

VDPAUVDPAU
San Jose Convention Center | September 23San Jose Convention Center | September 23rdrd 2010 2010

Outline

 What is VDPAU?
 Status
 Data Flow
 Features
 Interoperability
 Demos

What is VDPAU?

 Unix API for
− GPU-accelerated video decoding

− Post-processing

− Simple UI compositing

− Display

− Customization via interop

Status

 Shipping since late 2008
 Advanced interop APIs shipping since early 2010
 Supported on GeForce 8 series and higher

− With just a few exceptions

 Runs on Linux, Solaris, and FreeBSD
 Supported by many media player applications
 Well supported by NVIDIA

VdpDecoder

Objects and Data Flow

VdpVideoMixer

Rendering

PresentionQueue

Display

VdpVideoSurface

VdpOutputSurface

VdpBitmapSurface

CPU buffer:
Bitmap Data

CPU buffer:
Bitstream Data

Features – Decoding

 All formats supported by the GPU
− MPEG-1/2

− H.264 / AVC / MPEG-4 Part 10

− VC-1 / WMV3

− MPEG-4 Part 2 / DivX

 VLD level API only
− Applications work the same way on all HW

Features – Post-Processing

 De-interlacing
− Weave, Bob, and two more advanced algorithms

− Inverse-telecine

 Color-space conversion
 “Procamp” (brightness, contrast, saturation, hue)
 Noise reduction
 Sharpness

Compositing

 During post-processing of video ...
 Scale video
 Extract a sub-rectangle
 Alpha-blending with other n surfaces

− Each scaled and with a sub-rectangle extracted

 Result can be looped back to blend n video streams

Presentation Queue
for ever:

parse bitstream
vdp_decoder_render(bitstream, vid_surf)
vdp_mixer_render(vid_surf, out_surf)
vdp_pq_display(out_surf, timestamp)

Surf 1 @ t1

Surf 2 @ t2

Surf 3 @ t3

Surf 4 @ t4

Surf 5 @ t5

CPU

Display

CPU

GPU

Push asynchronously

Pop at first VSYNC after t

Interop – CPU

 “Put Bits”: Upload surface content from CPU to GPU
 VdpVideoSurface, VdpOutputSurface, VdpBitmapSurface

 “Get Bits”: Download surface content from GPU to CPU
 VdpVideoSurface, VdpOutputSurface

 Limited format conversions available in some cases
 CPU memory can be used by any other API

 File I/O, X11 rendering, OpenGL texture upload, ...

 Slowest path if extracted data to be processed on GPU

Interop – X Pixmaps

 Presentation Queue can render to
− X Window, for end-user display

− X Pixmap, for interop
 GLX_EXT_texture_from_pixmap

 Only a single X pixmap per presentation queue
− Limits pipelining/concurrency

Interop – VdpOutputSurface

 Native format is a single wh ARGB surface

Interop – VdpVideoSurface

 Each field exposed as separate sub-surfaces
 Luma and chroma exposed as separate sub-surfaces

 Two wh/2) surfaces for luma

 With appropriate chroma sub-sampling

 Two wh/2) or wh/4) surfaces for chroma

Interop – CUDA

 Exposes VDPAU surfaces as CUDA arrays
 VDPAU surfaces readable and writable
 Well-defined ordering between VDPAU and CUDA accesses
 Access n surfaces at a time
 Fits into standard CUDA interop API style in CUDA 3.1
 Both driver-level and toolkit-level APIs

Interop – CUDA

 cuVDPAUCtxCreate
 cuGraphicsVDPAURegister{Video,Output}Surface
 cuGraphicsMapResources
 cuGraphicsSubResourceGetMappedArray
 Read from CUDA array, or memcpy to it
 cuGraphicsUnmapResources
 cuGraphicsUnregisterResource

Interop – OpenGL

 Gives VDPAU surfaces OpenGL texture names
 VDPAU surfaces readable and writable
 Well-defined ordering between VDPAU and GL rendering
 Access n surfaces at a time
 GL_NV_vdpau_interop

Interop - OpenGL

 VDPAUInitNV
 VDPAURegister{Video,Output}SurfaceNV
 VDPAUMapSurfacesNV
 Texture from the surface, or render to it
 VDPAUUnmapSurfacesNV
 VDPAUUnregisterSurfaceNV
 VDPAUFiniNV

Demos

 Basic Decoding
 Interop with CUDA
 Interop with OpenGL

Questions?

Questions?

