
© 2010 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Pixel Bender – Building a Domain Specific Language on the GPU
Bob Archer

1

© 2010 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Demo

 Twirl

 Radial blur

 Oil paint filter

 Droste

 Fade to black

 Mandelbulb

 Ray tracer

2

© 2010 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

What’s happening?

3

© 2010 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

What’s happening?

4

© 2010 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

What’s happening?

5

© 2010 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

What’s happening?

6

© 2010 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

What’s happening?

7

© 2010 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

What’s happening?

 3D system – OpenGL + OpenGL Shading Language

 Ignore all of the vertex processing features

 Draw one single polygon – rectangular, the size of the desired output

 Run a fragment shader that computes the desired output

 Fragments become square or rectangular pixels

8

© 2010 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.
9

Fragment shader programming model

Write a function that produces a single output

fragment

© 2010 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.
10

Pixel Bender programming model

Write a function that produces a single output

fragment pixel

© 2010 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.
11

Pixel Bender programming model

© 2010 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.
12

Pixel Bender programming model

© 2010 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.
13

Pixel Bender programming model

© 2010 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.
14

Pixel Bender programming model

© 2010 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Code walkthrough

<languageVersion : 1.0;>

kernel FadeToBlack

< namespace : "AIF test";

vendor : "Adobe";

version : 1;

description : "Fade out the image";

>

{

parameter float fade

<

minValue : 0.0;

maxValue: 1.0;

defaultValue : 1.0;

>;

input image4 src;

output pixel4 dst;

void

evaluatePixel()

{

dst = sampleNearest(src,outCoord());

dst.rgb *= fade;

}

}

© 2010 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Code walkthrough

kernel FadeToBlack

{

parameter float fade;

input image4 src;

output pixel4 dst;

void evaluatePixel()

{

dst = sampleNearest(src, outCoord());

dst.rgb *= fade;

}

}

© 2010 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Code walkthrough

kernel FadeToBlack

{

parameter float fade;

input image4 src;

output pixel4 dst;

void evaluatePixel()

{

dst = sampleNearest(src, outCoord());

dst.rgb *= fade;

}

}

© 2010 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Code walkthrough

kernel FadeToBlack

{

parameter float fade;

input image4 src;

output pixel4 dst;

void evaluatePixel()

{

dst = sampleNearest(src, outCoord());

dst.rgb *= fade;

}

}

© 2010 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Code walkthrough

kernel FadeToBlack

{

parameter float fade;

input image4 src;

output pixel4 dst;

void evaluatePixel()

{

dst = sampleNearest(src, outCoord());

dst.rgb *= fade;

}

}

© 2010 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Code walkthrough

kernel FadeToBlack

{

parameter float fade;

input image4 src;

output pixel4 dst;

void evaluatePixel()

{

dst = sampleNearest(src, outCoord());

dst.rgb *= fade;

}

}

© 2010 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Code walkthrough

kernel FadeToBlack

{

parameter float fade;

input image4 src;

output pixel4 dst;

void evaluatePixel()

{

dst = sampleNearest(src, outCoord());

dst.rgb *= fade;

}

}

© 2010 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Code walkthrough

kernel FadeToBlack

{

parameter float fade;

input image4 src;

output pixel4 dst;

void evaluatePixel()

{

dst = sampleNearest(src, outCoord());

dst.rgb *= fade;

}

}

© 2010 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Code walkthrough

kernel FadeToBlack

{

parameter float fade;

input image4 src;

output pixel4 dst;

void evaluatePixel()

{

dst = sampleNearest(src, outCoord());

dst.rgb *= fade;

}

}

© 2010 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Code walkthrough

kernel FadeToBlack

{

parameter float fade;

input image4 src;

output pixel4 dst;

void evaluatePixel()

{

dst = sampleNearest(src, outCoord());

dst.rgb *= fade;

}

}

© 2010 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Code walkthrough

kernel FadeToBlack

{

parameter float fade;

input image4 src;

output pixel4 dst;

void evaluatePixel()

{

dst = sampleNearest(src, outCoord());

dst.rgb *= fade;

}

}

© 2010 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

GLSL version of fade to black filter

#define _PROFILE_TILED

#define _PROFILE_NORMALIZED

uniform vec2 _outOffset;

uniform vec2 _outPixelExtent;

uniform float fade;

uniform sampler2D src_sampler;

uniform vec2 src_offset;

uniform vec2 src_delta;

vec4 temp_dst;

void main(void)

{

temp_dst = texture2D(src_sampler,

(gl_TexCoord[0].xy * _outPixelExtent + _outOffset - src_offset) * src_delta);

temp_dst.rgb *= fade;

gl_FragData[0] = temp_dst;

}

26

© 2010 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

GLSL version of fade to black filter

#define _PROFILE_TILED

#define _PROFILE_NORMALIZED

uniform vec2 _outOffset;

uniform vec2 _outPixelExtent;

uniform float fade;

uniform sampler2D src_sampler;

uniform vec2 src_offset;

uniform vec2 src_delta;

vec4 temp_dst;

void main(void)

{

temp_dst = texture2D(src_sampler,

(gl_TexCoord[0].xy * _outPixelExtent + _outOffset - src_offset) * src_delta);

temp_dst.rgb *= fade;

gl_FragData[0] = temp_dst;

}

27

© 2010 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Pixel Bender

 At first glance, it looks a lot like GLSL, but…

 Has many additions tuned towards image processing

 Non-square pixels

 Image offsets

 Graphs

 Per-frame operations (as opposed to per-pixel)

 Region reasoning

 Remove some of the 3D boilerplate (but add 2D boilerplate)

© 2010 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Graphs

29

© 2010 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Per-frame operations - evaluateDependents

kernel Twirl

{

parameter float radius_in;

parameter float2 center_in;

parameter float twirl_angle_in;

dependent float radius;

dependent float2 center;

dependent float twirl_angle;

void evaluateDependents()

{

radius = radius_in * 256.0;

center = center_in * 512.0;

twirl_angle = twirl_angle_in * 2.0 * PI;

}

void evaluatePixel() ...

30

© 2010 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Per-frame operations - evaluateDependents

kernel Twirl

{

parameter float radius_in;

parameter float2 center_in;

parameter float twirl_angle_in;

dependent float radius;

dependent float2 center;

dependent float twirl_angle;

void evaluateDependents()

{

radius = radius_in * 256.0;

center = center_in * 512.0;

twirl_angle = twirl_angle_in * 2.0 * PI;

}

void evaluatePixel() ...

31

© 2010 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Per-frame operations - evaluateDependents

kernel Twirl

{

parameter float radius_in;

parameter float2 center_in;

parameter float twirl_angle_in;

dependent float radius;

dependent float2 center;

dependent float twirl_angle;

void evaluateDependents()

{

radius = radius_in * 256.0;

center = center_in * 512.0;

twirl_angle = twirl_angle_in * 2.0 * PI;

}

void evaluatePixel() ...

32

© 2010 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Per-frame operations - evaluateDependents

kernel Twirl

{

parameter float radius_in;

parameter float2 center_in;

parameter float twirl_angle_in;

dependent float radius;

dependent float2 center;

dependent float twirl_angle;

void evaluateDependents()

{

radius = radius_in * 256.0;

center = center_in * 512.0;

twirl_angle = twirl_angle_in * 2.0 * PI;

}

void evaluatePixel() ...

33

© 2010 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Region reasoning

Region Reasoning

(aka “Reason Regioning”)

34

© 2010 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Region reasoning - changed

35

© 2010 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Region reasoning - changed

36

© 2010 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Region reasoning - needed

37

© 2010 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Region reasoning - needed

38

© 2010 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Region reasoning - generated

39

© 2010 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Region reasoning

 Changed

 I have changed this input region, what region of the output has changed?

 Needed

 I want this output region, what input regions do you need to have?

 Generated

 What output region are you going to give me without any other inputs?

40

© 2010 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

41

Region reasoning

 Domain of definition (DOD) – “what have you got?”

© 2010 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

42

Region reasoning

 Domain of definition (DOD) – “what have you got?”

 Region of interest (ROI) – “what do you want?”

© 2010 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

43

Region reasoning

 Domain of definition (DOD) – “what have you got?”

 Region of interest (ROI) – “what do you want?”

 ROI ∩ DOD “what we’ll actually calculate”

© 2010 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Compiler architecture

44

© 2010 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Adobe applications using Pixel Bender

© 2010 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Challenges

 Wide range of hardware

 Limits on instructions

 Limits on instruction counts

 Limits on support for e.g. arrays

 Limits on image size

 Non IEEE float

 Criticism that the range of hardware is too wide

 Cross platform

 Cross application

 Drivers

 Read back speed

 Testing

46

© 2010 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Testing

 Programming language – infinite input space

 Automation

 Data driven

 Scripts to write tests

 Testing intermediate representations

 End to end tests

 Fuzz testing

 Test driven development

 Test for errors

 Use the documentation

 Tools

47

© 2010 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

What can’t we do

 Anything that doesn’t fit our programming model

 Histogram

 Efficient box blur (and hence gaussian)

48

© 2010 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Where to go for information

 http://www.adobe.com/go/pixelbender_toolkit

 http://twitter.com/pixelbender

 http://blogs.adobe.com/kevin.goldsmith

 Search for

 Pixel Bender

 AIF

 Adobe Image Foundation

 Pixel Bender exchange

 Community site for sharing Pixel Bender filters

49

http://www.adobe.com/go/pixelbender_toolkit
http://twitter.com/pixelbender
http://blogs.adobe.com/kevin.goldsmith

© 2010 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

