
Room C | 09/20/2010 ð16:00 ð17:20

Samuel Gateau, NVIDIA,Steve Nash, NVIDIA

Implementing Stereoscopic 3D in Your
Applications

Agenda

ÁHow It Works

ÁNVIDIA 3D Vision

ÁImplementation Example

ÁStereoscopic Basics

ÁDepth Perception

ÁParallax Budget

ÁRendering in Stereo

ÁWhatõs Next?

3D vs Stereo

ÁòIn 3Dó is the new òStereoó

ñThey are used interchangeably, stereoscopic rendering is the

technical means to make an image òIn 3Dó

ÁEach eye gets its own view rendered with a slightly

different camera location: usually about as far apart as your

eyes

ÁStereo displays and APIs are used to manage these two

views
Stereo

Not StereoStereo

Applications render a Left Eye view and Right
Eye view with slight offset between

Left Eye view Right Eye view

A Stereoscopic display then shows the left eye view
for even frames (0, 2, 4, etc) and the right eye view
for odd frames (1, 3, 5, etc).

Stereoscopic Basics

How It Works

In this example active shutter glasses black-out the
right lens when the left eye view is shown on the
display and black-out the left lens when the right eye
view is shown on the display.

This means that the refresh rate of the display is
effectively cut in half for each eye. (e.g. a display
running at 120 Hz is 60 Hz per eye)

The resulting image for the end user is a combined
image that appears to have depth in front of and
behind the stereoscopic 3D Display.

Left eye view on, right
lens blocked

Right eye view on, left
lens blocked

off onon off

Left lens Right lens Left lens Right lens

Stereoscopic Basics

How It Works

NVIDIA 3D Vision

Hardware

IR communication

3D Visioncertified displays

Support for single screen or 1x3

configurations

Software

3D Vision SW automatically converts mono

games to Stereo

Direct X only

NVIDIA 3D Vision Pro

Hardware

RF communication

3D Visioncertified displays, Passive

Displays, CRTs and projectors

Up to 8 displays

Mix Stereo and RegularDisplays

G-Sync support for multiple displays and

systems

Direct connection to GPU mini -DIN

Software

Supports Consumer 3D Vision SW or Quad

Buffered Stereo

QBS: OpenGL or DirectX
For DX QBS, e-mail

3DVisionPro_apps@nvidia.comfor help

mailto:3DVisionPro_apps@nvidia.com

NVIDIA 3D Vision Pro

Hardware ðcontõd

Designedfor multi -user professional

installations

No line of sight requirement, no dead

spots, no cross talk

RFbi-directional communication with UI

50m range

Easily deploy in office no matter what the

floor plan

Implementation Example

Implementation Example: OpenGL
Step 1: Configure for Stereo

iPixelFormat = DescribePixelFormat (hdc , 1,

sizeof (PIXELFORMATDESCRIPTOR), &pfd);

while (iPixelFormat) {

DescribePixelFormat (hdc , iPixelFormat ,

sizeof (PIXELFORMATDESCRIPTOR), &pfd);

if (pfd.dwFlags & PFD_STEREO){

iStereoPixelFormats ++;

}

iPixelFormat -- ;

}

if (iStereoPixelFormats == 0)

// no stereo pixel formats available

StereoIsAvailable = FALSE;

else

StereoIsAvailable = TRUE;

Implementation Example: OpenGL
Step 2: Query and request PFD_STEREO

if (StereoIsAvailable){

ZeroMemory (&pfd, sizeof (PIXELFORMATDESCRIPTOR));

pfd.nSize = sizeof (PIXELFORMATDESCRIPTOR);

pfd.nVersion = 1;

pfd.dwFlags = PFD_DRAW_TO_WINDOW |

PFD_SUPPORT_OPENGL |

PFD_DOUBLEBUFFER |

PFD_STEREO;

pfd.iPixelType = PFD_TYPE_RGBA;

pfd.cColorBits = 24;

iPixelFormat = ChoosePixelFormat (hdc , &pfd);

if (iPixelFormat != 0){

if (SetPixelFormat (hdc , iPixelFormat , &pfd)){

hglrc = wglCreateContext (hdc);

if (hglrc != NULL){

if (wglMakeCurrent (hdc , hglrc)){

é

Implementation Example: OpenGL
Step 2 contõd

// Select back left buffer

glDrawBuffer (GL_BACK_LEFT);

glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

// Setup the frustum for the left eye

glMatrixMode (GL_PROJECTION);

glLoadIdentity ();

glFrustum (Xmin - FrustumAssymmetry ,

Xmax ïFrustumAssymmetry ,

- 0.75, 0.75, 0.65, 4.0);

glTranslatef (eyeOffset , 0.0f, 0.0f);

glMatrixMode (GL_MODELVIEW);

glLoadIdentity ();

<Rendering calls>

Implementation Example: OpenGL
Step 3: Render to Left/Right buffer with offset between

// Select back right buffer

glDrawBuffer (GL_BACK_RIGHT);

glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

// Setup the frustum for the right eye.

glMatrixMode (GL_PROJECTION);

glLoadIdentity ();

glFrustum (Xmin + FrustumAssymmetry ,

Xmax + FrustumAssymmetry ,

- 0.75, 0.75, 0.65, 4.0);

glTranslatef (- eyeOffset , 0.0f, 0.0f);

glTranslatef (0.0f, 0.0f, - PULL_BACK);

glMatrixMode (GL_MODELVIEW);

glLoadIdentity ();

<Rendering calls>

// Swaps both left and right buffers

SwapBuffers (hdc);

Implementation Example: OpenGL
Step 3 contõd

FROM MONO TO STEREO

Changes to the rendering pipe

In Mono

Eye space

ZY

X

Near plane

Scene is viewed from one eye

and projected with a perspective

projection along eye direction on

Near plane in Viewport
Mono Frustum

Scene

Viewport

In Stereo

Eye space

ZY

X

Scene

Near plane

In Stereo:

Two eyes

Eye space

ZY

X

Left and Right eyes
Shifting the mono eye along

the X axis

Scene

Near plane

In Stereo:

Two eyes

Eye space

ZY

X

Left and Right eyes
Shifting the mono eye along

the X axis

Eye directions are parallels

Scene

Near plane

Virtual Screen

In Stereo: Two Eyes,

One Screen

Eye space

ZY

X

One ñvirtualò screen

Left and Right eyes
Shifting the mono eye along

the X axis

Eye directions are parallels

Scene

Near plane

Scene

In Stereo: Two Eyes,

One Screen

Virtual Screen

Eye space

ZY

X

Left Frustum Right Frustum

One ñvirtualò screen
Where the left and right

frustums converge

Left and Right eyes
Shifting the mono eye along

the X axis

Eye directions are parallels

Near plane

In Stereo: Two Eyes, One Screen,

Two Images

Virtual Screen

Eye space

ZY

X

Two images
2 images are generated at

the near plane in each views

Scene

Left
Image

Right
Image

Left and Right eyes
Shifting the mono eye along

the X axis

Eye directions are parallels

One ñvirtualò screen
Where the left and right

frustums converge

Near plane

In Stereo: Two Eyes, One Screen,

Two Images

Virtual Screen

Eye space

ZY

X

Scene

Left
Image

Right
Image

Left Image Right Image

Real Screen

Near plane

Two images
2 images are generated at

the near plane in each views

Presented independently to

each eyes of the user on the

real screen

Stereoscopic Rendering

Render geometry twice

From left and right eyes

Into left and right images

DEFINING STEREO PROJECTION

Basic definitions so we all speak English

Stereo Projection

ÁStereo projection matrix is a horizontally offset version of regular mono projection

matrix

ñ Offset Left / Right eyes along X axis

Z

Y

X

Eye space
Left Eye

Right Eye

Mono Eye

Screen

Mono Frustum

