
Nikolai Sakharnykh - NVIDIA
San Jose Convention Center, San Jose, CA | September 21, 2010

Efficient Tridiagonal Solvers for ADI
methods and Fluid Simulation

Introduction

 Tridiagonal solvers – very popular technique in both

compute and graphics applications

 Application in Alternating Direction Implicit (ADI) methods

 2 different examples will be covered in this talk:

— 3D Fluid Simulation for research and science

— 2D Depth-of-Field Effect for graphics and games

Outline

 Tridiagonal Solvers Overview

— Introduction

— Gauss Elimination

— Cyclic Reduction

 Fluid Simulation in 3D domain

 Depth-of-Field Effect in 2D domain

Tridiagonal Solvers

 Need to solve many independent tridiagonal systems

— Matrix sizes configurations are problem specific

Gauss Elimination (Sweep)

 Forward sweep:

 Backward substitution:

 The fastest serial approach

— O(N) complexity

— Optimal number of operations

Cyclic Reduction

 Eliminate unknowns using linear combination of equations:

 After one reduction step a system is decomposed into 2:

 Reduction step can be done by N threads in parallel

Cyclic Reduction

 Parallel Cyclic Reduction (PCR)

— Apply reduction to new systems and repeat O(log N)

— For some special cases can use fewer steps

 Cyclic Reduction (CR)

— Forward reduction, backward substitution

— Complexity O(N), but requires more operations than Sweep

Outline

 Tridiagonal Solvers Overview

 Fluid Simulation in 3D domain

— Problem statement, applications

— ADI numerical method

— GPU implementation details, optimizations

— Performance analysis and results comparisons

 Depth-of-Field Effect in 2D domain

Problem Statement

 Viscid incompressible fluid in 3D domain

 New challenge: complex dynamic boundaries

 Euler coordinates: velocity and temperature

free

injection

no-slip

Applications

 Blood flow simulation in heart

Capture boundaries

movement from MR or US

Simulate blood flow

inside heart volume

Applications

 Sea and ocean simulations

Static boundaries

Additional simulation

parameters: salinity, etc.

Definitions

 Equation of state

— Describe relation between and

— Example:

Density

Velocity

Temperature

Pressure

– gas constant for air

Governing equations

 Continuity equation

— For incompressible fluids:

 Navier-Stokes equations:

— Dimensionless form, use equation of state

– Reynolds number (= inertia/viscosity ratio)

Governing equations

 Energy equation:

— Dimensionless form, use equation of state

– heat capacity ratio

– Prandtl number

– dissipative function

ADI numerical method

 Alternating Direction Implicit

X
Y

Z

Fixed Y, Z Fixed X, Z Fixed X, Y

ADI method – iterations

 Use global iterations for the whole system of equations

 Some equations are not linear:

— Use local iterations to approximate the non-linear term

previous

time step

Solve X-dir
equations

Solve Y-dir
equations

Solve Z-dir
equations

Updating all
variables next

time step
global iterations

Discretization

 Use regular grid, implicit finite difference scheme:

 Got a tridiagonal system for

— Independent system for each fixed pair (j, k)

i i+1 i-1 i+1 i-1i

 Need to solve lots of tridiagonal systems

 Sizes of systems may vary across the grid

Tridiagonal systems

Outside cell

Inside cell

Boundary cell

system 1

system 2

system 3

Implementation details

<for each direction X, Y, Z>

{

<for each local iteration>

{

<for each equation u, v, w, T>

{

build tridiagonal matrices and rhs

solve tridiagonal systems

}

update non-linear terms

}

}

GPU implementation

 Store all data arrays entirely on GPU in linear memory

— Reduce amount of memory transfers to minimum

— Map 3D arrays to linear memory

 Main tasks

— Build matrices

— Solve systems

 Additional routines for non-linear updates

— Merge, copy 3D arrays with masks

(X, Y, Z)

Z + Y * dimZ + X * dimY * dimZ

Z – fastest-changing dimension

Building matrices

 Input data:

— Previous/non-linear 3D layers

 Each thread computes:

— Coefficients of a tridiagonal matrix

— Right-hand side vector

 Use C++ templates for direction and equation

a
b
c

d

Building matrices – performance

 Poor Z direction performance compared to X/Y

— Threads access contiguous memory region

— Memory access is uncoalesced, lots of cache misses

Te
sl

a
 C

2
0
5
0
 (

S
P
)

sec

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Build Build + Solve

X dir

Y dir

Z dir

Dir Requests

per load

L1 global

load hit %

IPC

X 2 – 3 25 – 45 1.4

Y 2 – 3 33 – 44 1.4

Z 32 0 – 15 0.2

Build kernels
Total time

Building matrices – optimization

 Run Z phase in transposed XZY space

— Better locality for memory accesses

— Additional overhead on transpose

XYZ XYZ

X local iterations Y local iterations Z local iterations

Transpose
input arrays

Transpose
output
arrays

Y local iterations

XZY XZY

Building matrices - optimization

 Tridiagonal solver time dominates over transpose

— Transpose will takes less % with more local iterations

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

X dir Y dir Z dir Z dir OPT

Transpose

Build + Solve

Te
sl

a
 C

2
0
5
0
 (

S
P
)

sec

2.5x

Total time

Z dir Requests

per load

L1 global

load hit %

IPC

Original 32 0 – 15 0.2

Transposed 2 – 3 30 – 38 1.3

Build kernels

Problem analysis

 Big number of tridiagonal systems

— Grid size squared on each step: 16K for 128^3

 Relatively small system sizes

— Max of grid size: 128 for 128^3

 1 thread per system is a suitable approach for this case

— Enough systems to utilize GPU

Solving tridiagonal systems

 Matrix layout is crucial for performance

Sequential layout Interleaved layout

a0 a1 a2 a3 a0 a1 a2 a3 a0 a0 a0 a0 a1 a1 a1 a1

system 1 system 2

PCR and CR friendly Sweep friendly

ADI – Z direction ADI – X, Y directions

T
h
re

a
d
 1

T
h
re

a
d
 2

T
h
re

a
d
 3

T
h
re

a
d
 1

T
h
re

a
d
 2

T
h
re

a
d
 3

Tridiagonal solvers performance

 3D ADI test setup

— Systems size = N

— Number of systems = N^2

 Matrix layout

— *CR, SWEEP_T: sequential

— SWEEP: interleaved

0

2

4

6

8

10

12

14

16

18

64 96 128 160 192 224 256

PCR

CR

SWEEP

SWEEP_T

Tesla C2050ms

N

PCR/CR implementations from:

―Fast tridiagonal solvers on the GPU‖

by Y. Zhang, J. Cohen, J. Owens, 2010

Choosing tridiagonal solver

 Application for 3D ADI method

— For X, Y directions matrices are interleaved by default

— Z is interleaved as well if doing in transposed space

 Sweep solver seems like the best choice

— Although can experiment with PCR for Z direction

Performance analysis – Fermi

 L1/L2 effect on performance

— Using 48K L1 instead of 16K gives 10-15% speed-up

— Turning L1 off reduces performance by 10%

— Really help on misaligned accesses and spatial reuse

 Sweep effective bandwidth on Tesla C2050

— Single Precision = 119 GB/s, 82% of peak

— Double Precision = 135 GB/s, 93% of peak

Performance benchmark

 CPU configuration:

— Intel Core i7 4 cores @ 2.8 GHz

— Use all 4 cores through OpenMP (3-4x speed-up vs 1 core)

 GPU configurations:

— NVIDIA Tesla C1060

— NVIDIA Tesla C2050

 Measure Build + Solve time for all iterations

Test cases

Test Grid size X dir Y dir Z dir

Cube 128 x 128 x 128 10K 10K 10K

Heart Volume 96 x 160 x 128 13K 8K 8K

Sea Area 160 x 128 x 128 18K 20K 6K

Cube Heart Volume
Sea Area

0

2

4

6

8

10

12

14

16

18

20

22

X dir Y dir Z dir All dirs

Core i7

Tesla C1060

Tesla C2050

0

2

4

6

8

10

12

14

16

18

20

22

X dir Y dir Z dir All dirs

Core i7

Tesla C1060

Tesla C2050

Performance results – Cube

 Same number of systems for X/Y/Z, all sizes are equal

SINGLE DOUBLEsystems/ms systems/ms

5.9x

9.5x

2.7x

8.2x

Performance results – Heart Volume

 More systems for X, sizes vary smoothly

0

5

10

15

20

25

30

35

40

45

X dir Y dir Z dir All dirs

Core i7

Tesla C1060

Tesla C2050

SINGLE DOUBLEsystems/ms systems/ms

0

5

10

15

20

25

30

35

40

45

X dir Y dir Z dir All dirs

Core i7

Tesla C1060

Tesla C2050
8.1x

11.4x

3.3x

7.8x

Performance results – Sea Area

 Lots of small systems of different size for X/Y

0

10

20

30

40

50

60

70

80

X dir Y dir Z dir All dirs

Core i7

Tesla C1060

Tesla C2050

SINGLE DOUBLEsystems/ms systems/ms

0

10

20

30

40

50

60

70

80

X dir Y dir Z dir All dirs

Core i7

Tesla C1060

Tesla C20506.5x

9.6x

3.1x

7.2x

Future work

 Current main limitation is memory capacity

— Lots of 3D arrays: grid data, time layers, tridiagonal matrices

 Multi-GPU and clusters enable high-resolution grids

Split grid along current direction (X, Y or Z)

Assign each partition to one GPU

Solve systems and update common 3D layers

GPU 1 GPU 2 GPU 3 GPU 4

A
D

I
st

e
p
 d

ir
e
c
ti

o
n

References

 http://code.google.com/p/cmc-fluid-solver/

 ―Tridiagonal Solvers on the GPU and Applications to Fluid Simulation‖, GPU

Technology Conference, 2009, Nikolai Sakharnykh

 ―A dynamic visualization system for multiprocessor computers with common

memory and its application for numerical modeling of the turbulent flows of

viscous fluids‖, Moscow University Computational Mathematics and

Cybernetics, 2007, Paskonov V.M., Berezin S.B., Korukhova E.S.

http://code.google.com/p/cmc-fluid-solver/
http://code.google.com/p/cmc-fluid-solver/
http://code.google.com/p/cmc-fluid-solver/
http://code.google.com/p/cmc-fluid-solver/
http://code.google.com/p/cmc-fluid-solver/

Outline

 Tridiagonal Solvers Overview

 Fluid Simulation in 3D domain

 Depth-of-Field Effect in 2D domain

— Problem statement

— ADI numerical method

— Analysis and hybrid approach

— Shared memory optimization

— Visual results

Problem statement

 ADI method application for 2D problems

 Real-time Depth-Of-Field simulation

— Using diffusion equation to blur the image

 Now need to solve tridiagonal systems in 2D domain

— Different setup, different methods for GPU

Numerical method

 Alternating Direction Implicit method

X Y

for all fixed for all fixed

Implementing ADI method

 Implicit scheme is always stable

 After discretization on a regular grid with dx = dt = 1:

 Got a tridiagonal system for each fixed j

i i-1 i i+1

Problem analysis

 Small number of systems

— Max 2K for high resolutions

 Large matrix dimensions

— Up to 2K for high resolutions

 Using 1 thread per system wouldn’t be so efficient

— Low GPU utilization

GPU implementation

 Matrix layout

— Sequential for X direction

— Interleaved for Y direction

 Use hybrid algorithm

— Start with Parallel Cyclic Reduction (PCR)

 Subdivide our systems into smaller ones

— Finish with Gauss Elimination (Sweep)

 Solve each new system by 1 thread

PCR step

 Doubles number of systems, halves systems size

step 0 step 1

Systems H

Size W

Systems H*2

Size W/2

Systems H*4

Size W/4

0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 2 3 0 1 2 3

W

H

Hybrid approach

 Benefits of each additional PCR step

— Improves memory layout for Sweep in X direction

— Subdivides systems for more efficient Sweep

 But additional overhead for each step

— Increasing total number of operations for solving a system

 Need to choose an optimal number of PCR steps

— For DOF effect in high-res: 3 steps for X direction

Shared memory optimization

 Shared memory is used as a

temporary transpose buffer

— Load 32x16 area into shared

memory

— Compute 4 iterations inside

shared memory

— Store 32x16 back to global

memory

 Gives 20% speed-up Shared

memory

32

16

16

16

8 8 8 8

 Diffuse temperature series (= color) on 2D plate (= image)

with non-uniform heat conductivity (= circles of confusion)

 Key features:

— No color bleeding

— Support for spatially varying

arbitrary circles of confusion

Diffusion simulation idea

out of focus

large radius

in focus

radius = 0

sharp boundary

Depth-of-Field in games

From Metro2033,

© THQ and 4A Games

Depth-of-Field in games

From Metro2033,

© THQ and 4A Games

References

 Pixar article about Diffusion DOF:

http://graphics.pixar.com/library/DepthOfField/paper.pdf

 Cyclic reduction methods on CUDA:

http://www.idav.ucdavis.edu/func/return_pdf?pub_id=978

 Upcoming sample in NVIDIA SDK

http://graphics.pixar.com/library/DepthOfField/paper.pdf
http://www.idav.ucdavis.edu/func/return_pdf?pub_id=978

Summary

 10x speed-ups for 3D ADI methods in complex areas

— Great Fermi performance in double precision

 Achieve real-time performance in graphics and games

— Realistic depth-of-field effect

 Tridiagonal solvers performance is problem specific

Questions?

