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Background

¢+ Who am |?
+ Radiology Cardiovascular Imaging Fellow
¢+ Background in Engineering and Physics from Carnegie Mellon

+ Arrested Development (Season 2 episode 8)
+ Gob :*“I'm an ideas man Michael. | think | proved that with “&%$%$* Mountain".

¢+ Who might benefit from this talk?
+ Medical imagers
+ Medical informatics specialists
¢+ CUDA programmers
+* What can be expected?
+ Segmentation issues
+ Existing CPU algorithms
¢+ CUDA Code walk-through
¢+ CPU vs GPU performance
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Development Algorithm

* Write segmentation code

¢+ |dentify where code fails

* Predict/detect failure

+ Build in method for addressing issues
* Branch point
* Feedback Loop
* lterative segmentation

* Accept that | will never write code that can
account for all versions of normal/abnormal
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Overview

. Modalities In Medical Imaging

Il. Isotropic Voxels and Volumetric Imaging

lll. Utilizing CUDA for Image Analysis

IV. Outstanding Challenges in Medical Imaging
VI. Future of GPU Computing in Informatics
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Overview

. Modalities In Medical Imaging
A. CT/MRI

B. Informatics Basics
Il. Isotropic Voxels and Volumetric Imaging
lll. Utilizing CUDA for Image Analysis
IV. Outstanding Challenges in Medical Imaging
VI. Future of GPU Computing in Informatics
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Magnetic Resonance Imaging

+ Strong magnetic fields align magnetization.
* RF pulses to encode spatial information
+ Read out data and convert to images

+ Relatively low spatial resolution
+ High contrast resolution
+ Numerous artifacts
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Magnetic Resonance Imaging
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Computed Tomography

+ Object irradiated and scatter
radiation detected

+ Density Profile

* p(x,y,2)
+ Volumetric acquisition
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Pixel

+ Pixel (picture element)
« 2D unit
« smallest component of image.
« A point/discrete sampling of a scalar field (e.g. texture maps)

I‘@ Penn Medicine
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Density profile

¢ Purpose of CT
scanning is to
determine density
profile of object
being scanned

* p(x,y,2)
« complex function

« Spatial and temopral
variability

I‘@ Penn Medicine
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Volumetric Pixels

+ Voxel (volumetric pixel )
« Xy component (spatial resolution)
« z-component (function of resolution and reconstruction parameters)
» Isotropic Voxel (dx == dy == dz)

X
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Z component of Voxels
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Bear’s Home Recording Studio
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Overview

. Modalities In Medical Imaging
Il. Isotropic Voxels and Volumetric Imaging
lll. Utilizing CUDA for Image Analysis
A. Wireframe Fitting
B. Vessel Tracking
C. Rigid Registration
IV. Outstanding Challenges in Medical Imaging
VI. Future of GPU Computing in Informatics
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Automated Segmentation on CUDA

Load Data to GPU

Pre-Process
(modified Canny Edge, etc)

Stage 1 — Body Wall
Segmentation

Stage 2 — Vascular
Segmentation

‘@ Penn Medicine

Validation

-

Stage 3 - Segment Individual
Organs

Stage 4 - Sub-segment
Organs
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Wireframe Fitting

+ Deformable wireframes

« State based process in CUDA

« Each iteration of entire wireframe is one kernel call
+ Allow for constrained motion

* Indistinct margins

« Low count statistics (i.e. grainy images)
+ Conditions for isolating ROI

* Adjacent organs with similar density

* e.qg. left kidney / spleen interface

I‘@ Penn Medicine
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CPU Code

two->currnode = two->head; brk=1;
while(brk)
while(brk_i)
if(two->currnode-3>Tixed==0)
¢ if(two->currnode == two-rhead){diff.x = @; diff.y = two-rcurrnede->x - two->currnode->next->x;}
else if(two->currnode == two->tail){diff.x = two->currnode->x - two->currnode-:prev->x; diff.y = @;}

else{diff.x = two-rcurrnode-»>x - two-rcurrnode->prev->x; diff.y = two->currnode-»x - two->currnode-rnext-»x;}

if(diff.x <= 1 8& diff.y <= 1)

{
two-rcurrnode-»x++;
kd++;
pos.x = two->currnode-3x;
pos.y = two->currnode-xy;
pos.z = *slice;
cnode = Get_Random_f3(pos);
tpos = pos;
while(brk_t)
{
tpos.x += 1;
tnode = Get_Random_f3(tpos);
thk = abs{tpos.x - pos.x);
if(tnode.pixel < min_pix || tnode.pixel > max_pix){brk_t=8;}
else if(tpos.x - pos.x > 28){brk_t=8;}
tbhrk_t=1;
if(cnode.pixel > epidermis && cnode.pixel < mx_pix &% thk »= bw_thk){two->currnode->fixed = 1;}
}

if(two->currnode == two->tail){brk_i=8;two->currnode->next = NULL;}
else if(two-rcurrnode != two->tail){two-rcurrnode = two-rcurrnode-»next;}

two->currnode = two->head;
if(kd==0){brk =8;}
kd=8;

Thrk=1;

Ybrk_i=1; —

for (int i = (y_range_top-top_buffer); i<=(y_range_bottom+bottom buffer); i++){e_node = Get_Random_abs(1,i,*slice); Encompass_Insert_New_Node(two, e_node);}

Inner Loop (loops

over elements of
wireframe)

Outer loop (checks

for cessation of
wireframe motion)

I‘@ Penn Medicine
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CUDA diagram

Main Function

Cuda function

Memcopy
(wireframe and data)

Copy wireframe to
buffer

Run kernel to iterate
wireframe and write
to buffer

Copy buffer back to
wireframe

I‘@ Penn Medicine
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CUDA kernel

global__ woid VWF_Iterate(short4® DATA, floatd4* WIREFRAME, float4* tWIREFRAME, float* OD)
1

int tx

int bx

threadIdx.x;
blockIdx.x;

shortd data;

int thd_index = tx + bx * 512;

int pt_index;

float4 wf_point = WIREFRAME[thd_index];

- Thread Indexing

int var = -1;
if(wf_point.w ==8 &% wf_peoint.x >8) —
1
int twm, bxm;
if(tx ==@){twm = tx +1;} else if(tx == S511){txm = tx -1;} else{txm = tx;
if(bx ==8){bxm = bx +1;} else if(bx == 511){bxm = bx -1;} else{bwxm = bx;}
— Wireframe node indexing
int thd_index_adjl = txm + 1 + bxm * 512;
int thd_index_adj2 = txm - 1 + bxm * 512;
int thd_index_adj3 = txm + (bwm+l) * 512;
int thd_index_adj4 = txm + (bwm-1) * 512;
float4 adjl = WIREFRAME[thd_index_adjl];
float4 adj2 = WIREFRAME[thd_index adj2];
float4 adj3 = WIREFRAME[thd_index_adj3];
float4 adj4 = WIREFRAME[thd_index_adj4];
floats diff; — Global Memory Access

diff.x = wf_point.x - adjl.x;
diff.y = wf_point.x - adj2.x;
diff.z = wf_point.x - adj3.%;
diff.w = wf_point.x - adjd.x;
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if(diff.x »=var && diff.y »=var && diff.z »=var && diff.w >= var)
1

float2 asin, acos
int3 posi; fleat3

| Texture maps in medical

asin.x = _sinf(
=E=® imaging are like drinking
sl Deer. ltis alot of fun
%ﬁi:i and makes everything @
st more attractive, but it

= impairs judgment and
Mamgkrs  yOU don’t want to get
caught doing it at work.

2
[N]
+
-+

pt_index = posi.x
data = DATA[pt_ing

line Tethering
if(data.y »=1){wf
else if{data.z > B

tWIREFRAME[thd_index] = wf_point; :
} Write to temp buffer
¥

b
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Identifying Chest Wall Margins
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Reconstructing body wall margins

I‘@ Penn Medicine
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Issues of Differentiating Soft Tissue Interfaces
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Suppressing Noise in Edge Detection

Dirkle dwidtiale Pleefa

Fourler Compoent
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First two fourier coefficients
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I CPU/GPU Comparison

8

e (580
«=200GTX
GTX mem
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Known Issues contd...

+ Difficult to create coalesced memory access.
* Nearly random at times (CPU and GPU code)
+ Difficult to determine when movement stops, results in wasted

cycles.
 Individual kernels fast enough that no significant change in overall run
time

+ Cycling memory copies are major time factor

I‘@ Penn Medicine
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Bear Learns to Play the Drums
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Vessel Tracking

I‘Eﬁ Penn Medicine
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Vessel Tracking

+ A subset of the more general concept of lumen tracking
+ Initial algorithms functioned on analyzing 2D angiographic
images.
¢ Threshold based region growth algorithms
* Widely available commercially.
« Typically require a manual entry of seed point
 Fail with non-standard anatomy
* Predictive algorithms which can identify individual heart
(coronary) arteries and neck (carotid) arteries
« Highly dependant on presence of standard (textbook) anatomy
* Limited ability to segment individual downstream branches
¢+ What is important?
* “Is this a vessel?”
* ‘“what vessel is it”
* ‘“is the vessel normal in coarse and caliber”
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Virtual Angiogram utilizing CUDA

Fffé Penn Medicine



Virtual Angiogram

I‘@ Penn Medicine
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.cu Structure for Region Growth

Main Function

Propagation Kernel
- Write to Global Memory

Loop N time

Vessel Propogation

I‘@ Penn Medicine
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Region Growth kernel

__global__ void Vessel_Axial_Evolve(float® CURR_VB, float* PREV_VE, float® NEXT_VB, short2* CURR_D, short2® PREV_D, short2 *NEXT_D, int® SLICE)

{ —
int tx = threadldx.x;
int ty = threadldx.y;
int bx_a = threadldx.z;
int bx_b = blockIdx.®}
int by = blockIdx.y;

-
int bx = bx_b + bx_a*EVOLUTION_GRID_X_MOD;

int bx_mod = bx+tx-2;

int by_mod = by+ty-2;

if(bx_mod <1){bx_mod = 1;}else if(bx_mod >511){bx_mod = 511;3}

if(by_mod <1){by_mod = 1;}else if{by_mod >511){by_mod = 511;} —

_ shared_ int Slice;if(tx==2 && ty==2){Slice = =SLICE;} —_

_ syncthreads();

__shared__ float Date BLK[EVOLUTION_NET_BLOCK_SIZEJ[EVOLUTION_MET_BLOCK_SIZEJ[EVOLUTION_MET_OFFSET];

__shared__ short2 D_BLK[EVOLUTION_MET_BLOCK _SIZE][EVOLUTION_MWET_BLOCK _SIZE][EVOLUTION_MWET_OFFSET];

__shared__ float Center[EVOLUTION_NET_OFFSET];

Data_BLK[tx][ty][bx_&] = CURR_VE[bx_mod + (y_dim*by_mod)]; /BN value —

D_BLK[tx][ty][bx_al.x = CURR_D[bx_mod + (y_dim®by_mod)].x; Fipixel value
D_BLE[tx][ty][bx_al.y = CURR_D[bx_mod + (y_dim*=by_mod)].y; Jfextrema

if{tx==2 && ty==2){Center[bx_a] = Data_BLK[tx][ty][bx_&]l;}
_ syncthreads();

if(Center[bx_al < 1 & Center[bx_al> -1 &% bx_mod==0 && by_mod==8)
{
int cnt=9;
for{int i=-1;i<=1;i++){for{int j=-1;j<=1;j++){if(Data_BLK[i][jI[bx_a] »>=1){cnt+=1;}}}
if(cnt »= 5){CURR_VWEB[bx_mod + (yv_dim®by_mod)] = Slice;}

i
else if(Center[bx_al»=1 }
{
if(Data_BLE[tx][ty][bx_a] <1)
{
if(bx_mod !=0 && by_mod!=@)
{
iF(D_BLK[tx][ty][bx_a].x * cont_min-5@ && D_BLK[tx][tvI[bx_al.x < cont_max+5@ && D_BLK[tx][ty][bx_a].y==8)
{Deta_BLK[tx][ty][bx_a] = Slice;}
else if (D _BLK[tx][ty][bx_a].v!=0 && D _BLK[tx][ty][bx_g].x < cont_min-58)
{Data_BLK[tx][ty][bx_a] = -1;}
else if (D_BLK[tx][ty][bx_a].v!=0 &% D_BLK[tx][ty][bx_&].x > cont_max+5@8)
}[Da‘ta_BLK[tK][ty][bK_a] = -1;}
else {Data_BLK[tx][ty][bx_a] = &;}
H
i
CURR_VE[bx_mod + {y_dim®*by_mod)] = Data_BLK[tx]1[ty][bx_al;
i
__syncthreads();

H

Indexing

Global Memory
(070]0)Y

Perform Work

Result to Global Memory

‘@ Penn Medicine
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rtual Angiogram

.cu Structure for Vi

Main Function

Vessel Propogation

|dentify
branch
points

Virtual Angiogram
Cuda function

Propagation Kernel

Loop N time

Write to Global Memory

Virtual angiogram kernel

Loop N time

Write to Global Memory

I‘@ Penn Medicine

37



Virtual Angiogram kernel

_ global__ woid Wessel Connect(short2® DATA, float® VR, int® CNT)
{ —
int tx = threadIdx.x;
int ty = threadIdx.y;
int bx = blockIdx.x;
int by = blockIdx.y;
int modx = truncf(bx/8);
int mody = bx - modx * 8;
int surr_dist=1;
int3 pos, tpos;
pos.x = tx + modx * 16;
pos.y = ty + mody * 16;
pos.z = by;

Indexing

int thd_index = pos.x + pos.y*128 + pos.z * 128%128;

float pt_res = VR[thd_index];
int cnt = CNT[tx]; } GIObaI Me ACCeSS

if(pt_res == cnt)
{
int go_flag=1; if(pos.x <=8 || pos.x »>= 128){go_flag=8;}
else if(pos.y <=@ || pos.y >= 127){go_flag=8;}
else if(pos.z <=0 || pos.z >= 63){go_flag=e;}
short2 tpt;
float tr;

int ti;
int res = cnt + 1; * n=>n+1
)]

if(go_flag==1
!
for(int k=-surr_dist;k<=surr_dist;k++)
{
for(int j=-surr_dist;j<=surr_dist;j++) :
{ Perform analysis
for(int i=-surr_distji<=surr_dist;i+s) L
{ &
tpos = pos; tpos.x 4= i; tpos.y += j; tpos.z += k;
ti = tpos.x + tpos.y*128 + tpos.z * 128*128; Copy to Global Memory
if(k!=0 || j!=0 || k!=0)
{
tr = VR[ti];
tpt = DATA[til;

if(tpt.y == 1 && tr ==8){VR[ti] = res;}

}
H

}
I‘@ Penn Medicine
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Memory coalescing

+ |nitial phases well suited for G80 and newer GTX200/400
+ Work on isolated blocks of data
+ Vessels less than 0.2 % of total voxels

60

50

40

30 = G80
200GTX

20

10

0

1 2 3 4 5 6 7 8
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Known Issues

+ Only works with contrast enhanced studies

+ Partially depends on accuracy of body wall/bone removal
algorithms

+ |Initial stages non-specific
 “enhance” non-vascular structures

I‘@ Penn Medicine
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2 Losers at a Windows 7 House Party
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Rigid and Non-Rigid Registration

I‘Eﬁ? Penn Medicine
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Rigid and Non-Rigid Registration

+ Full scan deformable registration
« Application in lung nodule mapping
« Sequential lesion comparison
 ldeally suited for GPU computing
+ |solated bone matching
« Application in segmenting axial skeleton
« Targeted anatomic analysis (e.g. femoral neck fractures)
« Suffers from difficulties in creating coalesced memory access

I‘@ Penn Medicine
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Full Scan Registration on G80 architecture

100

¢ Multiple optimized algorithms
« Demons algorithm most common
« Gaussian recursive filtering

+ Bi-linear and bi-cubic algorithms
« Coalesced memory access patterns
 |deal for early CUDA hardware.

92 F
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Bicubic —
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Image Size (Pixels)

Performance Analysis of Accelerated Image
Registration Using GPGPU

Peter Bui <pbui@cse.nd.edu>
Jay Brockman < jbb@cse.nd.edu>
University of Notre Dame, IN, USA

Woarkshop on General Purpose Processing on Graphics
Processing Units, 2009

System Configuration

» Hardware:

» Intel Quad-Core Q6700 2.66 GHz CPU, 8.0 GB
» NVIDIA Tesla C870, 128 Stream Processors, 1.0GB

» Software:

» Ubuntu 8.04 (kernel 2.6.20)
» GCC4.1.2
» NVIDIA CUDA 1.1 SDK

I‘@ Penn Medicine
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Demons algorithm on GPU

+ Memcopy data to texture memory

¢+ Run optimization kernel
« Assume separable function
« Compute demons f(A(t,x) )
* Operate on each element of volume
+ |dentify convergence by MSE differential < threshold

+ Apply and iterate (Gauss-Newton resolution scheme)

Registration convergence at different regularization

400 T T
sigma=2
sigma=4
150 i.‘ —l—s?gmaZG i
\ &— sigma=8
b
2 200
w
Accelerating 3D Non-Rigid Registration using Graphics Hardware @
=
g 250
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) e
=2 ae
g Teeg
O 200 +""+=+=.|\+ Toeos0ss,
2INRIA, Visages proje r, Fra +++++++
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IINSERM, Visuges-117 eeder, Fronoe 150 | — e
I R s de B R fe, F T
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Segmentation of the axial skeleton

¢+ Complicated by variation of anatomy between individuals
+ Difficult to coalesce memory access

+ Operating based primarily on density which makes initial
positioning critical

I‘@ Penn Medicine
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Manual Segmentation (10min run time)

I‘Eﬁ Penn Medicine
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Optimization Scheme Choices

A

» Alpha-beta pruning

» Artificial Bee Colony Algorithm
» Artificial neural network

& Artificial immune system

» Auction algorithm

» Automatic label placement

BFGS method

Bees algorithm

BHHH algorithm

Big M method

Bin packing problem
Biolegically inspired algorithms
Bland's rule

Boid (computer science)
Branch and bound

Branch and cut

o

CMA-ES

Compositional pattern-producing network
Conjugate gradient method

Cooperative optimization

Crew scheduling

Cross-entropy method

Cuckoo search

Cutting-plane method

o

Davidon—Fletcher—Powell formula

Delayed column generation

Derivation of the conjugate gradient method
Destination dispatch

Differential evolution

Divide and conguer algerithm

Dynamic programming

m

Evolutionary algerithm
Evolutionary multi-modal optimization

E cont.

o Evolutionary programming
» Expectation-maximization algorithm
» Extremal optimization

F

o Firefly algorithm
« Fourier—Motzkin elimination
« Frank-\Wolfe algorithm

G

Gauss—Newton algerithm
Genetic algorithm

Genetic algorithms in economics
Golden section search

Gradient descent

Graduated optimization

Great Deluge algorithm

Greedy algorithm

Group method of data handling
Guided Local Search

I

Harmeny search
Hill climbing

o 1050
& Interior point method
J

« Job Shop Scheduling

K

« K-approximation of k-hitting set
o Karmarkar's algorithm

L

» L-BFGS

» Levenberg—Marguardt algorithm
o Local search (optimization)

« Local unimedal sampling

» MCS algerithm
« Matrix chain multiplication
« Maximum subarray problem

» Mehrotra predicter-corrector method

« Meta-optimization
o Minimax

N

o Mearest neighbor search

» Megamax

» Melder—Mead method

& Mewton's method

» Mewton's method in optimization

« Monlinear conjugate gradient method

o

o Ordered subset expectation maximization

P

o Particle swarm optimization
« Pattern search (optimization)
« Penalty method

» Powell's method

Q

o CGuantum annealing
o« Quasi-Newton method

R

Radial basis function network
Random optimization

Random search

Reactive search optimization
Rosenbrock methods

Rprop

w

SR1 formula
Sequence-dependent setup
Sequential Minimal O ptimization
Simplex algerithm

Simulated annealing

Stochastic hill climbing
Successive parabolic interpolation
Swarm inteligence

T

» Tabu search
« Tree rearrangement
o Types of artificial neural networks

v

« Very large-scale neighborhood search

4

« Ziontz—Walleniug method

I‘@ Penn Medicine
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Guided local search

¢+ Metaheuristic search method
 |teratively improve match
« Match model and scan
* No theoretical guarantee of extrema

+ Penalties to escape unwanted extrema
¢ Calculate initial positioning
+ Repeat algorithm until match criteria met

I‘@ Penn Medicine
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.cu structure

Anatomic
landmarks

Cuda function

Memcopy
-Dblock
-model

Copy parameters

Run kernel through nth
iteration

Converge results and modify
parameter

Loop N time

‘@ Penn Medicine
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Kernel

_ global_ wold SCALE_MODEL_VARIATIONS(flcat4 *SMODEL, short2 *DATA, float3 *TRANSLATION, float3 *RSCALE, Int2 *RESULT, imt *COARSE, Int *PTCNT, Int *CBCNT)
1{

int tx = threadIdx.x;/ /512 .

int bx = blockIdx.x; //512 Indexing

int by = PTCNT[tx];

imt coarse = COARSE[ix];

imt res_index = tx + bx * 512;

float tpl = £.2831853871795864, angle_rat=8, scl_rat=e;
floats wpos, wrs;

int4 resi;
imt tmpi;
N
vpos.z = truncf(tx/e4); ThreadS
tmpi = tx - vpos.z * &4;
vpos.y = truncf(tmpi/s); '
vpos.x = tmpl - wpos.y ¥ E; : : o
rs.2 = truncé(bx/sa); Variations of position
tmpi = bx - wrs.z * &4,
vrs.y = truncf{tmpi/s); ( )
wrs.x = tmpi - wrs.y *JS; X7y!Z
=
WPS. K -= 4 VWPS.Y -= 4) WIS.Z -= 4
WpOS.X -= 4; VPDS.Y -= 4} VPOS.ZI -= 4; BIOCk
if(coarse==0){vpos.x *= 16; vpos.y *= 16} vpos.z *= 15} angle_rat = 32; scl_rat=e.84;}
glse if{coarse ==1)}{vpos.x *= 2; vpos.y *= 2; vpos.z *= 2; angle_rat = &4; scl_rat=2.e1;} '
else if{coarse ==2){vpos.x *= 1; vpos.y *= 1; vpos.z *= 1; angle rat = 256; scl rat=2.8825;} . 8 .
else if{coarse ==3)}{vpos.¥ *= 2.5} wpos.y *= 8.5 vpos.Z *= @.5; angle_rat = 512; scl_rat=8.808125;} Var'at'on Of rotat'on
— and scale

floats trans = TRAMSLATION[tx];

float3 irscale = RSCALE[tx];

imt cbont = CBCHT[ix];

short2 sdata;

float2 trigp, trigt;

floats tres, res;

imt go_flag=1;

float tmpf=1;

short2 cb_range; cb_range.x = 135@; cb_range.y = 3222, if(cbcnt « 11ee82e){cb_range.x=1208;}

_ shared__ floats smdlpt; q
7 (tx==8){smdlpt = SMODEL[by];} syncthreads(); Copy model point to shared memory
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Kernel contd

ifismdlpt.u » @)
{
trans.x += vpos.x; 3
trans.y += wpos.y;
trans.z += wpos.I;

irscale.x += (vrs.x * tpifangle_rat) * 8.5;
irscale.y += wrs.y * tpifangle_rat;
irscale.z += wrs.z * scl_rat;

trigp.x = coes{irscale.x);
trigp.y = sin{irscale.x);

trigt.x = cos{irscale.y);
trigt.y = sin{irscale.y)};

— Apply variation to model point

tres.x = smdlpt.x;
tres.y = smdlpt.y;
tres.z = smdlpt.z;

res.x = tres.x * trigt.x + tres.y = trigt.y;
res.y = -tres.x * trigt.y = trigp.x + tres.y *= trigt.x * trigp.x + tres.z * trigp.y;
res.z = tres.x * trigt.y * trigp.y - tres.y * trigt.x * trigp.y + tres.z * trigp.x;

res.x *= irscale.z;
res.y *= irscale.z;
res.z *= irscale.z;

tmpf = irscale.z;

res.x += trans.x}
res.y += trans.y}
res.z += trans.z;

if(res.x ¢« @ || res.x »255){go_flag=2;}
if(res.y < @ || res.y »255){go_flag=@;}
if(res.z < @ || res.z »255){go_flag=a;}

resi.x = float2int(res.x}); * Not interpOIated Or

resi.y = floatzint{res.y};
resi.z = fleat2int{res.z};
_ texture value
if({go_flag==1})
¢ ) Get Voxel Value

resi.w = resi.x + resi.y * 256 + resi.z * 256 * 256;
sdata = DATA[resi.w];

if{sdata.y==0 && sdata.x » cb_range.x &% sdata.x < cb_range.y){sdata.y = 1;} 11
else if(sdata.y==){smdlpt.u = -1;} — Apply CondItIOnS

else if{sdata.y==-1}{smdlpt.w = 8;}

RESULT[res_index].y += sdata.y * smdlpt.w * tmpf;

Write result
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Hybrid view of axial skeleton
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Full Pelvic Segmentation
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Known Issues

+ Determinants of success
» global extrema within A of the initial guess
« Finite sampling of a quasi continuous parametric space
+ Bone specific parameters
 Humeral head
— Spherical weighting for large radius
— Penalties for liac components
* Humeral shaft
— Weighting towards point near trochanters
— Allow metallic points
 lliac crest
— Weighting towards point matching near iliac spine
— Penalties for unmatched point
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How many computers can you fit in a 1B1B?
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Overview

. Modalities In Medical Imaging

Il. Isotropic Voxels and Volumetric Imaging

lll. Utilizing CUDA for Image Analysis

IV. Outstanding Challenges in Medical Imaging
A. Quantum Mottle
B. Unexpected Dense Objects
C. Vessel Discontinuity

VI. Future of GPU Computing in Informatics
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Fundamental Issues
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Quantum Mottle and the Issue of Lost Edges

Fourier Compoent Fourier Compoent Fourier Compoent

constantvalue Fourier Compoent
n=7 n=9 i

n=3

Fourier Compaent
n=5

Fourier Compoent
n=11

Fourier Compoent Fourier Compoent
n=1 3 5 7 n=9

Fourier Series Fourier Series Fourier Series FoLiiArSarlas Fourier Series Fourier Series
n{1} n{1,3} n{135} n{L357 n{13.5.7.9} n{1,35.7,9,11}
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Quantum Mottle and Lost Edges

* Generalized body wall edema
¢ Pleural Effusions

+* Poor contrast enhancement
* Obesity
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Generalized Edema
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Generalized Edema
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Pleural Effusions
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Pleural Effusions
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Poor Contrast Enhancement
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Poor Contrast Enhancement
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Quantum Mottle and the issue of Lost Edges

& Penn Medicine



Obesity
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Unexpected Dense Objects
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Enteric Contrast
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Implanted Metal
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Vascular Discontinuity
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Running out of space
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Overview

. Modalities In Medical Imaging

Il. Isotropic Voxels and Volumetric Imaging

lll. Utilizing CUDA for Image Analysis

IV. Outstanding Challenges in Medical Imaging
VI. Future of GPU Computing in Informatics
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+ Real-time vessel and lesion characterization
« Link segmented data to allow organ specific lesion characterization
» Registration with prior exams/segmentation to refine analysis
* Incorporate multiple modalities (MRI, CT)
 Interactive vascular maps for surgical planning
+ Preliminary/Quantitative report generation
« Automatically provide lesion characterization addendum to reports
* Analyze segmented data for common pathologies
¢+ Hardware
« Memory access patterns do not lend themselves to the CUDA architecture
» Integration of a RISC/x86 core which has direct access to Global Memory
* Increase thread block size and shared memory

I‘@ Penn Medicine 9



Heating Solution for Philadelphi
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