‘_é

Efficient Automatic
Speech Recognition on the GPU

[echnology Conference
September 23, 2010

Jike Chong

incipal Architect
Parasians, LLC

.

“Speaker: Jike Chong

Principal Architect, Parasians LLC

e Help clients in compute-intensive industries achieve revolutionary performance on applications directly
affecting revenue/cost with highly parallel computing platforms

e Sample project: deployed speech inference engine for call centers analytics

Ph.D. Researcher, University of California, Berkeley
e Focusing on speech recognition and computational finance

e Built an application framework that allows speech researchers to effectively develop applications on systems
with HW accelerators

Relevant prior experience:
e Sun Microsystems Inc: Micro-architecture design of the flagship T2 processor
e Intel, Corp: Optimization of kernels on new MIC processors
e Xilinx, Inc: Design of application specific multi-ported memory controller

Parasians, LLC - Business Accelerated September 23, 2010

Automatic Speech Recognition

—

Voice Input Recognition Output

I

* Allows multimedia content to be transcribed from acoustic waveforms to word sequences

r eh k ax g n ay z ' s P iy ch
Recognize Speech

* Emerging commercial usage scenarios in customer call centers
e Search recorded content
e Track service quality

e Provide early detection of service issues

Parasians, LLC - Business Accelerated September 23, 2010 3

Accelerating Speech Recognition

Decoding Time per Second of Speech [sec]
0.0 1.0 2.0 3.0 4.0

17.3% Communication Intensive

Multicore -:l 3.4x 0.925 e 79.1% Compute Intensive

20.9% Communication Intensive
Manycore F] 10.5x 0.302 D
(RTF)

Kisun You, Jike Chong, et al, “Parallel Scalability in Speech Recognition: Inference engine in large vocabulary continuous speech recognition”, IEEE Signal Processing Magazine, vol. 26, no.
6, pp. 124-135, November 2009.

49.0% Compute Intensive
51.0% Communication Intensive

Demonstrated that speech recognition is amenable to acceleration
e Fastest algorithm style differed for each platform

Both application domain expertise and hardware architecture expertise required to fully exploit
acceleration opportunities in an application

Parasians, LLC - Business Accelerated September 23, 2010 4

/Amatic Speech Recognition

Speech Application Characteristics Four Challenges and Solutions for Efficient GPU

e Typical input/output data types Implementation

e Working set sizes e Handling irregular graph structure

e Modules and their inter-dependences e Efficiently implementing “memoization

e Implementing conflict free reduction

T N e Parallel construction of global task queues
Four Parallelization Opportunities

e Over speech segments

. O b e An Application Framework for Domain experts

e Allowing Java/Matlab programmer to get 20x speedup

e Over phases in each time step using GPUs

e Qver alternative interpretations

Parasians, LLC - Business Accelerated September 23, 2010

Automatic Speech Recognition

,—F'-__'-l-.__.-__--"
Voice r eh k ax g n ay =z 's p iy «ch
Input Recognize Speech
» r e k ‘ax (g)'' n ay (z) s ‘(b)) iy ch
Wreck a nice beach
'—._-.--'hl-—-l’

r eh k ax (g) n '‘ay =z (s)'p 1iy «ch

Reckon eyes peach

Challenges:
e Recognizing words from a large vocabulary arranged in exponentially many possible permutations
e Inferring word boundaries from the context of neighboring words

Hidden Markov Model (HMM) based approach is the most successful

Parasians, LLC - Business Accelerated September 23, 2010 6

_

Automatic Speech Recognition

The Hidden Markov Model approach views utterances as following the Markov Process

e Utterances are sequences of phones produced by a speaker

e Markov Process describes sequence of possibly dependent random variables where any prediction of the
next value (x,), is based on (x,_,) alone

« Sometime described as a memoryless model
» Flexibly represents any utterances that can be said

« Use discrete random variables to represent the states in models of languages

OO OLOLOLOLOLOLOLOLOL0)

Recognize Speech

Parasians, LLC - Business Accelerated September 23, 2010

M’

Automatic Speech Recognition

* In the Hidden Markov Model, states are hidden, because phones are indirectly observed

* One must infer the most likely interpretation of the waveform while taking the model of the
underlying language into account

e e e

O--0-6-0-0-0-0-0-0-0-6

Recognize Speech

Parasians, LLC - Business Accelerated September 23, 2010 8

md Algorithm

Recognition Network

Acoustic Pronunciation Language
Model Model Model
Voice Speech Word
Feature O . think
Extractor (. Engme therefore
: I am
O

Inference engine based system
e Used in Sphinx (CMU, USA), HTK (Cambridge, UK), and Julius (CSRC, Japan)

Modular and flexible setup
e Shown to be effective for Arabic, English, Japanese, and Mandarin

Parasians, LLC - Business Accelerated September 23, 2010 9

md Algorithm

Features
from one
frame

—

Parasians, LLC - Business Accelerated

Gaussian Mixture Model
for One Phone State

Mixture Components
Computing D D D D D
distance to DDDD D
each mixture DDDD D
components oo :
0000 -0
L 2R 2R 2B 4

Computing
weighted sum
of all components

HMM Acoustic
Phone Model

e

WFST Recognition Network

September 23, 2010

Pronunciation Model

HOP hhaa p
ON aan
POP paap
Bigram
Language Model
g : Eé : CZ)§ : E

N

*

POF

.t

10

/Amtion Context

Speech inference uses the Viterbi algorithm
e Evaluate one observation at a time

» based on 10ms window of acoustic waveform
e Computing the state with three components

e Observation
probability

e Transition
probability

e Prior likelihood

Parasians, LLC - Business Accelerated

Recognition Network

Pronunciation
Model

Language
Model

Voice ?peech Word
Input Speech eatures |nference Sequence
Feature a .
Extractor Engine v
N ’Iam\’
1. Forward Pass
mlt][s;] = max mt —1][s,—1] - P(s¢|s;—1) - P(x¢|s¢)
Obs 1 Obs 2 Obs 3 Obs 4 Si—1
Observations ‘ \ RN >
Time L ds:
State 1 O egendas.
O A State O A Pruned State An Observation

State 2
Speech O

State 3
Model O

States - "
State N O

2. Backward Pass

®
o
¢

Sy P(thst) \ P(Stlst-l) ‘ m [t][st] e m [t'l][st-l]

Model size for a WFST language model

states: 4 million, # arcs: 10 million, # observations: 100/sec

Average # active states per time step: 10,000 — 20,000

September 23, 2010

11

Acceleration Opportunity

* Concurrency over speech segments

(1)

“1 gy

Obs 1
% " Observalions
e Multiple inference rime .. ."ﬁ\
ShbiRa Workine on Voice Input Recognition Network state1 () o Q
: g g A&c:)u;gilc Prorll;:g;iealtion Spesch State 2 O d O
different segments -) vocer 5323 O Cﬁ ; O
Of SpeeCh 4/ Obs 1 Obs2 Obs3 Obsd TI_\ slates SI;M N O d D]
Obsarvalions . . .\} . j
s Tirmea i Sequence
e Shared recognition > - swet O O #/1 O I think PO
_ State 2 O - d .I O :herefore
network P s O | SO an Y
Madet H H H :rr"J H Obs 1 Obs2 Obs3d Obsd _ |
Stales State N O d O t:::'warmns . . ,’ .
: S State1 ()
) ..-. 8 Speech stata2 ()
_ D Modad SI—.:da:l {-:)
Stales State N O
Speech
sgna Sequence P(k)
) Processing (m] ﬁ I think
- Module 0 therefore
d I am
e —_——

Parasians, LLC - Business Accelerated September 23, 2010

m Concurrency to GPUs (1)

® Concurrency among speech utterances is the low hanging fruit
e Can be exploited over multiple processors

e Complementary to the more challenging fine-grained concurrency

* However, exploiting it among cores and

vector lanes is not practical Voice Ingut Recognition Network _
e ey e B | el |
e Local scratch-space not big enough HH =
. S, signal Inference &"Tm_:' PO
e Access to global memory is shared . e Engine e
e Significant memory bandwidth - Ha
; = Frocesaing o P1
required - - o
N - Pk

Parasians, LLC - Business Accelerated September 23, 2010

13

{eleration Opportunity (2)

Concurrency over forward pass and backward pass
of the Viterbi algorithm

e Pipelining two parts of the algorithm by ’V\’
operating on different segments of speech input

FP BP

FP BP

FP BP

Parasians, LLC - Business Accelerated September 23, 2010

Speech

Feature
Extractor

Recognition Network

Pronunciation
Model

Language
Model

’\’

Speech
Features

Inference

Engine

e —

Word
Sequence

I think
therefor

I am

Observations

Time

States

State 1 O
State 2
Speech O

State 3
Model O

State N ()

UbsS S

Ubls 4

2. Backward Pass

14

pring Concurrency to GPUs (2)

Concurrency among forward and backward passes is exploitable
e To effectively pipeline, stages should be balanced

Forward Pass: >99% of execution time
Backward Pass: <1% of execution time

Exploiting it will not result in appreciable performance gain 1. Forward Pass |

UbDs 1 UbDsS £ UbsS S5 Ubs 4

Observations .
X

Time

State 1 O
State 2
Speech O

State 3
Model O

States

State N ()

2. Backward Pass |

Parasians, LLC - Business Accelerated September 23, 2010 15

{eleration Opportunity (3)

® Concurrency over each algorithm phase
in the forward pass of each time step

e Phase 1: compute intensive

e Phase 2: communication intensive

Voice
Input

¥y

Inference Engine: Beam Search with Graph Traversal

Iterative through inputs
one time step at a time

Phase 2

N
In each iteration,

perform beam search
algorithm steps

Phase 1: Computation
Intensive

Phase 2: Communication
Intensive

S

Parasians, LLC - Business Accelerated

September 23, 2010

Speech

Feature
Extractor

Recognition Network

Acoustic Pronunciation Language
Model Model Model
f_’ N
Speech Word
Features
5 Inference Sequence
g Engine thezetor
b I am
1. Forward Pass
Obs 1 Obsp Obs3 IObs 4
Observations
X X
_] O
Time 1

State 1 O
State 2
Speech O

State 3
Model O

States " -
State N O

2. Backward Pass

Q--OQO E

. —
S_——— =

~

‘0.0 9

Od:

OO0 00

16

mng Concurrency to GPUs (3)

Concurrency among Phase 1 (compute intensive phase) and Phase 2 (communication intensive phase)

is exploitable

e |n the parallelized version, the two phases have similar execution times

However, transferring data between the two phases may be a bottleneck

e Bottleneck observed when
o Phase 1 = (CPU)? (GPU)?
» Phase 2 = (CPU)? (GPU)?

Parasians, LLC - Business Accelerated

September 23, 2010

1. Forward Pass

Obs 1
Observations .
X

Time

State 1 O
State 2
Speech O

State 3
Model O

States

State N O

2. Backward Pass

Obs

Q--OQO E

17

Mapping Concurrency to GPUs (3)

GPU

CPU

Cardinal, Patrick, Dumouchel,

Pierre, Boulianne, Gilles, Read Files
Comeau, Michel (2008): U
- (IEPhU accelerated facmf‘stlc e CEiE
ikelihood computations", In ST
INTERSPEECH-2008, 964-967. ——-—-IF
Phase 0

Iteration Control

W
Phase 1

Compute
Observation
Probability

Phase 2

Graph Traversal

Collect

Backtrack Info

| Backtrack |
J

h 4

| Output Results |

Parasians, LLC - Business Accelerated

GPU

CPU

P. R. Dixon, T. Oonishi, and S. Furui.

Harnessing graphics processors for the Read Files
fast computation of acoustic likelihoods ¥
in speech recognition. Comput. Speech Initialize data
Lang., 23(4):510-526, 2009. ISSN 0885- structures
2308.4625(2):450-463, 2008.
Compute
Observation
,,,,, Probability
v
Phase 0

Iteration Control

v 72
S Phase 2
Graph Traversal
,,,,, Compute S ——
Observation Collect
Probability Backtrack Info

| Backtrack |
v

h 4

| Output Results |

September 23, 2010

GPU

CPU

Read Files

v

Initialize data
structures
I

rﬁ _— — _— — _— —

7
Phase O

Iteration Control

Jike Chong, Ekaterina Gonina,
Youngmin Yi, Kurt Keutzer, “A
Fully Data Parallel WEST-

Prepare ActiveSet

based Large Vocabulary
Continuous Speech

S Recognition on a Graphics
| Phase 1 Processing Unit”, Proceeding
Compute Observation of the 10th Annual
| Probability Conference of the

" International Speech--

Communication Association

Phase 2
I (InterSpeech), page 1183 —
I Graph Traversal 1186, September, 2009.
I Save Collect
I Backtrack Log Backtrack Info
*
—_— _— —_— _— —_— | YW
| Backtrack |
v
| Output Results |

18

{eleration Opportunity (4)

Concurrency over alternative interpretations
of the utterance within each algorithm step

e Computing the state with three components

o Observation
probability

e Transition
probability

e Prior likelihood

Parasians, LLC - Business Accelerated

Voice
Input

Speech

Feature
Extractor

Recognition Network

Inference Engine: Beam Search with Graph Traversal

Iterative through inputs
W one time step at atime
[)
In each iteration,
perform beam
search algorithm
consider

= -ii
alternative

step,
interpretations

Acoustic Pronunciation Language
Model Model Model
’\/ ’_/
Speech Word
Features Inference Sequence
0 . .
0 Engine L
b i am
1. Forward Pass
Obs 1 Obs2 Obs3 Obs4
Observations
_ B,
Time i
\4a \
State 1 1!
O QO)0
State 2 d [:
Speech O e -
State 3 d
Model O O
States - ,‘ "
suteN O 31 6

2. Backward Pass

September 23, 2010

19

.

“Mapping Concurrency to GPUs (4)

Concurrency among alternative interpretations is abundant
e 10,000s alternative interpretations tracked per time step

e Well matched to the architecture of the GPU

With the concurrency, comes many challenges...

1. Eliminating redundant work by implementing parallel
“memoization”

2. Handling irregular graph structures with data parallel operations
3. Conflict-free reduction in graph traversal to resolve write-conflicts

4. Parallel construction of a task queue while avoiding sequential
bottlenecks at queue control variables

Parasians, LLC - Business Accelerated September 23, 2010

1. Forward Pass

Obs 1 Obs2 Obs3 Obs4

-Cr)itr:,eervatlons “7?*\

Statel () O "j ::\l @

Speech state 2 () e/ d"": s

wae 52 Q QG Q
. . .,

States St.ate \ Q " d -

2. Backward Pass

20

mge 1:

Eliminating redundant work when threads are
computing results for an unpredictable subset of the

problems based on input

e Only 20% of the triphone states are used for
observation probability computation

e Many duplicate labels

* In sequential execution,
memoization is used to
avoid redundancy

e What do we do on
data-parallel platforms?

Real Time Factor shows the
number of seconds required to
process one second of input data

Parasians, LLC - Business Accelerated

Real Time Factor for
' 19 Observation Probability

—Computation———

0.709

All encounterd All unique Encountered
labels labels unique labels
1. Forward Pass
mlt][s,] = max mlt —1][s,—1] P(s¢|s;—1) - P(x;]s;)
Obs 1 Obs2 Obs3 Obs4 Sr—1
Observations RN
_ B, * e .
Time nd
State 1 ¥ i Legends:
atel () o O .
n O A State O A Pruned State An Observation
Speech State 2 O d’, : O
Model State 3 () d I:' O -+, P(xdst) S P(ss..) @ mItsi] @ mIlt-11[s.4]
ode ,
St =S Model size for a WFST language model
ales
State N O O # states: 4 million, # arcs: 10 million, # observations: 100/sec

2. Backward Pass

Average # active states per time step: 10,000 — 20,000

September 23, 2010

21

Solution 1:

Implement efficient find-unique function by leveraging Traditional Approach
the GPU global memory write-conflict-resolution policy

Alternative Approach

' S List Sorting Hash insertion
e Leverage the semantics of conflicting
non-atomic write to use the hash table as a flag array Sort (0.310) Hash write (0.030)
e CUDA guarantees at least one conflicting write to a device
memory location to be successful, which is enough to build Duplicate Removal Duplicate Removal
a ﬂag alfay Cluster-boundary
e The alternative “Hash Insertion” step greatly simplifies the Detection (0.007)
ﬁnd'unique Operation Unigque-index Unique-index
Prefix-scan (0.025) Prefix-scan (0.020)
Unique-list Unique-list
Gathering (0.007) Gathering (0.005)
Real Time Factor: 0.349 Real Time Factor: 0.055

Parasians, LLC - Business Accelerated September 23, 2010

/Cm}ge 2:

Handling irregular data structures
with data-parallel operations

e Forward pass: 1,000s to 10,000s of
concurrent tasks represent most
likely alternative interpretations of
the input being tracked

e To track: reference selected subset of

a sparse irregular graph structure \ /

e The concurrent access of irregular
data structure requires “uncoalesced”
memory accesses in the middle of
important algorithm steps, which
degrades performance

Parasians, LLC - Business Accelerated

Gaussian Mixture Model
for One Phone State

Mixture Components
Computing DDD D
distance to DDDD
each mixture DDD D
components :

0000 -

L 20 2R 2

Computing
weighted sum
of all components

«0-- 000

O

HMM Acoustic
Phone Model

R ocos
w3,

WFST Recognition Network

September 23, 2010

Pronunciation Model

HOP hhaap

ON aan

POP paap

Bigram
Language Model

[
2 .25,
O T IT =

.2
: O

a
o .
a

THE

CAT]

HAT

HOR

IN

ON

POHR

g

s

23

SOIUtiOn 2: Manycore GPU CPU

Data Control Control Data
® Construct efficient dynamic vector data 2
v % 3 (s
structure to handle irregular data accesses \g“&\%\%@\ R \’%f%
® C
: 3 : i Initialize data
e Instantiate a Phase 0 in the implementation to W | W Sructures
gather all operands necessary for the current : i :
time step of the algorithm Phase 0 I
I Iteration Control I
e Caching them in a memory-coalesced runtime wlRr I Prepare ActiveSet I
data structure allows any uncoalesced accesses || S —— I
to happen only once for each time step I Phased :
R R Compute Obgervanon
I Probability
W I —_—— |
| Phase 2 I
R R I Graph Traversal I
o I
R I Save | IR Collect Wi
I Backtrack Log Backtrack Info
W I
R v v | Baclgrack | VT/
| Output Results | R

Parasians, LLC - Business Accelerated September 23, 2010 24

mge 3:

Conflict-free reduction in graph traversal to implement the Viterbi beam-search algorithm

e During graph traversal, active
states are being processed by
parallel threads on different cores

e Write-conflicts frequently arise
when threads are trying to update
the same destination states

To further complicate things, in statistical inference, we would
like to only keep the most likely result

e Efficiently resolving these write conflicts while keeping just
the most likely result for each state is essential for achieving good

performance

Parasians, LLC - Business Accelerated September 23, 2010

Thread:2/ v o —o carc
== NON € arc

Q Active state Inactive state
(contains a token) (contains no token)

A section of a
Weighed Finite State Transducer Network

23

s
Solution 3:

Implement lock-free accesses of a shared map leveraging advanced GPU atomic operations to enable
conflict-free reductions

CUDA offers atomic operations with various flavors of arithmetic operations

The “atomicMax” operation is ideal for statistical inference Phiead Ovooininii

Final result in each atomically accessed memory location
will be the maximum of all results that was attempted to
be written to that memory location

atomicMax(address, val);

This type of access is lock-free from the software perspective, Mem
as the write-conflict resolution is performed by hardware

Atomically writing results
in to a memory location is int statelID = ActiveStatelDList[tid];

float res = compute_result(tid);
int valueAtState =
atomicMax(&(destStateProb[statelD]), res);

a process of reduction, hence,
this is a conflict-free reduction

Parasians, LLC - Business Accelerated September 23, 2010 26

Challenge 4: Global Queue Contention

* Parallel construction of a shared queue while avoiding sequential bottlenecks when atomically
accessing queue control variables

e When many threads are trying to insert tasks into a global task queue, significant serialization occurs at the
point of the queue control variables

Multiprocessor 0 Multiprocessor m

Q Head Ptr Q size Global Task Queue

Parasians, LLC - Business Accelerated September 23, 2010 P17

mn 4: Hybrid Global/Local Queue

Use of hybrid local/global atomic operations and local buffers for the construction of a shared global
gueue to avoid sequential bottlenecks in accessing global queue control variables

e By using hybrid global/local queues, the single point of serialization is eliminate

e Each multiprocessor can build
up its local queue using local
atomic operations, which have R R I T S A R R ST A U O B O
lower latency than the global | ' ' ' Snnsuesn)] wassnse) weapenen) | sspeses

Multiprocessor 0 Multiprocessor m

atomlc Operatlons IQHeadPtr ” Qsize I Local Task Queue I QHead Ptr II Qsize I Local Task Queue
: (1t 1ttt 1 1111116171
e The writes to the shared —
global queue are performed \/
in on.e b.a.tch process, anc.l t.hus — — Global Task Queve
are significantly more efficient

Parasians, LLC - Business Accelerated September 23, 2010 28

i
= = .
[]
olution 4: Hybrid Global/Local Queue

// Local Q: shared memory data structure // Local Q —> Global Q transfer

T S e e omiatadra oo pabaod apiatades bt bartos skt ooty

extern shared int sh_mem[]; syncthreads ();

int xmyQ = (int *) sh_mem; /[memory for local Q if (threadldx.x==0) {

shared int myQ_head, globalQ_index; // Queue Ctrl Variables globalQ_index =

if(threadldx.x==0){ myQ head = 0;} syncthreads(); atomicAdd(stateHeadPtr , myQ head);

}

I/l Constructing the queue content in Local Q syncthreads ();

G A o o e vy if (threadldx.x<myQhead)

int tid = blockldx.xxblockDim.x + threadldx.x; destStateQ [globalQ_index+threadldx.x] =

if(tid<nStates) { myQ[threadldx . x] ;

int statelD = ActiveStatelDList[tid]; } /I end if(tid<nStates)

float res = compute_result(tid);
if (res < pruneThreshold) {res = FLTMIN;}
else {
/lif res is more likely than threshhold, then keep
int valueAtState =
atomicMax(&(destStateProb [statelD]) , res);
// If no duplicate, add to local Q
if (valueAtState == INIT_VALUE) {
int head=atomicAdd(&myQ head ,1);
myQJ head] = statelD ;

}
}

Parasians, LLC - Business Accelerated September 23, 2010

mn 4: Hybrid Global/Local Queue

// Local Q: shared memory data struct

extern shared int sh_mem[];

int *myQ = (int *) sh_mem; Il mq
shared int myQ_head, globalQ inde
if(threadldx.x==0){ myQ head =0;} s

/l Constructing the queue content in L

int tid = blockldx.x*blockDim.x + threa
if(tid<nStates) {
int statelD = ActiveStatelDList][tid];
float res = compute_result(tid);
if (res < pruneThreshold) {res = FLTI
else {
/lif res is more likely than threshholi
int valueAtState =
atomicMax(&(destStateProb |
/I If no duplicate, add to local Q
if (valueAtState == INIT_VALUE) {
int head=atomicAdd(&myQ head
myQ[head] = statelD ;

}
}

Parasians, LLC - Business Accelerated

Total Synchronization Cost [sec)

35

3

25

2

1.5

1

0.5

Global Cluesue|

~,» myQ head);

ex+threadldx.x] =

0 20 40 b0 a0 100
Mumber of Arcs Synchronized [Millions of Arcs)

September 23, 2010 30

e Yy

// ° ° |
our Main Techniques for the GPU

Constructing efficient dynamic vector data structures to handle irreqular graph traversals

Implementing an efficient find-unique function to eliminate redundant work by leveraging the GPU
global memory write-conflict-resolution policy

Implementing lock-free accesses of a shared map leveraging advanced GPU atomic operations to
enable conflict-free reduction

Using hybrid local/global atomic operations and local buffers for the construction of a global queue
to avoid sequential bottlenecks in accessing global queue control variables

Jike Chong, Ekaterina Gonina, Kurt Keutzer, “Efficient Automatic Speech Recognition on the GPU”, accepted book chapter in GPU Computing Gems, Vol. 1.

Parasians, LLC - Business Accelerated September 23, 2010 31

~ Parallel Software Development

* Industry best practice:

: : : . End-user :
e Requires both application domain Applicatio

expertise and parallel programmin n v
P ; P prog & Parallel Application Development
L e B R oo
e Severely limits the proliferation of » Describe apr;:lclatlon characteristics £ |
A A » Expose parallelization opportunities Application
h|gh|y paraIIeI MICroprocessors « Define invariants Domain :
Expert .
o\ i
+ Evaluate legal transformations & & |
* Prototype potential bottlenecks Application Expert !
+ Specify data types and APIs Domain Parallel
Expert Programmer!
Parallel : i p: Implement functions A
S { » Define and deploy unit tests Expert
Software ' + Verify performance goals Parallel
Programmer :
Artifacts Development Process Expertise Required

Parasians, LLC - Business Accelerated September 23, 2010 32

Parallel Software Development

Industry best practice with
assistance from Application
Frameworks:

e Parallel programming expertise
encapsulated in application
framework

e Application domain expertise
alone is sufficient to utilize
highly parallel microprocessors

Parasians, LLC - Business Accelerated

Parallel

Frameworks

Application
Context

Software
Architecture

Reference
Design

Extension
Points with
Plug-in
examples

Architecture

Narrative

Implementation

Support

September 23, 2010

End-user
Application

Assisted Parallel Application Development Flow

Parallel \

Describe application characteristics

£

Expose parallelization opportunities Application

* Define invariants

» Select application frameworks
» Check potential bottlenecks
» Understand data types and APIs

* Implement isolated functions
+ Use unit tests to test correctness
+ Verify performance goals

Development Process

Domain
Expert
£
Application
Domain
Expert

-~
£
Application
Domain

Expertise
Required

33

s —
Four Components of an Application Framework

Application Context

e A description of the application characteristics and requirements that exposes parallelization opportunities
independent of the implementation platform

Software Architecture

e A hierarchical composition of parallel programming patterns that assists in navigating the reference
implementation

Reference Implementation

o A fully functional, efficient sample design of the application demonstrating how application components are
implemented, and how they can be integrated

Extension Points

* Interfaces for creating families of functions that extend framework capabilities

Reference Extension

Application Context Software Architecture IR o Points

Parasians, LLC - Business Accelerated

34

Application Framework for Deployment

Read Files | File Input I: HTK Format
G P U v D SRI Format
Initialize data structures I: CHMM Eormat
. |
¥ W
Phase 0 C P U . C Fixed Beam Width
Iteration Control < Prunmg Strategy
C Adaptive Beam Width
Prepare ActiveSet
|
v HMM HTK GPU ObsProb
]
Phase 1
Compute Observation Probability | Observation Probability Computation | _ HMM SRI GPU ObsProb
— [CHMM GPU ObsProb
ase 2 Lt
Graph Traversal
Key: Framework ¢ | <] Plug-in
Save N Collect
Backtrack Log . Backtrack Info
— 5 (. HTK HResult format
y
| Backtrack | (. SRI Scoring format
v
| ouputResuts | L I Result Output (. CHMM Scoring format

Parasians, LLC - Business Accelerated September 23, 2010

Application Framework Accomplishment

‘ Read Files I: CHMM Format
DIl | 1
Initialize data structures

Prof. Dorothea Kolossa I

Speech Application Domain Expert ' CPU

Technische Universitat Berlin C Fixed Beam Width
Extended audio-only speech recognition framework to enable
audio-visual speech recognition (lip reading) :

|: CHMM GPU ObsProb

Achieved a 20x speedup in application
performance compared to a sequential
version in C++

The application framework enabled a
Matlab/Java programmer to effectively

Collect
Backtrack Info
o

utilize highly parallel platform il =
Dorothea Kolossa, Jike Chong, Steffen Zeiler, Kurt Keutzer, “Efficient Manycore CHMM | Backtrack |
Speech Recognition for Audiovisual and Multistream Data”, Accepted at Interspeech 2010. 2)
| Output Results 1 CHMM Scoring format

Parasians, LLC - Business Accelerated September 23, 2010 36

T i
= :
“Key L
Speech recognition application has many Application frameworks help application domain
levels of concurrency experts effectively utilize highly parallel
* Amenable for order of magnitude Microprocessors
acceleration on highly parallel platforms e Case study with an ASR application framework has
enabled a Matlab/Java programmer to achieve 20x
Fastest algorithm style differed for different speedup in her application
HW platforms o Effective approach for transferring tacit knowledge
e Exploiting these levels of concurrency on HW about efficient, highly parallel software design for use
platforms requires multiple areas of expertise by application domain experts

Parallel computation is proliferating from servers to workstations to laptops and portable devices
* increasing demand for adapting business and consumer applications to specific usage scenarios

Application frameworks for parallel programming are expected to become an important force for
incorporating hardware accelerators

Parasians, LLC - Business Accelerated September 23, 2010 37

Backup Slides

Parasians, LLC - Business Accelerated September 23, 2010 38

Poasertannnanaag
R G IR R R R R A R b R R R A PRSI~

Highly Parallel Platforms

© bochtactin st TE R BN ¥ :_, : oromnommnw:
.m.m-um.: V) W ALM Irrverses 22 rere SMLE tersidans
+ Doremng sumzens of cones wow \ han WesY
v ey | ! d S » O BTXEES, UM b ey

+ Locking at detalled bming:

* LM Vs 3 50 mose Beve Cragh
fbu—.n-u—lt

d.hmdulduuﬂlduu
Gatherrg 10N

h-tﬂqduhnnh-h«.

TEITTIIZna s

Speech Recognition
Inference Engine Characteristics
* Parallel graph traversal through Recognition networ

ot it oudio
-G gt A - >

s L2
.

. Wng L

* Implementation chatenges

W o ! kb ok of the erd of such

e el
Iwan i

e e 1
arese L -

Parasians, LLC - Business Accelerated September 23, 2010 39

‘Audio Processing Processing: C02

.-v»iJ' -

Automatic Speech

ion (ASR)

b e

=

Parasians, LLC - Business Accelerated

Solution 2:

by lovernging the GEU giokm rwemory

September 23, 2010

40

Programming Language & Techniques: RO1

The Four Components of an

The Parallel Programmi icati i
oty m:m m;'&f"" ng Application Framework for Parallel Programming

Streamlining Workflow with Guidance
from an Application Framework

Case Study with an Application
Domain Expert & 20x Application
Performance Improvement on GPU

Parasians, LLC - Business Accelerated September 23, 2010

41

