

VDPAUVDPAU
San Jose Convention Center | September 23San Jose Convention Center | September 23rdrd 2010 2010

Outline

 What is VDPAU?
 Status
 Data Flow
 Features
 Interoperability
 Demos

What is VDPAU?

 Unix API for
− GPU-accelerated video decoding

− Post-processing

− Simple UI compositing

− Display

− Customization via interop

Status

 Shipping since late 2008
 Advanced interop APIs shipping since early 2010
 Supported on GeForce 8 series and higher

− With just a few exceptions

 Runs on Linux, Solaris, and FreeBSD
 Supported by many media player applications
 Well supported by NVIDIA

VdpDecoder

Objects and Data Flow

VdpVideoMixer

Rendering

PresentionQueue

Display

VdpVideoSurface

VdpOutputSurface

VdpBitmapSurface

CPU buffer:
Bitmap Data

CPU buffer:
Bitstream Data

Features – Decoding

 All formats supported by the GPU
− MPEG-1/2

− H.264 / AVC / MPEG-4 Part 10

− VC-1 / WMV3

− MPEG-4 Part 2 / DivX

 VLD level API only
− Applications work the same way on all HW

Features – Post-Processing

 De-interlacing
− Weave, Bob, and two more advanced algorithms

− Inverse-telecine

 Color-space conversion
 “Procamp” (brightness, contrast, saturation, hue)
 Noise reduction
 Sharpness

Compositing

 During post-processing of video ...
 Scale video
 Extract a sub-rectangle
 Alpha-blending with other n surfaces

− Each scaled and with a sub-rectangle extracted

 Result can be looped back to blend n video streams

Presentation Queue
for ever:

parse bitstream
vdp_decoder_render(bitstream, vid_surf)
vdp_mixer_render(vid_surf, out_surf)
vdp_pq_display(out_surf, timestamp)

Surf 1 @ t1

Surf 2 @ t2

Surf 3 @ t3

Surf 4 @ t4

Surf 5 @ t5

CPU

Display

CPU

GPU

Push asynchronously

Pop at first VSYNC after t

Interop – CPU

 “Put Bits”: Upload surface content from CPU to GPU
 VdpVideoSurface, VdpOutputSurface, VdpBitmapSurface

 “Get Bits”: Download surface content from GPU to CPU
 VdpVideoSurface, VdpOutputSurface

 Limited format conversions available in some cases
 CPU memory can be used by any other API

 File I/O, X11 rendering, OpenGL texture upload, ...

 Slowest path if extracted data to be processed on GPU

Interop – X Pixmaps

 Presentation Queue can render to
− X Window, for end-user display

− X Pixmap, for interop
 GLX_EXT_texture_from_pixmap

 Only a single X pixmap per presentation queue
− Limits pipelining/concurrency

Interop – VdpOutputSurface

 Native format is a single wh ARGB surface

Interop – VdpVideoSurface

 Each field exposed as separate sub-surfaces
 Luma and chroma exposed as separate sub-surfaces

 Two wh/2) surfaces for luma

 With appropriate chroma sub-sampling

  Two wh/2) or wh/4) surfaces for chroma

Interop – CUDA

 Exposes VDPAU surfaces as CUDA arrays
 VDPAU surfaces readable and writable
 Well-defined ordering between VDPAU and CUDA accesses
 Access n surfaces at a time
 Fits into standard CUDA interop API style in CUDA 3.1
 Both driver-level and toolkit-level APIs

Interop – CUDA

 cuVDPAUCtxCreate
 cuGraphicsVDPAURegister{Video,Output}Surface
 cuGraphicsMapResources
 cuGraphicsSubResourceGetMappedArray
 Read from CUDA array, or memcpy to it
 cuGraphicsUnmapResources
 cuGraphicsUnregisterResource

Interop – OpenGL

 Gives VDPAU surfaces OpenGL texture names
 VDPAU surfaces readable and writable
 Well-defined ordering between VDPAU and GL rendering
 Access n surfaces at a time
 GL_NV_vdpau_interop

Interop - OpenGL

 VDPAUInitNV
 VDPAURegister{Video,Output}SurfaceNV
 VDPAUMapSurfacesNV
 Texture from the surface, or render to it
 VDPAUUnmapSurfacesNV
 VDPAUUnregisterSurfaceNV
 VDPAUFiniNV

Demos

 Basic Decoding
 Interop with CUDA
 Interop with OpenGL

Questions?

Questions?

