Analysis-Driven Optimization (GTC 2010)

Paulius Micikevicius| NVIDIA

© NVIDIA 2010

Performance Optimization Process

« Use appropriate performance metric for each kernel

— For example, Gflops/s don’t make sense for a bandwidth-bound kernel
» Determine what limits kernel performance

— Memory throughput

— Instruction throughput

— Latency

— Combination of the above
» Address the limiters in the order of importance

— Determine how close to the HW limits the resource is being used

— Analyze for possible inefficiencies

— Apply optimizations

» Often these will just fall out from how HW operates

© NVIDIA 2010

© NVIDIA 2010

Presentation Outline

Identifying performance limiters
Analyzing and optimizing :

Memory-bound kernels
Instruction (math) bound kernels
Kernels with poor latency hiding
Register spilling

For each:

Brief background

How to analyze

How to judge whether particular issue is problematic

How to optimize

Some cases studies based on “real-life” application kernels

Most information is for Fermi GPUs

© NVIDIA 2010

Notes on profiler

* Most counters are reported per Streaming Multiprocessor (SM)
— Not entire GPU
» Assingle run can collect a few counters

— Multiple runs are needed when profiling more counters
» Done automatically by the Visual Profiler
* Have to be done manually using command-line profiler

» Counter values may not be exactly the same for repeated runs
— Threadblocks and warps are scheduled at run-time

— So, “two counters being equal” usually means “two counters within a
small delta”

« See the profiler documentation for more information

|ldentifying Performance Limiters

© NVIDIA 2010

Limited by Bandwidth or Arithmetic?

» Perfect instructions:bytes ratio for Fermi C2050:

— ~4.5: 1 with ECC on

— ~3.6 : 1 with ECC off

— These assume fp32 instructions, throughput for other instructions varies
 Algorithmic analysis:

— Rough estimate of arithmetic to bytes ratio

« Code likely uses more instructions and bytes than algorithm analysis
suggests:

— Instructions for loop control, pointer math, etc.
— Address pattern may result in more memory fetches

— Two ways to investigate:
» Use the profiler (quick, but approximate)
» Use source code modification (more accurate, more work intensive)

© NVIDIA 2010

© NVIDIA 2010

Analysis with Profiler

 Profiler counters:
— instructions_issued, instructions_executed
» Both incremented by 1 per warp
« “issued” includes replays, “executed” does not
— gld _request, gst_request
* Incremented by 1 per warp for each load/store instruction
* Instruction may be counted if it is “predicated out”
— 11 _global _load_miss, I1_global load_hit, global store transaction
* Incremented by 1 per L1 line (line is 128B)
— uncached_global load_transaction
» Incremented by 1 per gropu of 1, 2, 3, or 4 transactions
« Compare:
— 32 ¥instructions_issued /* 32 = warp size */

— 128B * (global_store_transaction + |1_global_load_miss)

A Note on Counting Global Memory Accesses

» Load/store instruction count can be lower than the number of actual
memory transactions

— Address pattern, different word sizes

« Counting requests from L1 to the rest of the memory system makes the
most sense

— Caching-loads: count L1 misses

— Non-caching loads and stores: derive from bus signals (coming soon)
» L1 counters report the transactions (size can vary), so not always ideal

« Some shortcuts, assuming “coalesced” address patterns:
— One 32-bit access instruction -> one 128-byte transaction per warp
— One 64-bit access instruction -> two 128-byte transactions per warp
— One 128-bit access instruction -> four 128-byte transactions per warp

© NVIDIA 2010

Analysis with Modified Source Code

« Time memory-only and math-only versions of the kernel

— Easier for codes that don’t have data-dependent control-flow or
addressing

— Gives you good estimates for:
» Time spent accessing memory
« Time spent in executing instructions

« Comparing the times for modified kernels
— Helps decide whether the kernel is mem or math bound

— Shows how well memory operations are overlapped with arithmetic
« Compare the sum of mem-only and math-only times to full-kernel time

© NVIDIA 2010

Some Example Scenarios

time I

mem math full

Memory-bound

Good mem-math
overlap: latency not a
problem

(assuming memory
throughput is not low
compared to HW theory)

© NVIDIA 2010

10

Some Example Scenarios

time I

mem math full

Memory-bound

Good mem-math
overlap: latency not a
problem

(assuming memory
throughput is not low
compared to HW theory)

© NVIDIA 2010

mem math full

Math-bound

Good mem-math
overlap: latency not a
problem

(assuming instruction
throughput is not low
compared to HW theory)

Some Example Scenarios

time I

mem math full

Memory-bound

Good mem-math
overlap: latency not a
problem

(assuming memory
throughput is not low
compared to HW theory)

© NVIDIA 2010

mem math full

Math-bound

Good mem-math
overlap: latency not a
problem

(assuming instruction
throughput is not low
compared to HW theory)

mem math full

Balanced

Good mem-math
overlap: latency not a
problem

(assuming memory/instr
throughput is not low
compared to HW theory)

12

Some Example Scenarios

time I

mem math full

Memory-bound

Good mem-math
overlap: latency not a
problem

(assuming memory
throughput is not low
compared to HW theory)

© NVIDIA 2010

mem math full

Math-bound

Good mem-math
overlap: latency not a
problem

(assuming instruction
throughput is not low
compared to HW theory)

mem math full

Balanced

Good mem-math
overlap: latency not a
problem

(assuming memory/instr
throughput is not low
compared to HW theory)

mem math full

Memory and latency bound

Poor mem-math overlap:
latency is a problem

13

© NVIDIA 2010

Source Modification

* Memory-only:
— Remove as much arithmetic as possible

« Without changing access pattern
« Use the profiler to verify that load/store instruction count is the same

« Store-only:
— Also remove the loads
* Math-only:
— Remove global memory accesses

— Need to trick the compiler:
« Compiler throws away all code that it detects as not contributing to stores
» Put stores inside conditionals that always evaluate to false

— Condition should depend on the value about to be stored (prevents other optimizations)
— Condition should not be known to the compiler

14

© NVIDIA 2010

Source Modification for Math-only

__global__ void fwd_3D(..., int flag)
{

value = temp + coeff * vsq; If you compare only the
if(1 == value * flag) ‘_ flag, the compiler may
g_output[out_idx] = value; move the computation
) into the conditional as
well

15

Source Modification and Occupancy

* Removing pieces of code is likely to affect
register count

— This could increase occupancy, skewing the results
— See slide 27 to see how that could affect throughput

* Make sure to keep the same occupancy
— Check the occupancy with profiler before modifications

— After modifications, if necessary add shared memory to
match the unmodified kernel’s occupancy

kernel<<< grid, block, smem, ...>>>(...)

16
© NVIDIA 2010

© NVIDIA 2010

Case Study: Limiter Analysis

 3DFD of the wave equation, fp32 Analysis:

e Time (ms): — Instr:byte ratio = ~2.66
— Full-kernel: 35.39 — Good overlap between math and mem:
— Mem-only: 33.27 « 2.12 ms of math-only time (13%) are not
— Math-only: 16.25 overlapped with mem

« Instructions issued: — App memory throughput: 62 GB/s
— Full-kernel: 18,194,139 * HW theory is 114 GB/s, so we’re off
— Mem-only: 7,497,296

— Math-only: 16,839,792
Memory access transactions:
— Full-kernel: 1,708,032
— Mem-only: 1,708,032
— Math-only: 0

17

© NVIDIA 2010

Case Study: Limiter Analysis

 3DFD of the wave equation, fp32 Analysis:

* Time (ms): — Instr:byte ratio = ~2.66
— Full-kernel: 35.39 — Good overlap between math and mem:
— Mem-only: 33.27 « 2.12 ms of math-only time (13%) are not
— Math-only: 16.25 overlapped with mem

. Instructions issued: — App memory throughput: 62 GB/s
— Full-kernel: 18,194,139 * HW theory is 114 GB/s, so we’re off
— Mem-only: 7,497,296

* Conclusion:
— Math-only: 16,839,792

. — Code is memory-bound
Memory access transactions: L ld b .
_ Full-kernel: 1,708,032 — Latency could be an issue too

— Mem-only: 1,708,032 — Optimizations should focus on memory
throughput first

* math contributes very little to total time
(2.12 out of 35.39ms)

— Math-only: 0

18

© NVIDIA 2010

Summary: Limiter Analysis

* Rough algorithmic analysis:
— How many bytes needed, how many instructions

 Profiler analysis:
— Instruction count, memory request/transaction count

* Analysis with source modification:
— Memory-only version of the kernel
— Math-only version of the kernel
— Examine how these times relate and overlap

19

Optimizations for Global Memory

© NVIDIA 2010

Background: Fermi Memory Hierarchy

SM-0

Registers

{

SMEM

SM-1 SM-N
Registers Registers
L1 SMEM L1 SMEM
A

l

L2

!

Global Memory

21

© NVIDIA 2010

Background: Programming for L1 and L2

 Short answer: DON’T

— GPU caches are not intended for the same use as CPU caches
« Smaller size (especially per thread), so not aimed at temporal reuse
* Intended to smooth out some access patterns, help with spilled registers, etc.

— Don’t try to block for L1/L2 like you would on CPU
* You have 100s to 1,000s of run-time scheduled threads hitting the caches
« If it is possible to block for L1 then block for SMEM

— Same size, same bandwidth, hw will not evict behind your back

« Optimize as if no caches were there
— No Fermi-only techniques to learn per se (so, all you know is still good)
— Some cases will just run faster

22

© NVIDIA 2010

Background: Load Caching and L1 Size

» Two types of loads

— Caching
» compiler default (option: -Xptxas —dlcm=ca)
« Attempt to hit in L1
* Memory transaction is a 128-byte line

— Non-caching
» compiler option: -Xptxas —dlcm=cg
* Do not attempt to hit in L1 (invalidate the line if it’s there)
» Memory transaction is a 32-byte segment

* Choosing L1 / SMEM size
— 16-KB L1 / 48-KB smem OR 48-KB L1 / 16-KB smem
— CUDA call, can be set for the app or per-kernel

23

© NVIDIA 2010

Background: Load Caching and L1 Size

* Non-caching loads can improve perf when:
— Loading scattered words or only part of a warp issues a load
« Benefit: transaction is smaller, so useful payload is a larger percentage
» Loading halos, for example
— Spilling registers (reduce line fighting with spillage)
« Large L1 can improve perf when:
— Spilling registers (more lines so fewer evictions)
— Some misaligned, strided access patterns

 How to use:
— Just try a 2x2 experiment matrix: {CA,CG} x {48-L1, 16-L1}

» Keep the best combination - same as you would with any HW managed cache,
including CPUs

24

© NVIDIA 2010

Memory Throughput Analysis

« Throughput: from application point of view
— From app point of view: count bytes requested by the application
— From HW point of view: count bytes moved by the hardware

— The two can be different
» Scattered/misaligned pattern: not all transaction bytes are utilized
» Broadcast: the same small transaction serves many requests

« Two aspects to analyze for performance impact:
— Addressing pattern
— Number of concurrent accesses in flight

25

© NVIDIA 2010

Memory Throughput Analysis

» Determining that access pattern is problematic:

— Profiler counters: access instruction count is significantly smaller than
transaction count

* gld request < (11_global load miss + 11_global load_hit) * (word_size / 4B)

* gst_request < global store_transaction * (word_size / 4B)
* Make sure to adjust the transaction counters for word size (see slide 8)

— App throughput is much smaller than HW throughput
» Use profiler to get HW throughput

« Determining that the number of concurrent accesses is insufficient:
— Throughput from HW point of view is much lower than theoretical

26

© NVIDIA 2010

Concurrent Accesses and Performance

* Increment a 64M element array

— Two accesses per thread (load then store, but they are dependent)

* Thus, each warp (32 threads) has one outstanding transaction at a time

* Tesla C2050, ECC on, theoretical bandwidth: ~120 GB/s

120
100

80
GB/s 50
40

20

0

/S
i

/

/

—32-bitaccess |

—B64-bit access |

128-bitaccess

0

128 256 384 512 640 768 896 1024 1152 1280 1408 1536

Threads per Multiprocessor

Several independent smaller
accesses have the same effect
as one larger one.

For example:
Four 32-bit ~= one 128-bit

27

© NVIDIA 2010

Optimization: Address Pattern

» Coalesce the address pattern
— 128-byte lines for caching loads
— 32-byte segments for non-caching loads, stores

— Awarp’s address pattern is converted to transactions
» Coalesce to maximize utilization of bus transactions
» Refer to CUDA Programming Guide / Best Practices Guide / Fundamental Opt. talk

« Try using non-caching loads
— Smaller transactions (32B instead of 128B)
« more efficient for scattered or partially-filled patterns
« Try fetching data from texture
— Smaller transactions and different caching
— Cache not polluted by other gmem loads

28

© NVIDIA 2010

Optimizing Access Concurrency

« Have enough concurrent accesses to saturate the bus
— Need (mem_latency)x(bandwidth) bytes in flight (Little’s law)
— Fermi C2050 global memory:

* 400-800 cycle latency, 1.15 GHz clock, 144 GB/s bandwidth, 14 SMs
* Need 30-50 128-byte transactions in flight per SM

« Ways to increase concurrent accesses:

— Increase occupancy

» Adjust threadblock dimensions
— To maximize occupancy at given register and smem requirements
* Reduce register count (-maxrregcount option, or __launch_bounds_)

— Modify code to process several elements per thread

29

© NVIDIA 2010

Case Study: Access Pattern 1

Same 3DFD code as in the previous study
Using caching loads (compiler default):
— Memory throughput: 62 / 74 GB/s for app / hw
— Different enough to be interesting
Loads are coalesced:
— gld_request == (l1_global_load_miss + [1_global_load_hit)
There are halo loads that use only 4 threads out of 32
— For these transactions only 16 bytes out of 128 are useful
Solution: try non-caching loads (-Xptxas -dlcm=cg compiler option)
— Memory throughput: 66 / 67 GB/s for app / hw

— Performance increase of 7%
* Not bad for just trying a compiler flag, no code change

30

© NVIDIA 2010

Case Study: Accesses in Flight

« Continuing with the FD code
— Throughput from both app and hw point of view is 66-67 GB/s
— Now 30.84 out of 33.71 ms are due to mem
— 1024 concurrent threads per SM

» Due to register count (24 per thread)
» Simple copy kernel reaches ~80% of achievable mem throughput at this thread count

» Solution: increase accesses per thread
— Modified code so that each thread is responsible for 2 output points

» Doubles the load and store count per thread, saves some indexing math
» Doubles the tile size -> reduces bandwidth spent on halos

— Further 25% increase in performance
« App and HW throughputs are now 82 and 84 GB/s, respectively

31

© NVIDIA 2010

Case Study: Access Pattern 2

» Kernel from climate simulation code
— Mostly fp64 (so, at least 2 transactions per mem access)

e Profiler results:

— gld_request: 72,704
— U1_global_load_hit: 439,072
— U1_global_load_miss: 724,192

» Analysis:
— L1 hit rate: 37.7%
— 16 transactions per load instruction

+ Indicates bad access pattern (2 are expected due to 64-bit words)
* Of the 16, 10 miss in L1 and contribute to mem bus traffic

» So, we fetch 5x more bytes than needed by the app

32

© NVIDIA 2010

Case Study: Access Pattern 2

* Looking closer at the access pattern:
— Each thread linearly traverses a contiguous memory region
— Expecting for CPU-like L1 caching

 Remember what | said about coding for L1 and L2
— One of the worst access patterns for GPUs
 Solution:

— Transposed the code so that each warp accesses a contiguous
memory region

— 2.17 transactions per load instruction
— This and some other changes improved performance by 3x

33

© NVIDIA 2010

Optimizing with Compression

 When all else has been optimized and kernel is limited by the humber of
bytes needed, consider compression

« Approaches:

— Int: clonversion between 8-, 16-, 32-bit integers is 1 instruction (64-bit requires a
couple)

— FP: conversion between fp16, fp32, fp64 is one instruction
« fp16 (1s5e10m) is storage only, no math instructions

— Range-based:
« Lower and upper limits are kernel argumets
« Data is an index for interpolation

» Application in practice:

— Clark et al. “Solving Lattice QCD systems of equations using mixed precision
solvers on GPUs”

— http://arxiv.org/abs/0911.3191

34

Summary: Memory Analysis and Optimization

* Analyze:

— Access pattern:
» Compare counts of access instructions and transactions
* Compare throughput from app and hw point of view

— Number of accesses in flight
» Look at occupancy and independent accesses per thread

« Compare achieved throughput to theoretical throughput
— Also to simple memcpy throughput at the same occupancy

» Optimizations:
— Coalesce address patterns per warp (nothing new here), consider texture
— Process more words per thread (if insufficient accesses in flight to saturate bus)
— Try the 4 combinations of L1 size and load type (caching and non-caching)
— Consider compression

35
© NVIDIA 2010

© NVIDIA 2010

Optimizations for Instruction Throughput

36

© NVIDIA 2010

Possible Limiting Factors

« Raw instruction throughput
— Know the kernel instruction mix
— fp32, fpé4, int, mem, transcendentals, etc. have different throughputs
» Refer to the CUDA Programming Guide / Best Practices Guide
— Can examine assembly, if needed:
* Can look at PTX (virtual assembly), though it’s not the final optimized code
+ Can look at post-optimization machine assembly for GT200 (Fermi version coming later)

* Instruction serialization
— Occurs when threads in a warp issue the same instruction in sequence
* As opposed to the entire warp issuing the instruction at once
» Think of it as “replaying” the same instruction for different threads in a warp
— Some causes:
» Shared memory bank conflicts
» Control flow divergence within warps

37

© NVIDIA 2010

Instruction Throughput: Analysis

 Profiler counters (both incremented by 1 per warp):
— instructions executed: counts instructions encoutered during execution
— instructions issued: also includes additional issues due to serialization

— Difference between the two: issues that happened due to serialization,
instr cache misses, etc.

« Will rarely be 0, cause for concern only if it’s a significant percentage of
instructions issued

« Compare achieved throughput to HW capabilities
— Peak instruction throughput is documented in the Programming Guide

— Profiler also reports throughput:
» GT200: as a fraction of theoretical peak for fp32 instructions
* Fermi: as IPC (instructions per clock)

38

© NVIDIA 2010

Instruction Throughput: Optimization

« Use intrinsics where possible (__sin(), __sincos(), __exp(), etc.)
— Available for a number of math.h functions

— 2-3 bits lower precision, much higher throughput
» Refer to the CUDA Programming Guide for details

— Often a single instruction, whereas a non-intrinsic is a SW sequence
- Additional compiler flags that also help (select GT200-level precision):

— -ftz=true : flush denormals to 0
— -prec-div=false : faster fp division instruction sequence (some precision Loss)
— -prec-sqrt=false : faster fp sqrt instruction sequence (some precision 0ss)

» Make sure you do fp64 arithmetic only where you mean it:

— fp64 throughput is lower than fp32
— fp literals without an “f” suffix (34.7) are interpreted as fp64 per C standard

39

Serialization: Profiler Analysis

 Serialization is significant if
— instructions_issued is significantly higher than instructions_executed

« Warp divergence
— Profiler counters: divergent_branch, branch

— Compare the two to see what percentage diverges
» However, this only counts the branches, not the rest of serialized instructions

« SMEM bank conflicts

— Profiler counters:
* 11 _shared_bank_conflict: incremented by 1 per warp for each replay
— double counts for 64-bit accesses
* shared_load, shared_store: incremented by 1 per warp per instruction
— Bank conflicts are significant if both are true:
* 11 _shared_bank_conflict is significant compared to (shared_load+shared_store)

* 11 _shared_bank_conflict is significant compared to instructions_issued

40
© NVIDIA 2010

© NVIDIA 2010

Serialization: Analysis with Modified Code

* Modify kernel code to assess performance improvement
if serialization were removed

— Helps decide whether optimizations are worth pursuing
» Shared memory bank conflicts:
— Change indexing to be either broadcasts or just threadldx.x

— Should also declare smem variables as volatile
» Prevents compiler from “caching” values in registers

« Warp divergence:
— change the condition to always take the same path
— Time both paths to see what each costs

41

© NVIDIA 2010

Serialization: Optimization

« Shared memory bank conflicts:
— Pad SMEM arrays

» For example, when a warp accesses a 2D array’s column
» See CUDA Best Practices Guide, Transpose SDK whitepaper

— Rearrange data in SMEM

» Warp serialization:

— Try grouping threads that take the same path
» Rearrange the data, pre-process the data
« Rearrange how threads index data (may affect memory perf)

42

© NVIDIA 2010

Case Study: SMEM Bank Conflicts

« Adifferent climate simulation code kernel, fp64
» Profiler values:

— Instructions:

* Executed / issued: 2,406,426 / 2,756,140

» Difference: 349,714 (12.7% of instructions issued were “replays”)
— GMEM:

» Total load and store transactions: 170,263
* Instr:byte ratio: 4

— suggests that instructions are a bigger limiter (especially since there is a lot of fp64 math)

— SMEM:
* Load / store: 421,785 / 95,172
» Bank conflict: 674,856 (really 337,428 because of double-counting for fp64)

— This means a total of 854,385 SMEM access instructions, 39% replays

« Solution:
— Pad shared memory array: performance increased by 15%

» replayed instructions reduced down to 1%

43

Instruction Throughput: Summary

* Analyze:
— Check achieved instruction throughput

— Compare to HW peak (but must take instruction mix into
consideration)

— Check percentage of instructions due to serialization
« Optimizations:
— Intrinsics, compiler options for expensive operations
— Group threads that are likely to follow same execution path
— Avoid SMEM bank conflicts (pad, rearrange data)

44
© NVIDIA 2010

© NVIDIA 2010

Optimizations for Latency

45

© NVIDIA 2010

Latency: Analysis

» Suspect if:

— Neither memory nor instruction throughput rates are close to HW theoretical
rates

— Poor overlap between mem and math
» Full-kernel time is significantly larger than max{mem-only, math-only}

» Two possible causes:

— Insufficient concurrent threads per multiprocessor to hide latency
» Occupancy too low
» Too few threads in kernel launch to load the GPU
— elapsed time doesn’t change if problem size is increased (and with it the number of blocks/threads)
— Too few concurrent threadblocks per SM when using syncthreads()
* _ syncthreads() can prevent overlap between math and mem within the same threadblock

46

© NVIDIA 2010

Simplified View of Latency and Syncs

Kernel where most math cannot be
executed until all data is loaded by

N Memory-only time the threadblock

] Math-only time

I

time >

Full-kernel time, one large threadblock per SM

47

© NVIDIA 2010

Simplified View of Latency and Syncs

Kernel where most math cannot be
executed until all data is loaded by

N Memory-only time the threadblock

] Math-only time

I

I
I

time >

Full-kernel time, one large threadblock per SM

Full-kernel time, two threadblocks per SM
(each half the size of one large one)

48

© NVIDIA 2010

Latency: Optimization

* Insufficient threads or workload:
— Increase the level of parallelism (more threads)
— If occupancy is already high but latency is not being hidden:

* Process several output elements per thread - gives more independent memory and arithmetic instructions
(which get pipelined)

 Barriers:
— Can assess impact on perf by commenting out __syncthreads()
* Incorrect result, but gives upper bound on improvement
— Try running several smaller threadblocks
« Think of it as “pipelining” blocks
* In some cases that costs extra bandwidth due to halos

* Check out Vasily Volkov’s talk 2238 at GTC 2010 for a detailed treatment:

“Better Performance at Lower Latency”

49

Register Spilling

50

Register Spilling

« Compiler “spills” registers to local memory when register limit is exceeded
— HW limit is 63 registers per thread

— Spills also possible when register limit is programmer-specified

« Common when trying to achieve certain occupancy with -maxrregcount compiler flag or
__launch_bounds_ 1n source

— Ilmem is like gmem, except that writes are cached in L1
« lmem load hit in L1 -> no bus traffic
* lmem load miss in L1 -> bus traffic (128 bytes per miss)

— Compiler flag —Xptxas —v gives the register and lmem usage per thread

» Potential impact on performance
— Additional bandwidth pressure if evicted from L1
— Additional instructions
— Not always a problem, easy to investigate with quick profiler analysis

51
© NVIDIA 2010

© NVIDIA 2010

Register Spilling: Analysis

* Profiler counters: |1 local load hit, 11 _local load miss

* Impact on instruction count:
— Compare to total instructions issued

* Impact on memory throughput:

— Misses add 128 bytes per warp

— Compare 2*[1_local_load_miss count to gmem access count
(stores + loads)

« Multiply Ilmem load misses by 2: missed line must have been evicted ->
store across bus

« Comparing with caching loads: count only gmem misses in L1
« Comparing with non-caching loads: count all loads

52

© NVIDIA 2010

Optimization for Register Spilling

« Try increasing the limit of registers per thread

— Use a higher limit in —maxrregcount, or lower thread count for
__launch_bounds___

— Will likely decrease occupancy, potentially making gmem accesses less
efficient

— However, may still be an overall win - fewer total bytes being accessed in
gmem

* Non-caching loads for gmem
— potentially fewer contentions with spilled registers in L1

* Increase L1 size to 48KB
— default is 16KB L1, 48KB smem

53

© NVIDIA 2010

Register Spilling: Case Study

* FD kernel, (3D-cross stencil)
— fp32, so all gmem accesses are 4-byte words
* Need higher occupancy to saturate memory bandwidth
— Coalesced, non-caching loads

* one gmem request = 128 bytes
 all gmem loads result in bus traffic

— Larger threadblocks mean lower gmem pressure
» Halos (ghost cells) are smaller as a percentage

« Aiming to have 1024 concurrent threads per SM
— Means no more than 32 registers per thread
— Compiled with —maxrregcount=32

54

© NVIDIA 2010

Case Study: Register Spilling 1

« 10th order in space kernel (31-point stencil)
— 32 registers per thread : 68 bytes of Imem per thread : upto 1024 threads per SM

* Profiled counters:

— 11_local_load_miss = 36 inst_issued = 8,308,582
— 11_local_load_hit = 70,956 gld_request = 595,200
— local_store = 64,800 gst_request = 128,000

» Conclusion: spilling is not a problem in this case
— The ratio of gmem to lmem bus traffic is approx 8,444 : 1 (hardly any bus traffic is due to spills)
* L1 contains most of the spills (99.9% hit rate for Imem loads)

— Only 1.6% of all instructions are due to spills

55

© NVIDIA 2010

Case Study: Register Spilling 2

12th order in space kernel (37-point stencil)
— 32 registers per thread : 80 bytes of Imem per thread : upto 1024 threads per SM

Profiled counters:

— 11_local_load_miss = 376,889 inst_issued = 10,154,216
— 11_local_load_hit = 36,931 gld_request = 550,656
— local_store = 71,176 gst_request = 115,200

Conclusion: spilling is a problem in this case
— The ratio of gmem to lmem bus traffic is approx 7 : 6 (53% of bus traffic is due to spilling)

* L1 does not contain the spills (8.9% hit rate for Imem loads)
— Only 4.1% of all instructions are due to spills
Solution: increase register limit per thread
— 42 registers per thread : no spilling : upto 768 threads per SM
— Single 512-thread block per SM : 13% perf increase
— Three 256-thread blocks per SM : 37% perf decrease

56

Register Spilling: Summary

. 3oesn’t always decrease performance, but when it does it’s
ue to:

— Increased pressure on the memory bus
— Increased instruction count

» Use the profiler to examine the impact by comparing:
— 2*I1 local load miss to all gmem accesses that don’t hit in L1
— Local access count to total instructions issued

* Impact is significant if:

— Memory-bound code: Ilmem misses are a significant percentage of
total bus traffic for bandwidth-boun

— Instruction-bound code: lmem accesses are a significant
percentage of instructions

57
© NVIDIA 2010

© NVIDIA 2010

Summary

* Determining what limits your kernel most:
— Arithmetic, memory bandwidth, latency
» Address the bottlenecks in the order of importance
— Analyze for inefficient use of hardware
— Estimate the impact on overall performance
— Optimize to most efficiently use hardware
* More resources:
— Fundamental Optimizations talk at GTC 2010

— CUDA tutorials at Supercomputing
» http://gpgpu.org/{sc2007,sc2008,5sc2009}

— CUDA Programming Guide, CUDA Best Practices Guide
— CUDA webinars

58

© NVIDIA 2010

Questions?

59

