
GPU Technology Conference
September 23, 2010

Jike Chong
Principal Architect

Parasians, LLC

Parasians, LLC – Business Accelerated

Speaker: Jike Chong
 Principal Architect, Parasians LLC

 Help clients in compute-intensive industries achieve revolutionary performance on applications directly
affecting revenue/cost with highly parallel computing platforms

 Sample project: deployed speech inference engine for call centers analytics

 Ph.D. Researcher, University of California, Berkeley

 Focusing on speech recognition and computational finance

 Built an application framework that allows speech researchers to effectively develop applications on systems
with HW accelerators

 Relevant prior experience:

 Sun Microsystems Inc: Micro-architecture design of the flagship T2 processor

 Intel, Corp: Optimization of kernels on new MIC processors

 Xilinx, Inc: Design of application specific multi-ported memory controller

September 23, 2010 2

Parasians, LLC – Business Accelerated

Automatic Speech Recognition

 Allows multimedia content to be transcribed from acoustic waveforms to word sequences

 Emerging commercial usage scenarios in customer call centers

 Search recorded content

 Track service quality

 Provide early detection of service issues

September 23, 2010 3

Voice Input

Recognize Speech

r eh k ax g n ay z ‘ s p iy ch

A S R

Recognition Output

Parasians, LLC – Business Accelerated

Accelerating Speech Recognition

 Demonstrated that speech recognition is amenable to acceleration

 Fastest algorithm style differed for each platform

September 23, 2010 4

0.0 1.0 2.0 3.0 4.0

Sequential

Multicore

Manycore

82.7% Compute Intensive
17.3% Communication Intensive

79.1% Compute Intensive
20.9% Communication Intensive

49.0% Compute Intensive
51.0% Communication Intensive

Decoding Time per Second of Speech [sec]

3.4x

10.5x 0.302

0.925

3.17

(RTF)

Both application domain expertise and hardware architecture expertise required to fully exploit
acceleration opportunities in an application

Kisun You, Jike Chong, et al, “Parallel Scalability in Speech Recognition: Inference engine in large vocabulary continuous speech recognition”, IEEE Signal Processing Magazine, vol. 26, no.
6, pp. 124-135, November 2009.

Parasians, LLC – Business Accelerated

Automatic Speech Recognition
 Speech Application Characteristics

 Typical input/output data types

 Working set sizes

 Modules and their inter-dependences

 Four Parallelization Opportunities

 Over speech segments

 Over Viterbi forward/backward pass

 Over phases in each time step

 Over alternative interpretations

September 23, 2010 5

 Four Challenges and Solutions for Efficient GPU
Implementation

 Handling irregular graph structure

 Efficiently implementing “memoization”

 Implementing conflict free reduction

 Parallel construction of global task queues

 An Application Framework for Domain experts

 Allowing Java/Matlab programmer to get 20x speedup
using GPUs

Parasians, LLC – Business Accelerated

Automatic Speech Recognition

6

 Challenges:

 Recognizing words from a large vocabulary arranged in exponentially many possible permutations

 Inferring word boundaries from the context of neighboring words

 Hidden Markov Model (HMM) based approach is the most successful

September 23, 2010

Parasians, LLC – Business Accelerated

Automatic Speech Recognition
 The Hidden Markov Model approach views utterances as following the Markov Process

 Utterances are sequences of phones produced by a speaker

 Markov Process describes sequence of possibly dependent random variables where any prediction of the
next value (xn), is based on (xn − 1) alone

 Sometime described as a memoryless model

 Flexibly represents any utterances that can be said

 Use discrete random variables to represent the states in models of languages

September 23, 2010 7

r eh k ax g n ay z s p iy ch

Recognize Speech

Parasians, LLC – Business Accelerated

Automatic Speech Recognition
 In the Hidden Markov Model, states are hidden, because phones are indirectly observed

 One must infer the most likely interpretation of the waveform while taking the model of the
underlying language into account

8September 23, 2010

r eh k ax g n ay z s p iy ch

Recognize Speech

Parasians, LLC – Business Accelerated

Detailed Algorithm

 Inference engine based system

 Used in Sphinx (CMU, USA), HTK (Cambridge, UK), and Julius (CSRC, Japan)

 Modular and flexible setup

 Shown to be effective for Arabic, English, Japanese, and Mandarin

9

Speech
Feature

Extractor

Inference
Engine

Voice
Input

Recognition Network

Speech
Features

Word
Sequence

…

I think

therefore

I am

Acoustic
Model

Pronunciation
Model

Language
Model

September 23, 2010

Parasians, LLC – Business Accelerated

Detailed Algorithm

September 23, 2010 10

WFST Recognition Network

...
HOP hhaa p
...
ON aa n
...
POP p aa p
...

aa

hh

n

HOP

ON
POP

CAT

HAT

IN

THE

...

...

...

...

...

C
A

T

H
A

T

..
.

..
.

H
O

P
IN ..

.
O

N
P

O
P

..
.

TH
E

..
.

HMM Acoustic
Phone Model Pronunciation Model

Bigram
Language Model

…

Features
from one

frame

Gaussian Mixture Model
for One Phone State

… …… … …

…

…

Mixture Components

Computing
distance to
each mixture
components

Computing
weighted sum
of all components

Parasians, LLC – Business Accelerated

 Speech inference uses the Viterbi algorithm

 Evaluate one observation at a time

 based on 10ms window of acoustic waveform

 Computing the state with three components

 Observation
probability

 Transition
probability

 Prior likelihood

Application Context

11September 23, 2010

Obs 1 Obs 2 Obs 3 Obs 4

ss s

s ss s

s ss s

s ss s

State 1

State 2

State 3

State N

x x x x

Time
… … … … …

s

An ObservationA State

P(xt|st) P(st|st-1) m [t-1][st-1]m [t][st]

Legends:

Model size for a WFST language model

s s A Pruned State x

s

1. Forward Pass

2. Backward Pass

states: 4 million, # arcs: 10 million, # observations: 100/sec

Average # active states per time step: 10,000 – 20,000

Observations

Speech

Model

States

Speech

Feature

Extractor

Inference

Engine

Voice

Input

Recognition Network

Speech

Features
Word

Sequence

…

I think

therefor

e

I am

Acoustic

Model

Pronunciation

Model

Language

Model

Parasians, LLC – Business Accelerated

Acceleration Opportunity (1)
 Concurrency over speech segments

 Multiple inference
engine working on
different segments
of speech

 Shared recognition
network

September 23, 2010 12

Signal
Processing

Module

Inference
Engine

Voice Input

Speech
Feature
s

…

Word
Sequence

I think

therefore

I am

Recognition Network

Acoustic
Model

Pronunciation
Model

Language
Model

Signal
Processing

Module

Signal
Processing

Module

Speech
Feature
s

…
Speech
Feature
s

…

Inference
Engine

Inference
Engine

Word
Sequence

I think

therefore

I am

Word
Sequence

I think

therefore

I am

P0

P1

P(k)

Parasians, LLC – Business Accelerated

Mapping Concurrency to GPUs (1)

September 23, 2010 13

 Concurrency among speech utterances is the low hanging fruit

 Can be exploited over multiple processors

 Complementary to the more challenging fine-grained concurrency

 However, exploiting it among cores and
vector lanes is not practical

 Local scratch-space not big enough

 Access to global memory is shared

 Significant memory bandwidth
required

Parasians, LLC – Business Accelerated

Acceleration Opportunity (2)
 Concurrency over forward pass and backward pass

of the Viterbi algorithm

 Pipelining two parts of the algorithm by
operating on different segments of speech

September 23, 2010 14

Obs 1 Obs 2 Obs 3 Obs 4

ss s

s ss s

s ss s

s ss s

State 1

State 2

State 3

State N

x x x x

Time

… … … … …

1. Forward Pass

2. Backward Pass

Observations

Speech

Model

States

Speech

Feature

Extractor

Inference

Engine

Voice

Input

Recognition Network

Speech

Features
Word

Sequence

…

I think

therefor

e

I am

Acoustic

Model

Pronunciation

Model

Language

Model

t1 t2 t3 t4 t5 t6

FP BP

FP BP

FP BP

FP BP

Parasians, LLC – Business Accelerated

Mapping Concurrency to GPUs (2)
 Concurrency among forward and backward passes is exploitable

 To effectively pipeline, stages should be balanced

 Forward Pass: >99% of execution time

 Backward Pass: <1% of execution time

 Exploiting it will not result in appreciable performance gain

September 23, 2010 15

Obs 1 Obs 2 Obs 3 Obs 4

ss s

s ss s

s ss s

s ss s

State 1

State 2

State 3

State N

x x x x

Time

… … … … …

1. Forward Pass

2. Backward Pass

Observations

Speech

Model

States

Parasians, LLC – Business Accelerated

Acceleration Opportunity (3)

September 23, 2010 16

 Concurrency over each algorithm phase
in the forward pass of each time step

 Phase 1: compute intensive

 Phase 2: communication intensive

Phase 2

Inference Engine: Beam Search with Graph Traversal

Phase 1

Iterative through inputs

one time step at a time

In each iteration,

perform beam search

algorithm steps

Phase 1: Computation

Intensive

Phase 2: Communication

Intensive

Speech

Feature

Extractor

Inference

Engine

Voice

Input

Recognition Network

Speech

Features
Word

Sequence

…

I think

therefor

e

I am

Acoustic

Model

Pronunciation

Model

Language

Model

Obs 1 Obs 2 Obs 3 Obs 4

ss s

s ss s

s ss s

s ss s

State 1

State 2

State 3

State N

x x x x

Time

… … … … …

1. Forward Pass

2. Backward Pass

Observations

Speech

Model

States

Parasians, LLC – Business Accelerated

Mapping Concurrency to GPUs (3)
 Concurrency among Phase 1 (compute intensive phase) and Phase 2 (communication intensive phase)

is exploitable

 In the parallelized version, the two phases have similar execution times

 However, transferring data between the two phases may be a bottleneck

 Bottleneck observed when

 Phase 1  (CPU)? (GPU)?

 Phase 2  (CPU)? (GPU)?

September 23, 2010 17

Obs 1 Obs 2 Obs 3 Obs 4

ss s

s ss s

s ss s

s ss s

State 1

State 2

State 3

State N

x x x x

Time

… … … … …

1. Forward Pass

2. Backward Pass

Observations

Speech

Model

States

Parasians, LLC – Business Accelerated

Mapping Concurrency to GPUs (3)

September 23, 2010 18

Phase 0

Read Files

Initialize data

structures

CPUGPU

Backtrack

Output Results

Phase 1

Compute

Observation

Probability

Phase 2

Graph Traversal

Collect

Backtrack Info

Iteration Control

Phase 0

Read Files

Initialize data

structures

CPUGPU

Backtrack

Output Results

Phase 1

Compute

Observation

Probability

Phase 2

Graph Traversal

Collect

Backtrack Info

Phase 1Compute

Observation

Probability

Iteration Control

CPUGPU

Read Files

Initialize data

structures

Backtrack

Output Results

Phase 0

Phase 1

Compute Observation

Probability

Phase 2

Graph Traversal

Save

Backtrack Log

Collect

Backtrack Info

Prepare ActiveSet

Iteration Control

Cardinal, Patrick, Dumouchel,
Pierre, Boulianne, Gilles,
Comeau, Michel (2008):

"GPU accelerated acoustic
likelihood computations", In

INTERSPEECH-2008, 964-967.

P. R. Dixon, T. Oonishi, and S. Furui.
Harnessing graphics processors for the

fast computation of acoustic likelihoods
in speech recognition. Comput. Speech
Lang., 23(4):510–526, 2009. ISSN 0885-

2308.4625(2):450–463, 2008.

Jike Chong, Ekaterina Gonina,
Youngmin Yi, Kurt Keutzer, “A
Fully Data Parallel WFST-
based Large Vocabulary
Continuous Speech
Recognition on a Graphics
Processing Unit”, Proceeding
of the 10th Annual
Conference of the
International Speech
Communication Association
(InterSpeech), page 1183 –
1186, September, 2009.

Parasians, LLC – Business Accelerated

Acceleration Opportunity (4)
 Concurrency over alternative interpretations

of the utterance within each algorithm step

 Computing the state with three components

 Observation
probability

 Transition
probability

 Prior likelihood

September 23, 2010 19

Inference Engine: Beam Search with Graph Traversal

In each

step,

consider

alternative

interpretations

Speech

Feature

Extractor

Inference

Engine

Voice

Input

Recognition Network

Speech

Features
Word

Sequence

…

I think

therefor

e

I am

Acoustic

Model

Pronunciation

Model

Language

Model

Obs 1 Obs 2 Obs 3 Obs 4

ss s

s ss s

s ss s

s ss s

State 1

State 2

State 3

State N

x x x x

Time

… … … … …

1. Forward Pass

2. Backward Pass

Observations

Speech

Model

States

Iterative through inputs

one time step at a time

In each iteration,

perform beam

search algorithm

Parasians, LLC – Business Accelerated

Mapping Concurrency to GPUs (4)
 Concurrency among alternative interpretations is abundant

 10,000s alternative interpretations tracked per time step

 Well matched to the architecture of the GPU

 With the concurrency, comes many challenges…

1. Eliminating redundant work by implementing parallel
“memoization”

2. Handling irregular graph structures with data parallel operations

3. Conflict-free reduction in graph traversal to resolve write-conflicts

4. Parallel construction of a task queue while avoiding sequential
bottlenecks at queue control variables

September 23, 2010 20

Obs 1 Obs 2 Obs 3 Obs 4

ss s

s ss s

s ss s

s ss s

State 1

State 2

State 3

State N

x x x x

Time

… … … … …

1. Forward Pass

2. Backward Pass

Observations

Speech

Model

States

Parasians, LLC – Business Accelerated

Challenge 1:
 Eliminating redundant work when threads are

computing results for an unpredictable subset of the
problems based on input

 Only 20% of the triphone states are used for
observation probability computation

 Many duplicate labels

 In sequential execution,
memoization is used to
avoid redundancy

 What do we do on
data-parallel platforms?

21September 23, 2010

1.9

0.709

0.146

0

0.5

1

1.5

2

All encounterd
labels

All unique
labels

Encountered
unique labels

Real Time Factor for
Observation Probability

Computation

Real Time Factor shows the
number of seconds required to
process one second of input data

Obs 1 Obs 2 Obs 3 Obs 4

ss s

s ss s

s ss s

s ss s

State 1

State 2

State 3

State N

x x x x

Time
… … … … …

s

An ObservationA State

P(xt|st) P(st|st-1) m [t-1][st-1]m [t][st]

Legends:

Model size for a WFST language model

s s A Pruned State x

s

1. Forward Pass

2. Backward Pass

states: 4 million, # arcs: 10 million, # observations: 100/sec

Average # active states per time step: 10,000 – 20,000

Observations

Speech

Model

States

Parasians, LLC – Business Accelerated

Solution 1:
 Implement efficient find-unique function by leveraging

the GPU global memory write-conflict-resolution policy

 Leverage the semantics of conflicting
non-atomic write to use the hash table as a flag array

 CUDA guarantees at least one conflicting write to a device
memory location to be successful, which is enough to build
a flag array

 The alternative “Hash Insertion” step greatly simplifies the
find-unique operation

22September 23, 2010

Hash write (0.030)

Duplicate Removal

Unique-index

Prefix-scan (0.020)

Unique-list

Gathering (0.005)

Hash insertion

Alternative Approach

Sort (0.310)

Duplicate Removal

Cluster-boundary

Detection (0.007)

Unique-index

Prefix-scan (0.025)

Unique-list

Gathering (0.007)

List Sorting

Traditional Approach

Real Time Factor: 0.349 Real Time Factor: 0.055

Parasians, LLC – Business Accelerated

Challenge 2:
 Handling irregular data structures

with data-parallel operations

 Forward pass: 1,000s to 10,000s of
concurrent tasks represent most
likely alternative interpretations of
the input being tracked

 To track: reference selected subset of
a sparse irregular graph structure

 The concurrent access of irregular
data structure requires “uncoalesced”
memory accesses in the middle of
important algorithm steps, which
degrades performance

23September 23, 2010

WFST Recognition Network

...
HOP hh aa p
...
ON aa n
...
POP p aa p
...

aa

hh

n

HOP

ON
POP

CAT

HAT

IN

THE

...

...

...

...

...

C
A

T

H
A

T

..
.

..
.

H
O

P
IN ..

.
O

N
P

O
P

..
.

TH
E

..
.

HMM Acoustic
Phone Model Pronunciation Model

Bigram
Language Model

Gaussian Mixture Model
for One Phone State

… …… … …

…

…

Mixture Components

Computing
distance to
each mixture
components

Computing
weighted sum
of all components

Parasians, LLC – Business Accelerated

Solution 2:
 Construct efficient dynamic vector data

structure to handle irregular data accesses

 Instantiate a Phase 0 in the implementation to
gather all operands necessary for the current
time step of the algorithm

 Caching them in a memory-coalesced runtime
data structure allows any uncoalesced accesses
to happen only once for each time step

24September 23, 2010

Read Files

Initialize data

structures

CPUManycore GPU

Backtrack

Output Results

Phase 0

Phase 1

Compute Observation

Probability

Phase 2

Graph Traversal

Save

Backtrack Log
W

R

W

R

RW

DataControlData Control

R

R

W

R

W W

R

W

R

Collect

Backtrack Info

Prepare ActiveSet

Iteration Control

Parasians, LLC – Business Accelerated

Challenge 3:
 Conflict-free reduction in graph traversal to implement the Viterbi beam-search algorithm

 During graph traversal, active
states are being processed by
parallel threads on different cores

 Write-conflicts frequently arise
when threads are trying to update
the same destination states

 To further complicate things, in statistical inference, we would
like to only keep the most likely result

 Efficiently resolving these write conflicts while keeping just
the most likely result for each state is essential for achieving good
performance

25September 23, 2010

A section of a
Weighed Finite State Transducer Network

ε arc

non ε arc

Active state

(contains a token)

Inactive state

(contains no token)

Thread 0

Thread 1

Thread 2

Parasians, LLC – Business Accelerated

Solution 3:
 Implement lock-free accesses of a shared map leveraging advanced GPU atomic operations to enable

conflict-free reductions

 CUDA offers atomic operations with various flavors of arithmetic operations

 The “atomicMax” operation is ideal for statistical inference

 Final result in each atomically accessed memory location
will be the maximum of all results that was attempted to
be written to that memory location

 This type of access is lock-free from the software perspective,
as the write-conflict resolution is performed by hardware

 Atomically writing results
in to a memory location is
a process of reduction, hence,
this is a conflict-free reduction

26September 23, 2010

Mem

atomicMax(address, val);

atomicMax(address, val);

…

Thread 0

Thread 1

int stateID = ActiveStateIDList[tid];

float res = compute_result(tid);

int valueAtState =

atomicMax(&(destStateProb[stateID]), res);

Parasians, LLC – Business Accelerated

Challenge 4: Global Queue Contention
 Parallel construction of a shared queue while avoiding sequential bottlenecks when atomically

accessing queue control variables

 When many threads are trying to insert tasks into a global task queue, significant serialization occurs at the
point of the queue control variables

27

T0 T1 T2 Tn…

Multiprocessor 0

T0 T1 T2 Tn…

Multiprocessor m

…

Global Task Queue

…

Q Head Ptr Q size

September 23, 2010

Parasians, LLC – Business Accelerated

Solution 4: Hybrid Global/Local Queue
 Use of hybrid local/global atomic operations and local buffers for the construction of a shared global

queue to avoid sequential bottlenecks in accessing global queue control variables

 By using hybrid global/local queues, the single point of serialization is eliminate

 Each multiprocessor can build
up its local queue using local
atomic operations, which have
lower latency than the global
atomic operations

 The writes to the shared
global queue are performed
in one batch process, and thus
are significantly more efficient

28

T0 T1 T2 Tn…

Multiprocessor 0

T0 T1 T2 Tn…

Multiprocessor m

…

Global Task Queue

…

Q Head Ptr Q size

Local Task Queue

…

Q size Local Task Queue

…

Q Head Ptr Q sizeQ Head Ptr

September 23, 2010

Parasians, LLC – Business Accelerated

Solution 4: Hybrid Global/Local Queue

September 23, 2010 29

// Local Q: shared memory data structure

// −−−

extern shared int sh_mem[];

int ∗myQ = (int ∗) sh_mem; // memory for local Q

shared int myQ_head, globalQ_index; // Queue Ctrl Variables

if(threadIdx.x==0){ myQ_head = 0;} syncthreads();

// Constructing the queue content in Local Q

// −−−

int tid = blockIdx.x∗blockDim.x + threadIdx.x;

if(tid<nStates) {

int stateID = ActiveStateIDList[tid];

float res = compute_result(tid);

if (res < pruneThreshold) {res = FLTMIN;}

else {

//if res is more likely than threshhold, then keep

int valueAtState =

atomicMax(&(destStateProb [stateID]) , res);

// If no duplicate, add to local Q

if (valueAtState == INIT_VALUE) {

int head=atomicAdd(&myQ_head ,1) ;

myQ[head] = stateID ;

}

}

// Local Q −> Global Q transfer

// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

syncthreads ();

if (threadIdx.x==0) {

globalQ_index =

atomicAdd(stateHeadPtr , myQ head);

}

syncthreads ();

if (threadIdx.x<myQhead)

destStateQ [globalQ_index+threadIdx.x] =

myQ[threadIdx . x] ;

} // end if(tid<nStates)

Parasians, LLC – Business Accelerated

Solution 4: Hybrid Global/Local Queue

September 23, 2010 30

// Local Q: shared memory data structure

// −−−

extern shared int sh_mem[];

int ∗myQ = (int ∗) sh_mem; // memory for local Q

shared int myQ_head, globalQ_index; // Queue Ctrl Variables

if(threadIdx.x==0){ myQ_head = 0;} syncthreads();

// Constructing the queue content in Local Q

// −−−

int tid = blockIdx.x∗blockDim.x + threadIdx.x;

if(tid<nStates) {

int stateID = ActiveStateIDList[tid];

float res = compute_result(tid);

if (res < pruneThreshold) {res = FLTMIN;}

else {

//if res is more likely than threshhold, then keep

int valueAtState =

atomicMax(&(destStateProb [stateID]) , res);

// If no duplicate, add to local Q

if (valueAtState == INIT_VALUE) {

int head=atomicAdd(&myQ_head ,1) ;

myQ[head] = stateID ;

}

}

// Local Q −> Global Q transfer

// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

syncthreads ();

if (threadIdx.x==0) {

globalQ_index =

atomicAdd(stateHeadPtr , myQ head);

}

syncthreads ();

if (threadIdx.x<myQhead)

destStateQ [globalQ_index+threadIdx.x] =

myQ[threadIdx . x] ;

} // end if(tid<nStates)

Parasians, LLC – Business Accelerated

Four Main Techniques for the GPU
1. Constructing efficient dynamic vector data structures to handle irregular graph traversals

2. Implementing an efficient find-unique function to eliminate redundant work by leveraging the GPU
global memory write-conflict-resolution policy

3. Implementing lock-free accesses of a shared map leveraging advanced GPU atomic operations to
enable conflict-free reduction

4. Using hybrid local/global atomic operations and local buffers for the construction of a global queue
to avoid sequential bottlenecks in accessing global queue control variables

September 23, 2010 31

Jike Chong, Ekaterina Gonina, Kurt Keutzer, “Efficient Automatic Speech Recognition on the GPU”, accepted book chapter in GPU Computing Gems, Vol. 1.

Parasians, LLC – Business Accelerated

Parallel Software Development
 Industry best practice:

 Requires both application domain
expertise and parallel programming
expertise

 Severely limits the proliferation of
highly parallel microprocessors

September 23, 2010 32

Specify

Architect

Implement

• Evaluate legal transformations

• Prototype potential bottlenecks

• Specify data types and APIs

• Implement functions

• Define and deploy unit tests

• Verify performance goals

Artifacts

Application
Domain
Expert

Expert
Parallel

Programmer

Application
Domain
Expert

Expert
Parallel

Programmer

End-user
Applicatio

n

Parallel
Software

Development Process

• Describe application characteristics

• Expose parallelization opportunities

• Define invariants

Expertise Required

Parallel Application Development

Parasians, LLC – Business Accelerated

Parallel Software Development
 Industry best practice with

assistance from Application
Frameworks:

 Parallel programming expertise
encapsulated in application
framework

 Application domain expertise
alone is sufficient to utilize
highly parallel microprocessors

September 23, 2010 33

Specify

Match

Customize

• Select application frameworks

• Check potential bottlenecks

• Understand data types and APIs

• Implement isolated functions

• Use unit tests to test correctness

• Verify performance goals

Application
Domain
Expert

Application
Domain
Expert

Parallel
Software

Development Process

• Describe application characteristics

• Expose parallelization opportunities

• Define invariants

Expertise

Required

Application
Domain
Expert

End-user
Application

Assisted Parallel Application Development Flow

Architecture

Narrative

Implementation

Support

• Reference

Design

• Extension

Points with

Plug-in

examples

Parallel
Frameworks

• Application

Context

• Software

Architecture

Parasians, LLC – Business Accelerated

Four Components of an Application Framework
 Application Context

 A description of the application characteristics and requirements that exposes parallelization opportunities
independent of the implementation platform

 Software Architecture

 A hierarchical composition of parallel programming patterns that assists in navigating the reference
implementation

 Reference Implementation

 A fully functional, efficient sample design of the application demonstrating how application components are
implemented, and how they can be integrated

 Extension Points

 Interfaces for creating families of functions that extend framework capabilities

34

Application Context Software Architecture
Reference

Implementation
Extension

Points

Parasians, LLC – Business Accelerated

Application Framework for Deployment

September 23, 2010 35

Read Files

Initialize data structures

CPU

GPU

Backtrack

Output Results

Phase 0

Phase 1

Compute Observation Probability

Phase 2

Graph Traversal

Save

Backtrack Log

Collect

Backtrack Info

Prepare ActiveSet

Iteration Control

File Input

Pruning Strategy

Observation Probability Computation

Result Output

Fixed Beam Width

Adaptive Beam Width

HMM HTK GPU ObsProb

HMM SRI GPU ObsProb

CHMM GPU ObsProb

HTK HResult format

SRI Scoring format

Framework Plug-in

HTK Format

SRI Format

Key:

CHMM Format

CHMM Scoring format

Parasians, LLC – Business Accelerated

Application Framework Accomplishment

September 23, 2010 36

Read Files

Initialize data structures

CPU

GPU

Backtrack

Output Results

Phase 0

Phase 1

Compute Observation Probability

Phase 2

Graph Traversal

Save

Backtrack Log

Collect

Backtrack Info

Prepare ActiveSet

Iteration Control Fixed Beam Width

CHMM GPU ObsProb

CHMM Format

CHMM Scoring format

Prof. Dorothea Kolossa
Speech Application Domain Expert
Technische Universität Berlin

Extended audio-only speech recognition framework to enable
audio-visual speech recognition (lip reading)

Achieved a 20x speedup in application
performance compared to a sequential
version in C++

The application framework enabled a
Matlab/Java programmer to effectively
utilize highly parallel platform

Dorothea Kolossa, Jike Chong, Steffen Zeiler, Kurt Keutzer, “Efficient Manycore CHMM
Speech Recognition for Audiovisual and Multistream Data”, Accepted at Interspeech 2010.

Parasians, LLC – Business Accelerated

Key Lessons
 Speech recognition application has many

levels of concurrency

 Amenable for order of magnitude
acceleration on highly parallel platforms

 Fastest algorithm style differed for different
HW platforms

 Exploiting these levels of concurrency on HW
platforms requires multiple areas of expertise

September 23, 2010 37

 Parallel computation is proliferating from servers to workstations to laptops and portable devices

 increasing demand for adapting business and consumer applications to specific usage scenarios

 Application frameworks for parallel programming are expected to become an important force for
incorporating hardware accelerators

 Application frameworks help application domain
experts effectively utilize highly parallel
Microprocessors

 Case study with an ASR application framework has
enabled a Matlab/Java programmer to achieve 20x
speedup in her application

 Effective approach for transferring tacit knowledge
about efficient, highly parallel software design for use
by application domain experts

Parasians, LLC – Business Accelerated

Backup Slides

September 23, 2010 38

Parasians, LLC – Business Accelerated

Audio Processing Poster: C01

September 23, 2010 39

Parasians, LLC – Business Accelerated

Audio Processing Processing: C02

September 23, 2010 40

Parasians, LLC – Business Accelerated

Programming Language & Techniques: R01

September 23, 2010 41

