GPU-accelerated data expansion
for the Marching Cubes algorithm

San Jose (CA) | September 23rd, 2010
Christopher Dyken, SINTEF Norway
Gernot Ziegler, NVIDIA UK

-

PRESENTED BY @ NVIDIA.

Agenda

* Motivation & Background
» Data Compaction and Expansion

— Histogram Pyramid algorithm and its variations
— Optimizations and benchmark results

» Marching Cubes based on Histogram Pyramids
— Mapping and performance considerations

— Benchmark results

= Visualization of SPH simulation results
— Videos

PRESENTED BY @ NVIDIA.
SINTEF

Motivation: Fast SPH visualizatie’n-

» Smoothed-particle Hydrodynamics (SPH)

— Meshless Lagrangian method:
= Nodes (particles) are not connected

= Node position varies with time
— Models fluid and solid mechanicsiil
— Nodes form a density field
» High-quality visualization:
1. Approximate density field
2. Marching Cubes

3. Render iso-surface SPH simulation nodes esoer SANVIDIA.

SINTEF

Extract iso-surface via Marching Cubes

= Scalar field is sampled over 3D grid

= Marching Cubes [Lorensen87]
— Marches through a regular 3D grid of cells

1. Each MC cell spans 8 samples

2. Label corners as inside or outside iso-value
3. Eight in/out labels give 256 possible cases
4

Each case has a tessellation template

— Devised such that tessellations of adjacent cells match

— Vertices lie on lattice edges

= positioned using linear interpolation

— De-facto standard algorithm for this problem eoer SANVIDIA.
@ SINTEF

Example: Marching Cubes in 2D

/

® N _ : . p
Input: A scalar field Upper left MC cell, Upper left MC cell, Upper left MC cell, Upper left MC cell,
(gray=scalar field) case = %0001 = 1 produce calculate vertex positions Output:
(red=iso-surface) (pink=outside,blue=inside) template tessellation 1 A line segment
1. For each cell:
Determine MC case and # vertices of template v’ Data-parallel!

2. Determine total # vertices and

. : . Not trivially data-parallel!
output index of each MC cell's vertices / g

3. During vertex output: calculate actual positions v Data-parallel!
PRESENTED BY @nV|DlA.

SINTEF

Step 2 is Data Compaction & Expansion

= We want to answer:
— How many triangles to draw?
— What is the mapping between input and output?

= (Classic: At which output position j shall MC cell i write vertex k?

= Put differently: Which MC cell i and vertex k does output position j belong to?

» Data compaction & expansion provide answers:
— Data compaction:
= Extract all cells that produce geometry

— Data expansion:

= Each cell that produces geometry issues 3-15 vertices

PRESENTED BY @ NVIDIA.
SINTEF

Data Compaction and Expansion

s | tn L0, nnnnnn 0JoJ 114/
* Problem definition R nanagnnn:
v

— We start with n input elements. \b
Output (1)

1 3 10 10 11 14

— Input element j produces
a; output elements.

— Discard all elements where a; = 0.
= An important algorithmic pattern!

— Trivial implementation in serial implementation (e.g. CPU).
— Non-trivial on data-parallel architectures (e.g. GPU)!

PRESENTED BY @ NVIDIA.
SINTEF

Input or Output-centric solutions
Qe LIl

: 11 12 13 1
Outpu\

1 3 3 10 10 1 14

Input T} ER 1Y
0] 2

» [nput-centric solution:

— For every input element

= Compute output offsets
= Scatter relevant input to output

= Typical serial solution and Data-Parallel Scan

= Qutput-centric solution:
— For every output element

= Determine input element from output index

» Histogram Pyramid (HistoPyramid): Reduction-based search structure

PRESENTED BY @ NVIDIA.
SINTEF

HistoPyramid: Stages of Algorithm

» Input is Baselevel
— For each input element, init with number of output elements

Input element index: 9 10 11 12 13 14 15

Base level: m.m.mmmmmm..mm..
= [evel Buildup

— Build further levels through reduction

» HistoPyramid Traversal

— For each output index:

Find corresponding input index (via HistoPyramid traversal)

PRESENTED BY @ NVIDIA.
SINTEF

HistoPyramid Buildup

= Build further levels from baselevel
— Add two elements (reduction)

= Number of elements
halves each iteration

= log,n iterations

— Each iteration half the size of
the previous iteration

— Data-Parallel algorithm
» Top element equals number of output elements (Step 2A)
» Data of all reduction levels: 2:1 HistoPyramid

PRESENTED BY @ NVIDIA.
SINTEF

Output Allocation

» Qutput size is known from top element of HP
= Allocate output

» Start one thread per output element

» Each thread knows its output index

= Now use HistoPyramid as
search structure for finding corresponding input element

PRESENTED BY @ NVIDIA.
SINTEF

HistoPyramid Traversal

» Each thread handles one output element

= key : variable, initially output index k4
= Binary Search through HP, (z 4]
from top-level to base-level n B o
— Reduction inputs x and y form mnn = 'Uﬂm
key ranges [0, x) and [x, x+Vy) mmmmmmmke.ymmn
— Choose fitting range for key Key=key-0=1
— Subtract chosen range’s start from key oy S

= Note: For a; > 1, several output threads will end up at same

input element: key remainder is index within thlspggfm P

SINTEF

HistoPyramid Traversal

0.6 Entry: key = Output position = 4

0.2 key,= 4 3.6

B 4]
0.2 key=key-3=1 3
L0

key=key-0=1
X 0...2
B8 88 o
key=k y =1
0.1V 2

o] i Qof2JolofofofoJol2]Jofoli]i

Ke k -0=1

SINTEF

More observations on HP traversal

— Fully data-parallel algorithm (HP is read-only in traversal)

— Traversal steps/Data dependency: log,(n) key =4
= Note: A pyramid has less latency 3skemWy-3=1
— Traversal path follows roughly a line
= Adjacent output elements (0l keifﬁe < 1
have very similar traversal paths . 0< key choose right, key-key 1
— Good cache coherence n l S
= Large chunks of output elements 0l1lol2)olololololo g.nn.n

have identical paths from top

— Good for many-thread broadcast keV 1

— Some elements are never visited

PRESENTED BY @ NVIDIA.
SINTEF

Optimization 1: Discard some partial sums

» Observation:
= |n traversal, after build-up has finished:

key = 4
= Only the left nodes are important
» The right nodes needn't be read! e :
= We can discard all the right nodes — 5

‘e ey-0=1

= Note: Number of all left nodes O o IO 0 Nn n =

equals number of key=Key-0=1
input elements olalolalolololololol2 Lalolol 1 [

key = 1

= Similarities to the Haar-transform!

PRESENTED BY @ NVIDIA.
SINTEF

Optimization 2: k-to-1 reductions

= Reduction does not have to be 2-to-1

» Example: 4-to-1 reduction is also possible
— Fewer levels of reductions -> fewer levels of traversal : log4(n)

— Better for hardware (can fetch up to 4 values at once,
reduce overall latency with fewer traversal steps)

— HPMC from 2007 uses 4-to-1 reductions in 2D (texture mipmap-like)

— Output extraction for consecutive elements
follows space-filling curve in base level

— Traversal: Adjacent HP levels accessed in mipmap-like fashion
— Excellent texture cache behaviour

PRESENTED BY @ NVIDIA.
SINTEF

HP5 (5-to-1 HistoPyramid)

= Combines two previous optimizations:
— Buildup: Every reduction adds five elements into one output, BUT:

= Only four of the reduction elements are stored!

= Fifth reduction element goes to computational sideband

— only acts as temporary data during reduction

= Traversal requires only first four elements
— Fifth element is directly deducted during top-down path.

= Advantage of HP5:
— Less data storage

— more efficient traversal
PRESENTED BY @nV|DlA.

SINTEF

The HP5 reduction

» For each group of 5 elements in input stream or sideband:
— First 4 elements into HP5 level
— The sum of the 5 elements into sideband

0, 1.0 2 00000030011000000001
L L)
{5 ' ' |
CL 75875 o//‘
r‘,"\x)
2JolololoJol3lolol1Jolololololol o 3L0) 41 1) 1 RS EUGY
[
HP5 Base-Level N
— Done in parallel, level by level 3101411 %) Sideband 2

— Last sideband: total number of elements HP5 Level 2 eseveosr ©ANVIDIA.
@ SINTEF

The HP5 traversal

» Given a key, traverse from top maintaining an index

— Fetch 4 adjacent values x, y, z, and w from HP5 level 300h4)1
— Build key ranges Range 2:
" 10 e
" Doxy) o] 1Jol2JoJoloJolo) 3)0lolt oJolofofofo]o)
- [X+y’X+y+Z) Range 4: 3/ key < =
" [X+y+Z’X+y+Z+W) index = 5%index + 4 = 14

key = key-3=0

[x+y+Z+w, =)

— Check range, . |
adjust key and index. '”feei.'&“

PRESENTED BY @ NVIDIA.
SINTEF

HistoPyramid performance

» Data compaction: CUDA 3.2 SDK, Tesla C2050

1% retained 0.70 ms 0.37 ms 0.34 ms 0.28 ms (2.5x)
10% retained 0.80 ms 3.04 ms 0.47 ms 0.38 ms (2.1x)
25% retained 0.81 ms 7.47 ms 0.63 ms 0.53 ms (1.53x)
50% retained 0.83 ms 14.89 ms 0.93 ms 0.81 ms (1.02x)

90% retained 0.85 ms 26.75 ms 1.40 ms 1.25 ms (0.60x)

PRESENTED BY @z nVIDIA.
SINTEF

HistoPyramid performance

» Data compaction: CUDA 3.2 SDK, Tesla C2050

1% retained 0.70 ms 0.37 ms 0.34 ms 0.28 ms (2.5x)
10% retained 0.80 ms 3.04 ms 0.47 ms 0.38 ms (2.1x)
25% retained 0.81 ms 7.47 ms 0.63 ms 0.53 ms (1.53x)
50% retained 0.83 ms 14.89 ms 0.93 ms 0.81 ms (1.02x)

90% retained 0.85 ms 26.75 ms 1.40 ms 1.25 ms (0.60x)

PRESENTED BY @Z n‘"D'A.
SINTEF

Explanation: HistoPyramids vs. Scan

» Scan is input-centric
— Efficiently computes output offset for all input elements
— Uses one thread per input elements to write output (scatter)
— For few relevant input elements:

= Redundantly computes output offsets for all input elements

= Starts superfluous threads for all, and many irrelevant, input elements

= HistoPyramids is output-centric
— Minimal amount of computations per input element
— Uses one thread per output element to write output (gather)

= But: requires HP traversal instead of a simple array look-up.
PRESENTED BY @nV|D'A.

SINTEF

HistoPyramid-based Marching Cubes

= Recall the 3-step subdivision of marching cubes:

1.

For each cell, determine case and find required # vertices

= Embarrassingly parallel

= Performed in CUDA

Find total number of vertices and output-input index mapping
= Build 5-to-1 HistoPyramid

= Performed in CUDA

For each vertex, calculate positions

= Embarrassingly parallel

= Performed directly in an OpenGL vertex shader

PRESENTED BY @ NVIDIA.
SINTEF

Step 1: Cell MC Case and Vertex Count

» Adjacent MC cells share corners
— Let a CUDA warp sweep through a 32x5x5 chunk of MC cells

= Process XZ-slices slice by slice: warp threads

— Check in/out state of 6 corners along Z, O S

(1 State per Cell) S S S S S S S S S S S S S S S S S S SOSCOS_SOSOS S SOSOS_OS_OS_S N

— exchange for cells processed by this thread

(2 states per cell) cg%

— Pull results from previous slice,
(4 states per cell)

— Exchange results across warps (X-axis),
(8 states per cell)

— Use a 256-byte table to find nhumber of vertices required for cell
= Recycles scalar field fetches and in-out classifications
— 32x5x5 MC cases in 33x6x6 fetches = 1.5 fetches per cell

dwiy

PRESENTED BY @ NVIDIA.

SINTEF

Step 2: HistoPyramid 5-way Reduction

» HistoPyramid built level by level, from bottom to top
— Reduction kernel uses 160 threads (5 warps)
— All five warps fetch input sideband element as uint’s into shmem
= Adjacent shared memory writes, no bank conflicts
— Synchronize
— One single warp sums and stores results in global mem

» Each thread reads 5 adjacent elements from shared mem

— Fetches with stride = 5, no bank conflicts
» Qutput 4 elements to HistoPyramid Level (as uint4’s)

= Store sum of the 5 elements in HistoPyramid sideband (as single uint’s)

PRESENTED BY @ NVIDIA.
SINTEF

Optimizing the HistoPyramid Reduction

= Reduce global mem traffic:

— Sidebands are streamed through global mem between reductions
= Combine two reductions into one kernel
— Requires 800+160 uint’s of shmem (3.8 K), free of bank conflicts

= Combine three reductions into one kernel

— Requires 800+800 uint’s in shmem (6.3 K), free of bank conflicts

= Combine step 1 and three reductions into one kernel
— Each warp processes 32x5x5 = 800 MC cells, 4000 per block

— Shares shared mem with reduction, no extra shared mem required

= Reduce kernel invocation overhead
— Build the apex of the HistoPyramid using a single kernel

= Reduces the number of kernel invocations esevener 4 NVIDIA.,
SINTEF

Step 3: Extract output vertices

» Performed directly on the fly in OpenGL vertex shader:

— No input attributes
— gl VertexID is used as key for HistoPyramid traversal

= Terminates in corresponding MC cell
= MC case gives template tessellation

= Key remainder specifies lattice edge for vertex in template tessellation

— Vertex position found by sampling scalar field at edge end points

= Uses OpenGL 4’s indirect draw
— Number of vertices to render fetched from buffer object
— No CPU-GPU synchronization needed

PRESENTED BY @ NVIDIA.
SINTEF

Results: MC Implementation Approaches

— NVIDIA Compute SDK’s MC sample uses CUDPP

— HPMC library [http://www.sintef.no/hpmc]:
HistoPyramids (4:1) in OpenGL GPGPU approach

— Our new development of HPMC uses CUDA HistoPyramid (5:1)

» Key characteristics:
— Most often: 0 triangles per cell

— Maximally: 5 triangles per cell (=15 vertices)
— On average: 0.05 - 0.15 triangles per cell

= Input (#cells) grows with cube of lattice grid resolution

= Qutput (#triangles) grows with square of lattice grid resolution

PRESENTED BY @ NVIDIA.
SINTEF

http://www.sintef.no/hpmc

256° 8bit performance (Tesla C2050)

Smooth Cayley (is0=0.5)

Triangles 445 522 (0.027 tris/cell)
NV SDK sample 72 fps (1201 mvps)
OpenGL HP4MC 113 fps (1868 mvps)
CUDA-OpenGL HP5MC 301 fps (4985 mvps)
Speedup 2.6x/ 4.2x
Bumpy Cayley (is0=0.5)

Triangles 643 374 (0.039 tris/cell)
NV SDK sample 66 fps (1098 mvps)
OpenGL HP4MC 102 fps (1689 mvps)
CUDA-OpenGL HP5MC 242 fps (4006 mvps)
Speedup 2.4x / 3.6x
Superbumpy and layered Cayley (is0=0.5)

Triangles 3036 608 (0.183 tris/cell)
NV SDK sample 34 fps (571 mvps)
OpenGL HP4MC 47 fps (774 mvps)
CUDA-OpenGL HP5MC 72 fps (1199 mvps)
Speedup 1.5x / 2.1x

NVIDIA.
SINTEF

Backpack (iso=0.4) (www.volvis.org)

5123-ish 16-bit performance (Tesla C2050)

Size 512x512x373 (187 mb)
Triangles 3745320 (0.039 tris/cell)
OpenGL HP4MC 13 fps (1291 mvps)
CUDA-OpenGL HP5MC 43 fps (4129 mvps)
Speedup 3 . 2X

Head aneuyrism (is0=0.4) (www.volvis.org)

Size 512x512x512 (256 mb)
Triangles 583 610 (0.004 tris/cell)
OpenGL HP4MC 15 fps (2034 mvps)
CUDA-OpenGL HP5MC 78 fps (10399 mvps)
Speedup 5 . 1 X

Christmas tree (is0=0.05) (TU Wien)

Size 512x499x512 (250 mb)
Triangles 5629532 (0.043 tris/cell)
OpenGL HP4MC 10 fps (1358 mvps)
CUDA-OpenGL HP5MC 28 fps (3704 mvps)
Speedup 2 . 7X

<ANVIDIA.
SINTEF

CUHP5 Marching Cubes Showcase Video

http://www.youtube.com/watch?v=WS95KjUS Ww eresenreosr < MVIDIA.,
SINTEF

http://www.youtube.com/watch?v=WS95KjUS_Ww

Summary

= Qur SPH visualization approach is based on Marching Cubes
— Requires high performance data compaction and expansion
— Qutput size is considerably smaller than input size
= 5:1 HistoPyramid buildup and traversal
— Optimizations: 5:1 instead of 4:1, leave out last leaf, shmem
— Performance comparison for typical input-output ratio of 1-10%
» [Implementing Marching Cubes
— Implementation details

— Performance

1 1 ? PRESENTED BY @ZDVIDIA
» Fastest Marching Cubes in the world G Sinrer

CUHP5 Marching Cubes

Thank you!

Questions?

Chris Dyken <christopher.dyken@sintef.no>
Gernot Ziegler <gziegler@nvidia.com>

PRESENTED BY @ NVIDIA.
SINTEF

CUHP5 Marching Cubes

BONUS SLIDES

PRESENTED BY @ NVIDIA.
SINTEF

Build a scalar field from the SPH nodes

= We approximate using a quadratic tensor-product B-spline
— Simple and runs well on a GPU
— Spline space size controls blurring versus detail

e Berl. o 21,3 fpx, SIBEINED supler, 2839 mps. S01636

512 sweles. 2523 mups. 1005004 teix. 1a0-0.10, Brpline basis = 3008300300

| _100x100x100 200x200x200 “TA¥300x300x300

S l
— A quasi-interpolant builds the spline ;
= Contribution equals basis at position |

— Scatter contributions using atomic adds

t; tit1

— No need to solve a linear system! rresenrenay 24 MVIDIA.

SINTEF

