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Introduction

 Tridiagonal solvers – very popular technique in both 

compute and graphics applications

 Application in Alternating Direction Implicit (ADI) methods

 2 different examples will be covered in this talk:

— 3D Fluid Simulation for research and science

— 2D Depth-of-Field Effect for graphics and games



Outline

 Tridiagonal Solvers Overview

— Introduction

— Gauss Elimination

— Cyclic Reduction

 Fluid Simulation in 3D domain

 Depth-of-Field Effect in 2D domain



Tridiagonal Solvers

 Need to solve many independent tridiagonal systems

— Matrix sizes configurations are problem specific



Gauss Elimination (Sweep)

 Forward sweep:

 Backward substitution:

 The fastest serial approach

— O(N) complexity

— Optimal number of operations



Cyclic Reduction

 Eliminate unknowns using linear combination of equations:

 After one reduction step a system is decomposed into 2:

 Reduction step can be done by N threads in parallel



Cyclic Reduction

 Parallel Cyclic Reduction (PCR)

— Apply reduction to new systems and repeat O(log N) 

— For some special cases can use fewer steps

 Cyclic Reduction (CR)

— Forward reduction, backward substitution

— Complexity O(N), but requires more operations than Sweep 



Outline

 Tridiagonal Solvers Overview

 Fluid Simulation in 3D domain

— Problem statement, applications

— ADI numerical method

— GPU implementation details, optimizations

— Performance analysis and results comparisons

 Depth-of-Field Effect in 2D domain



Problem Statement

 Viscid incompressible fluid in 3D domain

 New challenge: complex dynamic boundaries

 Euler coordinates: velocity and temperature

free

injection

no-slip



Applications

 Blood flow simulation in heart

Capture boundaries 

movement from MR or US

Simulate blood flow

inside heart volume



Applications

 Sea and ocean simulations

Static boundaries

Additional simulation 

parameters: salinity, etc.



Definitions

 Equation of state

— Describe relation between      and 

— Example:

Density

Velocity

Temperature

Pressure

– gas constant for air



Governing equations

 Continuity equation

— For incompressible fluids:

 Navier-Stokes equations:

— Dimensionless form, use equation of state

– Reynolds number (= inertia/viscosity ratio)



Governing equations

 Energy equation:

— Dimensionless form, use equation of state

– heat capacity ratio

– Prandtl number

– dissipative function



ADI numerical method

 Alternating Direction Implicit

X
Y

Z

Fixed Y, Z Fixed X, Z Fixed X, Y



ADI method – iterations

 Use global iterations for the whole system of equations

 Some equations are not linear:

— Use local iterations to approximate the non-linear term

previous

time step

Solve X-dir 
equations

Solve Y-dir 
equations

Solve Z-dir 
equations

Updating all 
variables next

time step
global iterations



Discretization

 Use regular grid, implicit finite difference scheme:

 Got a tridiagonal system for

— Independent system for each fixed pair (j, k) 

i i+1 i-1 i+1 i-1i



 Need to solve lots of tridiagonal systems

 Sizes of systems may vary across the grid

Tridiagonal systems

Outside cell

Inside cell

Boundary cell

system 1

system 2

system 3



Implementation details

<for each direction X, Y, Z>

{

<for each local iteration>

{

<for each equation u, v, w, T>

{

build tridiagonal matrices and rhs

solve tridiagonal systems

}

update non-linear terms

}

}



GPU implementation

 Store all data arrays entirely on GPU in linear memory

— Reduce amount of memory transfers to minimum

— Map 3D arrays to linear memory

 Main tasks

— Build matrices

— Solve systems

 Additional routines for non-linear updates

— Merge, copy 3D arrays with masks

(X, Y, Z)

Z + Y * dimZ + X * dimY * dimZ

Z – fastest-changing dimension



Building matrices

 Input data:

— Previous/non-linear 3D layers

 Each thread computes: 

— Coefficients of a tridiagonal matrix

— Right-hand side vector

 Use C++ templates for direction and equation

a
b
c

d



Building matrices – performance

 Poor Z direction performance compared to X/Y

— Threads access contiguous memory region

— Memory access is uncoalesced, lots of cache misses
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Building matrices – optimization

 Run Z phase in transposed XZY space

— Better locality for memory accesses

— Additional overhead on transpose

XYZ XYZ

X local iterations Y local iterations Z local iterations

Transpose 
input arrays

Transpose 
output 
arrays

Y local iterations

XZY XZY



Building matrices - optimization

 Tridiagonal solver time dominates over transpose

— Transpose will takes less % with more local iterations  
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Problem analysis

 Big number of tridiagonal systems

— Grid size squared on each step: 16K for 128^3

 Relatively small system sizes

— Max of grid size: 128 for 128^3

 1 thread per system is a suitable approach for this case

— Enough systems to utilize GPU



Solving tridiagonal systems

 Matrix layout is crucial for performance

Sequential layout Interleaved layout

a0 a1 a2 a3 a0 a1 a2 a3 a0 a0 a0 a0 a1 a1 a1 a1

system 1 system 2

PCR and CR friendly Sweep friendly

ADI – Z direction ADI – X, Y directions

T
h
re

a
d
 1

T
h
re

a
d
 2

T
h
re

a
d
 3

T
h
re

a
d
 1

T
h
re

a
d
 2

T
h
re

a
d
 3



Tridiagonal solvers performance

 3D ADI test setup

— Systems size = N

— Number of systems = N^2

 Matrix layout

— *CR, SWEEP_T: sequential

— SWEEP: interleaved
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Choosing tridiagonal solver

 Application for 3D ADI method

— For X, Y directions matrices are interleaved by default 

— Z is interleaved as well if doing in transposed space

 Sweep solver seems like the best choice

— Although can experiment with PCR for Z direction



Performance analysis – Fermi

 L1/L2 effect on performance

— Using 48K L1 instead of 16K gives 10-15% speed-up

— Turning L1 off reduces performance by 10%

— Really help on misaligned accesses and spatial reuse

 Sweep effective bandwidth on Tesla C2050

— Single Precision = 119 GB/s, 82% of peak

— Double Precision = 135 GB/s, 93% of peak



Performance benchmark

 CPU configuration:

— Intel Core i7 4 cores @ 2.8 GHz

— Use all 4 cores through OpenMP (3-4x speed-up vs 1 core)

 GPU configurations:

— NVIDIA Tesla C1060

— NVIDIA Tesla C2050 

 Measure Build + Solve time for all iterations



Test cases

Test Grid size X dir Y dir Z dir

Cube 128 x 128 x 128 10K 10K 10K

Heart Volume 96 x 160 x 128 13K 8K 8K

Sea Area 160 x 128 x 128 18K 20K 6K

Cube Heart Volume
Sea Area
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Performance results – Cube

 Same number of systems for X/Y/Z, all sizes are equal 
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Performance results – Heart Volume

 More systems for X, sizes vary smoothly
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Performance results – Sea Area

 Lots of small systems of different size for X/Y
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Future work

 Current main limitation is memory capacity

— Lots of 3D arrays: grid data, time layers, tridiagonal matrices

 Multi-GPU and clusters enable high-resolution grids

Split grid along current direction (X, Y or Z)

Assign each partition to one GPU

Solve systems and update common 3D layers

GPU 1 GPU 2 GPU 3 GPU 4
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Problem statement

 ADI method application for 2D problems

 Real-time Depth-Of-Field simulation 

— Using diffusion equation to blur the image

 Now need to solve tridiagonal systems in 2D domain

— Different setup, different methods for GPU



Numerical method

 Alternating Direction Implicit method

X Y

for all fixed for all fixed



Implementing ADI method

 Implicit scheme is always stable

 After discretization on a regular grid with dx = dt = 1:

 Got a tridiagonal system for each fixed j

i i-1 i i+1



Problem analysis

 Small number of systems

— Max 2K for high resolutions

 Large matrix dimensions

— Up to 2K for high resolutions

 Using 1 thread per system wouldn’t be so efficient

— Low GPU utilization



GPU implementation

 Matrix layout

— Sequential for X direction

— Interleaved for Y direction

 Use hybrid algorithm

— Start with Parallel Cyclic Reduction (PCR)

 Subdivide our systems into smaller ones

— Finish with Gauss Elimination (Sweep)

 Solve each new system by 1 thread



PCR step

 Doubles number of systems, halves systems size

step 0 step 1

Systems H

Size W

Systems H*2

Size W/2

Systems H*4

Size W/4

0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 2 3 0 1 2 3

W

H



Hybrid approach 

 Benefits of each additional PCR step

— Improves memory layout for Sweep in X direction

— Subdivides systems for more efficient Sweep

 But additional overhead for each step

— Increasing total number of operations for solving a system

 Need to choose an optimal number of PCR steps

— For DOF effect in high-res: 3 steps for X direction



Shared memory optimization

 Shared memory is used as a 

temporary transpose buffer

— Load 32x16 area into shared 

memory

— Compute 4 iterations inside 

shared memory

— Store 32x16 back to global 

memory

 Gives 20% speed-up Shared 

memory
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 Diffuse temperature series (= color) on 2D plate (= image) 

with non-uniform heat conductivity (= circles of confusion)

 Key features: 

— No color bleeding 

— Support for spatially varying 

arbitrary circles of confusion

Diffusion simulation idea

out of focus

large radius

in focus

radius = 0

sharp boundary



Depth-of-Field in games

From Metro2033,

© THQ and 4A Games



Depth-of-Field in games

From Metro2033, 

© THQ and 4A Games
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Summary

 10x speed-ups for 3D ADI methods in complex areas

— Great Fermi performance in double precision

 Achieve real-time performance in graphics and games

— Realistic depth-of-field effect 

 Tridiagonal solvers performance is problem specific



Questions?


