in order

— A work-item blocks when one of the operands isn’t ready:

— Latency is hidden by switching warps

 Conclusion:

— Need enough warps to hide latency



Occupancy

 Occupancy: ratio of active warps per SM to the maximum 

number of allowed warps

 Maximum number: 32 in pre-Fermi, 48 in Fermi



Dynamical Partitioning of SM Resources

 Local memory is partitioned among blocks

 Registers are partitioned among threads: <= 63

Work-group slots: <= 8

Work-item slots: <= 1536

 Any of those can be the limiting factor on how many 

work-items can be launched at the same time on a SM



Latency Hiding Occupancy Calculation

 Assume global memory takes 400 cycles, we need 400 

arithmetic instructions to hide the latency. 

 For example, assume the code has 16 independent 

arithmetic instructions for every one global memory access. 

Thus 400/16~26 warps would be enough (54% occupancy).

 Note beyond 54%, in this example higher occupancy won’t 

lead to performance increase.



Register Dependency Latency Hiding 

 If an instruction uses a result stored in a register written by 

an instruction before it, this is ~ 24 cycles latency

 So in the worst case, we need 24 warps to hide register 

dependency latency. This corresponds to 50% occupancy



Occupancy Optimizations

 Increase occupancy to achieve latency hiding

 If adding a single instruction leads to significant perf drop, 

occupancy is the primary suspect

 Output resource usage info

— Dump ptx, then pass to ptxas with option -v

 Compiler option –nv-cl-maxrregcount=n

 Dynamical allocating local memory

 After some point (generally 50%), further increase in 

occupancy won’t lead to performance increase



Occupancy Calculator

http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls



Instruction Optimization

 If you find out the code is instruction bound

— Compute-intensive algorithm can easily become memory-bound if 

not careful enough

— Typically, worry about instruction optimization after memory and 

execution configuration optimizations



Fermi Arithmetic Instruction 
Throughputs

 Int & fp32: 2 cycles

 fp64: 2 cycles

 Fp32 transendental: 8 cycles

 Int divide and modulo are expensive

— Divide by 2^n, use ―>> n‖

— Modulo 2^n, use ―& (2^n – 1)‖

 Avoid automatic conversion of double to float

— Adding ―f‖ to floating literals (e.g. 1.0f)



Runtime Math Library and Intrinsics

 Two types of runtime math library functions

— func():

 Slower but higher accuracy (5 ulp or less)

 Examples: sin(x), exp(x), pow(x, y)

— native__func():

 Fast but lower accuracy (see prog. guide for full details)

 Examples: __sin(x), __exp(x), __pow(x, y)

 A number of additional intrinsics:

— native__sincos(), native__rcp(), ...

 Use –cl-fast-relaxed-math



Control Flow
 Instructions are issued per 32 threads (warp)

 Divergent branches:

— Threads within a single warp take different paths

 if-else, ...

— Different execution paths within a warp are serialized

 Different warps can execute different code with no impact on 

performance



Control Flow

 Avoid diverging within a warp

— Example with divergence: 

 if (get_local_id(0) > 2) {...} else {...}

 Branch granularity < warp size

— Example without divergence:

 if (get_local_id(0) / WARP_SIZE > 2) {...} 

else {...}

 Branch granularity is a whole multiple of warp size



Profiler and Instruction Throughput

 Visual Profiler derives:

— Instruction throughput

 Fraction of SP arithmetic instructions that could have been issued in the same 

amount of time

— So, not a good metric for code with DP arithmetic or transcendentals

— Extrapolated from one multiprocessor to GPU

 Change the conditional statement and see how that affect the 

instruction throughput



Summary

 Optimization needs an understanding of GPU architecture

 Memory optimization: coalescing, local memory

 Execution configuration: latency hiding

 Instruction throughput: use high throughput inst

 Do measurements!

— Use the Profiler, simple code modifications

— Compare to theoretical peaks



Coalescing on compute capability 1.2, 
1.3
 Coalescing for each half-warp (16 threads)

 Possible GPU transaction size: 32B, 64B, or 128B

 Reduce transaction size when possible

— Find the segment that contains the address requested

— If only half of the segments are used, reduce the transaction size



Coalescing example


