Mathematica for GPU Programming

Ulises Cervantes-Pimentel
Senior Kernel Developer, Scientific Visualization
Group, Wolfram Research, Inc.

Abdul Dakkak
Kernel Developer, Scientific Visualization Group,
Wolfram Research, Inc.

Mathematica is widely used in scientific, engineering, mathematical fields and education. In this
session, new tools for general GPU programming in the next release of Mathematica are
presented. These tools build on top of Mathematica‘s technology which provides a simple, yet
powerful, interface to the large base of compiling tools. Applications of CUDA and OpenCL from
within Mathematica will be presented. These examples will provide a general overview of the
powerful development environment for GPU programming that Mathematica can offer not just for
researchers but for anybody with basic knowledge of Mathematica and GPU programming.

2 | GTC - Mathematica for GPU Programming (1).nb

Introduction

Thousands of organizations, including all of the Fortune 50 companies and top 200 universities
worldwide, use Mathematica to help them maintain their innovative edge.

Mathematica offers an intuitive environment—even featuring built-in ready-to-use examples for
common application areas, such as image processing, medical imaging, statistics, and finance—
that makes CUDA programming a breeze, even if you've never used Mathematica before.

Considering CUDA's advanced technology, you may expect its programming to be enormously
complicated. Enter Mathematica, the easiest way to program for CUDA and unlock GPU
performance potential. Unlike programming in C or developing CUDA wrapper code, now you
don't have to be a programming wizard to use CUDA.

And if you have used Mathematica, you'll be amazed by the massive boost in computational
power, as well as application performance, enhancing speed by factors easily exceeding 100.

Wolfram|Alpha was Prototyped, Developed and Deployed entirely using Mathematica
Technologies [web]

2% WolframAl

[LR

i
-
|

GTC - Mathematica for GPU Programming (1).nb | 3

Slide 1 of 15

Overview

e A Brief Introduction to Mathematica
e Mathematica features highlights
e Built-in high-performance computing
e Documentation and Learning
e Examples
e Benefitsof CUDA Integration in Mathematica
o Simplified Development Cycle
e Performance Improvement
e Mathematica CUDALInk: Integrated GPU Programming
e System Requirements
e Getting Started with CUDALink
e Accessng System Information
e Retargetable Code Generation
e |ntegration with Mathematica Functions
o OpenCL Compatibility
o Mathematica CUDALink Applications
e PerlinNoise
e |mageProcessing
e Video Processng
e Linear Algebra
e Fourier Analysis
e Pricing and Licensing Information
e Summary

e Mathematica Technology Conference

a4

GTC - Mathematica for GPU Programming (1).nb

Slide 2 of 15

A Brief Introduction to Mathematica

Mathematica has been one of the most powerful languages for technical computing for more than
20 years. Wolfram Research introduces fully integrated GPU programming capabilities in
Mathematica, which brings a whole new meaning to high-performance computing. For CUDA
developers, the new integration means unlimited access to Mathematica’s vast computing abilities.

Mathematica is a sophisticated development environment that combines a flexible programming
language with a wide range of symbolic and numeric computational capabilities, production of
high-quality visualizations, built-in application area packages, and a range of immediate
deployment options. With direct integration of dynamic libraries, instant interface construction,
and automatic C code generation and linking, Mathematica provides the most sophisticated build-
to-deploy environment in the market.

GTC - Mathematica for GPU Programming (1).nb | 5

Slide 3 of 15

Some highlights of Mathematica’s features include:

Through its unique interface and integrated features for computation, development, and
deployment, Mathematica provides a streamlined workflow.

At the core of Mathematica is the foundational idea that everything — data, programs, formulas,
graphics, documents — can be represented as symbolic entities, called expressions. This unified
representation makes Mathematica’s language and functions extremely flexible, streamlined, and
consistent.

Unified
data representation

Mathematica provides its own highly declarative functional language, as well as several different
programming paradigms, such as procedural and rule-based programming. Programmers can
choose their own style for writing code with minimal effort. Along with comprehensive
documentation and resources, Mathematica's flexibility greatly reduces the cost of entry for new
users.

The fundamental principle of Mathematica is full integration of symbolic and numeric computing
capabilities. Through its full automation and preprocessing mechanisms, users can enjoy the full
power of a hybrid computing system without the knowledge of specific methodologies and
algorithms.

Mathematica provides thousands of built-in functions and packages that cover a broad range of
scientific and technical computing areas, such as statistics, control systems, data visualization,
and image processing. All functions are carefully designed and tightly integrated with the system,
which enables users to break the barriers between specialized areas and explore new possibilities.

6

GTC - Mathematica for GPU Programming (1).nb

Mathematica natively supports hundreds of formats for importing and exporting, as well as
unlimited access to data from Wolfram|Alpha®, Wolfram Research’s computational knowledge
engine™. It also provides APIs for accessing common database and programming languages,
such as SQL, C/C++, and .NET.

Through its interactive notebooks, Mathematica Player™, and browser plug-ins, Mathematica
provides a wide range of options for deployment. Built-in code generation functionality can be
used to create standalone programs for independent distribution.

GTC - Mathematica for GPU Programming (1).nb | 7

Slide 4 of 15

Built-in high-performance computing

Mathematica fully supports multi-threaded, multicore processors without extra packages. Many
functions automatically utilize the power of multicore processors, and built-in generic parallel
functions make high-performance programming a simple process.

LR]
hlgh-nerfnrmantemnlﬁutnng - B -—i =
5

gridMathematica increases the power of Mathematica by adding extra computation kernels and
automated network - distribution tools. Extending Mathematica' s built-in parallelization
capabilities, gridMathematica runs more tasks in parallel, over more CPUs, for faster execution.

Whether you distribute tasks over local or remote CPUs or both, process coordination and

management is completely automated. Appropriate parallel tasks run faster with no need for code
changes. Choose the grid solution that' s best for you:

maore...

Scaling up your parallel Mathematica installation. The same code scaled to a larger grid.

Targeted for development machines

Targeted for department cluster

Works with existing batch schedulers (Windows CCS, Windows HPC, Platform LSF, Altair PBS
Pro, Sun GridEngine, ...)

8

GTC - Mathematica for GPU Programming (1).nb

e 3
i

e
L

LR B

GTC - Mathematica for GPU Programming (1).nb | 9

Slide 5 of 15

Documentation and Learning

Documentation

Other

Over 300 guide pages or "concept maps' [root guide page] [sample guide page]

Over 4000 reference pages with some 50,000+ carefully devel oped examples [sample ref page]
Over 600 tutorials, including updated sections from the Mathematica book [sample tutorial]
Many how-to task oriented documents[howto]

Over 150,000 cross links between document el ements

On-web and in-product documentation [€ference.wol fram.com

In-product and on-web linguistic-aware search system

Freelive seminars[Seminar list]

Paid live coursss[COUrse list]

Over 4500 online demonstrations [demonstrati ons|
Large number of reference books

Many more online resources [WED E€SOUr CeS|

10 | GTC - Mathematica for GPU Programming (1).nb

Slide 6 of 15

Mathematica Examples

$Li ne = 0;

Manipulate Anything

Automatically create an interface for manipulating any expression:
Cl ear [a, b, x, n]
Mani pul ate[n!, {n, 1, 1000, 1}]
Mani pul ate[Expand[(a + b)~n], {n, 1, 100, 1}]
Mani pul at e [Cont our Pl ot 3D[x"2 +y"2 +az"3 =1, {x, -2, 2},
{y, -2, 2}, {z, -2, 2}, Mesh - None], {a, -2, 2}]
Manipulate any number of variables with discrete or continuous domains:
Mani pul ate[Pl ot [Sin[ax +Db], {x, 0, 6}], {{a, 2, "Frequency"}, 1, 4},
{{b, 0, "Phase"}, 0, 10}]
Mani pul ate [Pl ot [f [x - x0], {x, 0, 2Pi }], {f, {Sin, Cos, Tan, Cot }},
{x0, 0, 2Pi}]
Specify custom controls:

Mani pul at e [Gr aphi cs[Line[{{0, 0}, p}], Pl ot Range -» 2],
{{p, {1, 1}}, Locator}]

-1.1 0.9
A=(-1.4 0.3)’

Mani pul at e[Paranetri cPl ot [Eval uate[Matri xExp[At, #] &/ept],
{t, 0, 10}, Pl ot Range -» 57,

{{pt, {{2, 03}, {0, 13}, {-3, 0}}}, Locator, LocatorAutoCreate - True},
SaveDefinitions -» True

]

GTC - Mathematica for GPU Programming (1).nb | 11

Slide 7 of 15

Dynamic and Control Objects

Dynamic variables maintain dependencies and update dynamically:

e=1;
e
e=2.0;
e

Dynami c [e]

e=3

e=|ntegrate[! ,x]
1-x3

e=Plot [Sin[x], {x, 0, 2Pi}]

e =.

Controls repeatedly set (or control) variables:

Slider [.5]
Slider [Dynanmi c[e]]
e=.5

{Sl'i der [Dynam c[e]], Dynam c[e]}
You can localize this dependence by introducing dynamic module:

Dynam cModul e[{e}, {Slider [Dynam c[e]], Dynam c[e]}]
Dynam cModul e[{e}, {Slider [Dynam c[e], {1, 10}],
Dynam c [Pl ot [Sin[ex], {x, 0, 2Pi }11}]

Apart from this sliders, checkboxes etc are just like any other expression:
Expand[(1 + Sl i der [Dynanic[e]])?]
Also just about anything can be made dynamic:

{Sli der [Dynam c[n], {5, 200}1,
Style["wWl franl', FontSize - Dynam c[n]]}

This looks slightly long, but compare to other ways of doing it [web]:

12

GTC - Mathematica for GPU Programming (1).nb

makeHand [fl _, bl _, fw, bw.]:=
Pol ygon[{{-bw, -bl}, {bw, -bl}, {fw, fI}, {0, fI + 8fw},
{-fw, f13}}/97;
hour Hand = makeHand[5, 5/3, .1, .3];
m nut eHand = makeHand[7, 7/3, .1, .31;
secondHand = {Red, EdgeFor m[Bl ack],
makeHand[7, 7/3, .1/2, .3/2]};
G aphics[{
{Thi ckness[.03], Circle[]},
{Thi ckness[. 003],
Tabl e[Line[{.9 {Cos[a], Sin[a]}, .95 {Cos[a], Sin[a]}}],
{a, 0, 2mx 2x/60}]1},
{Thi ckness[. 01],
Tabl e[Line[{.9 {Cos[a], Sin[a]}, .95 {Cos[a], Sin[a]}}],
{a, 0, 2mx 2mx/12}]1},
Style[Tabl e[Text [i, .77 {Cos[-]| n/6 + n/2], Sin[-I n/6+7x/2]}],
{i, 1, 123}], FontFam |y -»"Hel vetica", FontSi ze » 24],
Rot at e [hour Hand,
Dynami c [Ref resh[-6 Mbd [Absol uteTime[] /360, 60] °,
Updat el nterval - 6071, {0, 0}1,
Rot at e [m nut eHand,
Dynami c [Ref resh[-6 Mbd [Absol uteTime[] /60, 607 °,
Updatelnterval -»11], {0, 0}1,
Rot at e [secondHand,
Dynami c [Ref resh[-6 Round [Mod [Absol uteTine[], 60]] °,
Updat el nterval -».251], {0, 0}]
}, I mageSi ze -» Snal |]

GTC - Mathematica for GPU Programming (1).nb | 13

Slide 8 of 15

Viewing and Annotation

Use different viewers to package information compactly:

TabVi ew[Tabl e [Pl ot [Bessel J[n, x], {x, 0, 10}], {n, 5}11
TabVi ew[
Tabl e [Tradi ti onal For meBessel J[n, x] -

Pl ot [Bessel J[n, x], {x, 0, 10}], {n, 5}11]

Sl i deVi ew[Tabl e[Pl ot [Bessel J[n, x], {x, 0, 10}], {n, 5}11
Use mouseover etc to provide alternate information:

Mouseover [a, b]
dat a = RandonReal [1, {100, 2}1;
Mouseover [
Li st Pl ot [dat a],
Li st Li nePl ot [dat a[[Last @eFi ndShort est Tour [data]]], Mesh - All]
]

Use tooltip to provide additional information:

Tooltip[a, b]

Gide

Tabl e[Tool ti p[ParametricPlot [{Sin[nt], Sin[mt]}, {t, 0, 2Pi},
| mageSi ze - 70, Frame -» True, FraneTi cks - None, Axes - Fal se],
{Sin[nt], Sinfmt]1}1, {m 3}, {n, 3}]

Use monitor to temporarily provide a view of information:
Monitor [Dof[i, {i, 1076}], i]
I\/bnitor[
NDSol ve[{a[,tu[t, X1 =8y yult, x] +Sin[ult, x1]1, uf0, x] =e™
U970, x] =0, uft, -107 =uft, 10]}, u, {t, 0, 10},
{x, -10, 10}, StepMonitor =» (sol =uft, x1]; tirre:t)],

Pl ot [sol, {x, -10, 10}, Pl ot Range -» {0, 8}, Pl ot Label ->time]]

14 | GTC - Mathematica for GPU Programming (1).nb

Slide 9 of 15

Data Handling and Data Sources — Overview
e |mport/Export framework that support addressing of elements or parts of files
e | arge number of formats and area of coverage (2D/3D graphics, sound, medical, chemical etc) [ITOl€E...]

e Documentation for each supported format (history, elements, examples etc) [sample format]

e Convenience methods for URLS, compression, etc...

e Support for computable data (mathematical, physical, chemical, financial etc) [IMOr€...]
e Support for propertiesto extract potentially smaller part of much larger data sources

e Continuoudy updated data sources

Import and Export of Files [more...]

Use the "Elements" to decide what part to import: [file]
I nport ["http: //exanpl edat a. wol fram convnersenne. xhtm ",
"El ement s"]

I nport ["http: //exanpl edat a. wol fram conynmersenne. xhtm ",
"Dat a"]

Li st LogPl ot [%, Joi ned -» True]
Can also import from URLSs:

| nport [
"http: //ww. ei a. doe. gov/pub/international /i eal f /t abl e12. xI s",
"El ement s"]

Import row 250 from sheet 1:

data =
| nport [
"http: //ww. ei a. doe. gov/pub/international /i eal f /t abl e12. xI s",
{"Data", 1, 250}]
Dat eLi st Pl ot [Take[data, {4, -1}], {1980}, Filling ->Bottom
Joi ned -> True]

Use options to control other aspects of the process:

{I mport [" Exanpl eDat a/aspirin. mol "1,
| nport [" Exanpl eData/aspirin. mol ", "Rendering" -» "Wreframe"],
| nport [" Exanpl eData/aspirin. mol ", "Rendering" - "Spacefilling"]}

< | »

http://www.eia.doe.gov
http://www.eia.doe.gov

GTC - Mathematica for GPU Programming (1).nb | 15

Slide 10 of 15

Benefits of CUDA Integration in Mathematica

For users who want to tap into the power of GPU computing, CUDA integration in Mathematica
provides benefits in both development and performance. The full integration and automation of
Mathematica’'s CUDA capability means a more productive and efficient development cycle. In
addition, it brings unprecedented levels of performance improvements without extra development
time and cost.

Simplified Development Cycle

Like many other development frameworks, programming with CUDA require programmers to
manage project setup, platform dependencies, and device configuration. CUDA integration in
Mathematica makes the process completely transparent and fully automated.

In a typical CUDA program, programmers write memory and thread management code manually,
in addition to a CUDA kernel function:

GPU Memary & Thread Management

Allacate Copy CPU Configare Launch
G Memicry Mesmary o G Thawads Thaiegl

Frae Copy GPU Syncheanize CUDA Eernel
GPUY Momoey to CPU Threads Cade

With Mathematica, memory and thread management for the GPU is automatic:

Using Mathematica
» # " "

CLHDA Kerned
Code

For advanced applications, full control of how and when the memory needs to be copied between

16 | GTC - Mathematica for GPU Programming (1).nb

the host and GPU devices is provided.

Mathematica’'s CUDA support streamlines the whole programming process, allowing for faster
code turnaround

Automatic Compilation with Mathematica

Program & Optimize

Test
(CUDA Kernel Code)

Prototype

CUDA integration provides full access to Mathematica’'s native language and built-in functions. It
also provides free exchange of data between Mathematica and users’ CUDA programs.

With Mathematica’s comprehensive symbolic and numerical functions, built-in application area
support, and graphical interface building functions, users can not only combine the power of
Mathematica and GPU computing, but also spend more time on developing and optimizing core
CUDA kernel algorithms.

CUDA integration in Mathematica provides several ready-to-use CUDA functions that cover a
broad range of topics such as mathematics, image processing, financial engineering, and more.
Examples will be given later in the slides.

GTC - Mathematica for GPU Programming (1).nb | 17

Slide 11 of 15

Mathematica' s CUDALInk: Integrated GPU Programming

CUDALInk is a built-in Mathematica package that provides a simple and powerful interface for
using CUDA within Mathematica’s streamlined workflow.

CUDALInk provides you with carefully tuned linear algebra, discrete Fourier transform, and image
processing algorithms. You can also write your own CUDALInk modules with minimal effort. Using
CUDALInk from within Mathematica gives you access to Mathematica'’s features including
visualization, import/export, and programming capabilities.

The CUDALInk package included with Mathematica at no additional cost offers:

e Compilation of CUDA programs

Multiple-GPU support

Support for single and double arithmetic precision operations

Access to Mathematica' s flexible programming language, automatic interface builders, and full-featured devel opment environment

Accessto Mathematica’ s computable data, import/export capabilities, visualization features, and more

Ready-to-use functionality with zero configuration in areas such asimage processing, FFT, and linear algebra

18 | GTC - Mathematica for GPU Programming (1).nb

Slide 12 of 15

Getting started with CUDALInk
$Li ne = 0;

Programming the GPU in Mathematica is straightforward. It begins with loading the CUDALInk
package into Mathematica:

Needs [" CUDALI nk™ "]
The following function verifies that the system has CUDA support:

CUDAQI]
True

Cellular Automaton

Rule 30 Cellular Automaton does not gain much from CUDA until the column count becomes very
large, since the next row is dependent on the previous. None the less, one can write a simple
Rule 30 Cellular Automaton as a CUDA function

First, write a CUDA kernel function as a string, and assign it to a variable:

GTC - Mathematica for GPU Programming (1).nb | 19

code ="
#def i ne BLOCKDI M 256

__global __ void rul e30ca_kernel (int = prevRow, int =
next Row, int width) {
__shared__ int smem[BLOCKDI Mk27;
int tx = threadldx.x, bx = bl ockldx. x;
int index = tx + bx+*BLOCKD M

smem[tx+1] = index < width ? prevRow[i ndex] : O;
i f (tx == 0)
smem[0] = index > 0 ? prevRow[i ndex-1] : O;

else if (tx == BLOCKDI M-1)
smem[BLOCKDI M+1] = index < width-1 ?
prevRow[i ndex+1] : O;

__synct hreads ();

if (index < width)
next Row[i ndex] = snmem[tx] ~ (snmem[tx+1] |
smemit x+21);
.

Pass that string to a built-in function CUDAFunct i onLoad, along with the kernel function name
and the argument specification. The last argument denotes the dimension of threads per block to
be launched.

rul e30 = CUDAFuncti onLoad [code, “rul e30ca_kernel ",
{{_Integer, _, "Input"}, {_Integer, _, "CQutput"}, _Integer}, 256]

Now you can apply this new CUDA function to any Array.

prevRow = Const ant Array [0, 256];
prevRow[[128]] = 1;
next Row = Const ant Array [0, 256];
ca = {prevRow};
Do [
res =rul e30[prevRow, next Row, 256];
prevRow=First [res];
AppendTo[ca, prevRow],
{128}
1
ArrayPl ot [ca]

20 | GTC - Mathematica for GPU Programming (1).nb

Slide 13 of 15

Color Negate
Now, we will create a simple example that negates colors of a 3-channel image.

First, write a CUDA kernel function as a string, and assign it to a variable:

kernel =
__global __ void cudaCol orNegate(int =ing, int =dim int

channel s) {

int width = dim[0], height = dim[l];

i nt x| ndex t hreadl dx. x + bl ockldx.x % bl ockD m x;

int ylndex = threadldx.y + blockldx.y %= blockD my;

int index = channels * (xlndex + ylndexsw dth);

if (xIndex < width & ylndex < height) {

for (int ¢ = 0; ¢ < channels; c++)
ing[index + ¢c] = 255 - ing[index + c]J;

.
Pass that string to a built-in function CUDAFunct i onLoad, along with the kernel function name
and the argument specification. The last argument denotes the dimension of threads per block to
be launched.

col or Negat e = CUDAFunct i onLoad [ker nel, "cudaCol or Negat e",

{{_Integer}, {_Integer, _, "Input"}, _lInteger}, {16, 16}];

Several things are happening at this stage. Mathematica automatically compiles the kernel
function as a dynamic library. There is no need for users to add system interface or memory

management code. After compilation, the function is automatically bound to Mathematica and is
ready to be called.

Now you can apply this new CUDA function to any image format that Mathematica can handle.

GTC - Mathematica for GPU Programming (1).nb | 21

Julia Set

Accessing System Information

CUDALInk supplies several functions that make it easy to acquire detailed system information for
GPU programming.

For instance, CUDAQtells whether the current hardware and system configuration support
CUDALInk:

Needs [" CUDALI nk™ "]
This display all the information for CUDA capable devices in the local system

CUDAI nfornmation[]
CUDAI nformation[l, "Conpute Capabilities"]
CUDAI nformation[l, "Core Count"]

CUDAI nf or mat i on generates a detailed report on supported CUDA devices. The returned data
from CUDAI nf or mat i on is a valid Mathematica input form, which means that it can be used to
optimize CUDA kernel code programmatically. Several other functions are also provided that
return in-depth information about Mathematica, operating systems, hardware, and C/C++
compilers that are currently used by CUDALInk.

22 | GTC - Mathematica for GPU Programming (1).nb

Device 1 ‘ Device 2 ‘ Device 3 ‘ Device 4
Name GeForce GTX 295
Clock Rate 1296000
Compute Capabilities 1.3
GPU Overlap 1
Maximum Block Dimensions {512, 512, 64}
Maximum Grid Dimensions {65535, 65535, 1}
Maximum Threads Per Block 512
Maximum Shared Memory Per Block 16384
Total Constant Memory 65536
Warp Size 32
Maximum Pitch 2147483647
Maximum Registers Per Block 16384
Texture Alignment 256
Multiprocessor Count 30
Core Count 240
Execution Timeout 1
Integerated False
Can Map Host Memory False
Compute Mode Default
TexturelD Width 8192
Texture2D Width 65536
Texture2D Height 32768
Texture3D Width 2048
Texture3D Height 2048
Texture3D Depth 2048
Texture2D Array Width 8192
Texture2D Array Height 8192
Texture2D Array Slices 512
Surface Alignment 256
Concurrent Kernels False
ECC Enabled False
Total Memory 911736832

GTC - Mathematica for GPU Programming (1).nb | 23

Example of a report generated by CUDAI nf or mat i on.

Retargetable Code Generation

CUDALInk provides you with the ability to perform on-the-fly compilation and execution, or to
compile executables or libraries to be used later. Code can also be compiled into an executable
or an external library for out-of-Mathematica use.

Mathematica provides SymbolicC which provides a hierarchical view of C code as Mathematica’'s
own language. This makes it well suited to creating, manipulating, and optimizing C code. In
conjunction with this capability, users can generate CUDA kernel code for several different
targets, for greater portability, less platform dependency, and better code optimization.

Several built-in functions perform code generation, depending on the target:

CUDACodeCener at e takes a CUDA kernel function or program and generates SymbolicC output.
The SymbolicC output can then be used to render CUDA code that calls the correct functions to
bind the CUDA code to Mathematica.

CUDASynbol i cCGener at e produces the abstract syntax treee output for CUDA kernel as the
wrapper code.

CUDALI br ar yGener at e generates CUDA interface code and compiles it into a library that can
be loaded into Mathematica.

CUDACodeSt ri ngGener at e generates CUDA interface code in string form which can be
exported to other development platforms.

24 | GTC - Mathematica for GPU Programming (1).nb

Slide 14 of 15

Integration with Mathematica Functions

When using CUDALInk, all Mathematica'’s features including visualization, import/export, and
programming capabilities are at disposal. Combining Mathematica'’s full-featured development
environment and CUDA integration, you can focus on innovating your algorithms in CUDA
kernels, rather than spending time on repetitive tasks, such as interface building.

Mathematica provides extensive built-in interface functions including both standard and advanced
controls. Users can also customize controls using Mathematica’s highly declarative interface
language. Furthermore, Mathematica provides a fully automated interface generating function
called Mani pul at e.

By specifying possible ranges for variables, Mani pul at e automatically chooses appropriate
controls and creates a user interface around it.

Mani pul ate[operation[Gﬂﬂl@ ! x], {x, 0, 93},
o

{oper ati on, {CUDAEr osi on, CUDADiIation}}]

x E._a;f

aperalion | CUDAErosion EU“L;;«IJ abion |

Example of a user interface built with Mani pul at e.

GTC - Mathematica for GPU Programming (1).nb | 25

Slide 15 of 15

Support for import and export

Mathematica natively supports hundreds of file formats and their subformats for importing and
exporting. Supported formats include: common image formats (JPEG, PNG, TIFF, BMP, etc.),
video formats (AVI, MOV, H264, etc.), audio formats (WAV, AU, AIFF, FLAC, etc.), medical
imaging formats (DICOM), data formats (Excel, CSV, MAT, etc.), and various raw formats for
further processing.

Not only does Mathematica provide access to local resources, but any URL can be used to
access data online. The following code imports an image from a given URL:

$Li ne = 0;
i mge =
| mport [

“http: //gallery.wl fram com/2d/popup/00_cont our Mdsai c. pop. j pg"]
The function | npor t automatically recognizes the file format, and converts it into Mathematica
expression. This can be directly used by CUDALInk functions, such as CUDAI nageAdd:

out put = CUDAI mageAdd [i mage, .]

The following code exports CUDA output into PNG format:

Export [" masked. png", out put]
masked. png

Mathematica’'s CUDALiInk Applications

In addition to support for user-defined CUDA functions and automatic compilation, CUDALInk
includes several ready-to-use functions that support image processing, Fourier analysis, financial
derivatives, and linear algebra.

Image Processing

CUDALInk offers many image processing functions that have been carefully tuned for the GPU.
These include pixel operations such as image arithmetic and composition; morphological
operators such as such as erosion, dilation, opening, and closing; and image convolution and
filtering. All of these operations work on either images or arrays of real and integer numbers.

Image convolution

CUDALInk’s convolution is similar to Mathematica's L1 St Convol ve and
| rrageConvoI V € functions. Here we operate on an image:

-1 01
CUDAI mageConvol ve[-, [—2 0 2]]
-1 01

Convolving a microscopic image with a Sobel mask to detect edges.

Pixel operations

CUDALInk supports simple pixel operations on one or two images, such as adding or multiplying
pixel values from two images.

CUDAI rageMul ti pl y [| ,"ﬂ; D]

2 | GTC - Mathematica for GPU Programming (2).nb

Multiplication of two images.

CUDALInk supports fundamental operations such as erosion, dilation, opening, and closing.
CUDAETr osi on, CUDADI | at i on, CUDAOpeni ng, and CUDACI osi ng are equivalent to

Mathematica’s built-in Er osi on, Di | ati on, Openi ng, and Cl osi ng functions. More
sophisticated morphological operations can be built using these fundamental operations.

Mani pul ate[CUDAErosion[‘fﬂ'“ ii], {ii, 0, 10}]
j .

Video Processing

CUDALInk’s built-in image processing functions can also be applied to videos to perform real-time
filtering. Many common formats such as H.264, QuickTime, and DivX are supported. With GPU
computing power, CUDALINK’s video processing function can easily handle full high-resolution
video (1080p) filtering in 30 frames per second.

Needs [" GPUExanpl es™ "]
nmovi eFil e =
Fi | eNanmeJoi n[{Not ebookDi rectory[], "Data", "nb.avi"}1;
Gid[
{{Vi deoProcessi ng["| nput Fi | e" -> novi eFi | e,
| mageSi ze » {640, 360} /2],
Vi deoPr ocessi ng["| nput Fi | e" -> novi eFi | e,
"Processi ngFuncti on" - (CUDAEr osi on[#, 5] &),
| mgeSi ze » {640, 360} /2]1},
{Vi deoProcessi ng["| nput Fi | e" -> nmovi eFi |l e,
"Processi ngFunction" - (CUDADI | ati on[#, 5] &),
| mageSi ze » {640, 360} /2],
Vi deoPr ocessi ng["| nput Fi | e" -> novi eFi | e,
"Processi ngFuncti on" -
(CUDAI mageConvol ve[#, {{-1, 0, 1}, {-2, 0, 2},
{-1, 0, 1}}1 &), I mageSi ze » {640, 360} /2]1}}]

LA Aein Flr

ot Ty

GTC - Mathematica for GPU Programming (2).nb | 3

r".: fjaen e b r|

n s

¥ = 00>

i

oo 1=

Processing multiple video streams with different filters in real time.

Linear Algebra

You can perform various linear algebra functions with the CUDALInk. Examples include vector
addition, products, and other operations, finding minimum or maximum elements, or transposing

rows and columns of an image.

CUDADot [RandonReal [1, {10, 10}], RandonReal [1,

Mat ri xForm
2.86741 2.

3.0303 2
3.11159 3
2.8931 2
2.66476 2.
3.59753 2
2.51176 1
3.40237 2
| 2.64359 1

Fourier Analysis

2.8771 2.
. 90008
. 09919
. 15938

27721
5447

61839

. 93054
. 97733
. 95214
. 71209

=

. 33477
. 6475

. 51209
. 09021
. 53122
. 68847
. 15184
. 00389
. 16906
. 44451

PNRPNRPRPRNPE

P NDNDNPFPEFEPNNNDDN

. 06084 2
. 26805 2
. 35907 2

. 06823 2.4862
. 27753 2
. 49778 2
. 34827 2
. 85838 2
. 99216 2. 1434
. 59905 2

. 41796
. 87887

. 59512

{10, 10311 7//

1. 98769
2.37178
2.56315
. 65171 2.
2
2

53904

. 41974
. 46542

. 99768 2. 7365

. 39118 1.
. 78934 2.
. 11079 1.

75387
84702
68986

2.45262
2.79259
3. 18617
3. 140083
2.6245
2.7474
3. 04215
2.32628
3. 15229
1. 83644

1.
2.
2.

86956
13496
30868

1.6707

PR NR RPN

. 02024
. 27924
. 97228
. 17611
. 73759
. 53745 C

a4

GTC - Mathematica for GPU Programming (2).nb

The Fourier analysis capabilities of the CUDALInk application include forward and inverse discrete
Fourier transforms.

CUDAFour i er [RandonReal [1, 1000]] // Abs // Li st Pl ot

20¢p

15 ~°'. ;-..‘ RS EIDE N .‘°' :
‘,’ 3 "'\ ‘t‘:’\.t‘}‘ a* ‘ ‘4

PR ?) 4"“ ?s.

" X M‘a- %0..“

\9? g.“ﬁ"& .@‘ ¥ .,%

h&
5 *'g'“' IR '-5"?.-'?3‘:'.’."‘:‘*’-"’-‘.
- 200 400 66(; 800 .1060
Multiple GPUs

Using Mathematica'’s built in parallel capabilities, or using gridMathematica, multiple GPUs can be
used to perform an operation:

LaunchKer nel s[]
{Ker nel Obj ect [1, | ocal], Kernel Object [2, | ocal],
Ker nel Cbj ect [3, | ocal], Kernel Cbject [4, |ocal]}

Needs [" CUDALI nk™ "]
This loads CUDALInk for all kernels

Par al | el Needs [" CUDALI nk™ "]
This sets the $CUDADevice for all kernels

Par al | el Eval uat e [$CUDADevi ce = $Kernel I D] // Absol ut eTi m ng
(0.0146490, {1, 2, 3, 4}}

This evaluates CUDAErosion on all devices on the system

Par al | el Eval uat e[CUDAEr oSi on[, 2” // Absol ut eTi m ng

{0.0156256,

Here, there is a 2x speedup, since most of the time is spent copying data

4 xFirst [CUDAEr 0si on 2] // Absol uteTim ng]

[|‘I|-.-._-"q.\ y

0. 027345

GTC - Mathematica for GPU Programming (2).nb | 5

OpenCL Compatibility

In addition to CUDALInk, Mathematica supports OpenCL with the built-in package OpenCLLink,

which provides the same benefits and functionality of GPU programming as CUDALInk over
OpenCL architecture.

<< OpenCLLi nk®
tangle = (X"2 -5) *x"2 + (y"2-5) xy"2+ (z"2-5) %22 +W,

OpenCLI npl i ci t Render 3D[t angl e, {X, Yy, z, w}, 7.5, "Precision" -»0.01,
"SliderParaneters" -» {0.0, 20.0, 11. 8}, "Shadows" - Fal se]

Camera Fomton (Cyandncal) '

- |
L
5 21
a 1
= |
Light Positian (Cartesian
L
1
b |
L
T £l
i
by M|

Pricing and Licensing Information

Wolfram Research offers many flexible licensing options for both organizations and individuals.
You can choose a convenient, cost-effective plan for your workgroup, department, directorate,
university, or just yourself, including network licensing for groups.

Visit us online for more information:
http://www.wolfram.com/products/mathematica/purchase.html

Summary

Thanks to Mathematica’s integrated platform design, all functionality is included without the need
to buy, learn, use, and maintain multiple tools and add-on packages.

http://www.wolfram.com/products/mathematica/purchase.html

6

GTC - Mathematica for GPU Programming (2).nb

With its simplified development cycle, automatic memory management, multicore computing, and
built-in functions for many applications—plus full integration with all of Mathematica’'s other
computation, development, and deployment capabilities—Mathematica’s built-in CUDALink
package provides a powerful interface for GPU computing.

Mathematica Technology Conference

October 13 - 15, Champaign, lllinois, USA

Join us for the 2010 Wolfram Technology Conference, which brings together leading experts to
discuss how Wolfram technologies are shaping technical computing today and in the future.A
forum for users from all fields, the event provides a unique opportunity to learn from experts, and
each other, about how to work more efficiently using the latest Wolfram tools and resources.

e |Included with registration are CUDALink and OpenCLLink training sessons

e Pricetoregister is $695 for Standard, and $495 for Educators

e \We have one-day registrations for $75. We are also offering the Developer and Author Summit on Tuesday, also for $75.

e Register through October 9, however, you will not be turned away if registered late..

