
- Fast and flexible many-particle dynamics on
the GPU

Joshua A. Anderson

blue

tethered nanospheres
Brownian Dynamics

surfactant coated surfaces
DPD with constraints

supercooled liquids
Molecular Dynamics

supercooled liquids
2D Molecular Dynamics

polymer nanocomposites
coarse-grained Molecular Dynamics

polymer systems
Dissipative Particle Dynamics (DPD)

Demo of HOOMD-blue outside of presentation

Papers with CPU jobs... Papers with GPU jobs...
run thousands of serial jobs - often one month of

CPU time for each
run thousands of single GPU jobs - one day of GPU

time for each

compute a phase diagram for one polymer architecture compute phase diagrams for six polymer architectures

εF

ε
N

Phase

separation

Gyroid

Lamellar

εF

ε
N

Phase separation

Gyroid

εF

ε
N

CA9B7A9C

Phase separation

Gyroid

εF

ε
N

CA13B7A13C

Phase separation
Disordered

micelles

Square columnar

0 1 2 3 4 5 60 1 2 3 4 5 6

0 1 2 3 4 5 60 1 2 3 4 5 6

0

0.5

1

1.5

2

2.5

3

3.5

0

0.5

1

1.5

2

2.5

3

3.5

0

0.5

1

1.5

2

2.5

3

3.5

0

0.5

1

1.5

2

2.5

3

3.5

εF

ε
N

Phase

separation

Square

columnar

0 1 2 3 4 5 6
0

1

2

3

εF

ε
N

CA19B7A19C

Phase separation

Disordered

micelles

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

study one supercooled liquid model provide an in-depth comparison of four different models

study three monodisperse tethered nanospheres study the effects of of varying polydispersity

490 jobs just for one
figure!

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Carpeted Gyroid
& Gyroid Gyroid

Nanoparticles
+ Polymer

Hexagonal + Nanoparticles Gas

Mixed

Strongly Distorted
 Hexagonal

Mixed
I4 32
 Gyroid

Perforated Lamellar*

CL *

G10*

G5*

G5*

N B
ε /k T

 F B
ε /k T

�ri(t)
�vi(t)

Calculate accelerations

�ri(t + δt)

�vi(t + δt)

r

V

Example - Lennard-Jones

0,0 1,0 2,0 ...

...

...

0,1 1,1 2,1

0,2 1,2 2,2

...

...

...

Cell list

0,0
1,0
2,0
0,1
1,1
2,1
0,2

1,2
2,2

0,0 1,0 2,0

0,1 1,1 2,1

0,2 1,2 2,2

Length

. . .

for each particle i in parallel
load position pos[i]
compute cell index ci
cur_size = atomicInc length[ci]
write (ci, pos[i]) to

cell_list[ci][cur_size]

10.8 GB/s
8.248 GFLOPs

N

T
im

e
/

m
s

Host w/ memcpy

Host w/o memcpy

S1070 (sort)

GTX 480 (simple)

102 103 104 105 106
10−3

10−2

10−1

100

101

102

Neighbor list

. . .
. . .

Num Neighbors

. . .

for each particle i in parallel
load position pos[i]
compute cell index ci
for each nearby cell cn
 for each particle p in cn
 load cell_list[cn][p]

if distance < rcut
append to n_list[][i]

0,0 1,0 2,0

0,1 1,1 2,1

0,2 1,2 2,2

for each particle i in parallel
load position pos[i]
compute cell index ci
for each nid from 0 to 27

 cn=ld.global adj_list[ci][nid]
 for each particle p in cn
 ld.global cell_list[cn][p]

if distance < rcut
append to n_list[][i]

GF100 G200
for each particle i in parallel

load position pos[i]
compute cell index ci
for each nid from 0 to 27

 cn=tex2D adj_list[ci][nid]
 for each particle p in cn
 tex2D cell_list[cn][p]

if distance < rcut
append to n_list[][i]

Notes
• Semi-random memory reads performed from L1
• Activate 48k L1 for best perf.
• Spatial sorting (later) increases cache hit ratio
• Bottleneck becomes the incoherent n_list

append (only 1 in 8 writes pass the distance test)

Notes
• Semi-random memory reads performed from

2D tex cache

208.3 GB/s
315 GFLOPs
96% cache hits

N

T
im

e
/

m
s

Host
S1070 (tex2D)

GTX 480 (L1)

102 103 104 105 106
10−1

100

101

102

103

104

56.6 GB/s
85.6 GFLOPs
91% cache hits

for each particle i in parallel
load position pos[i]
for each neighbor n
 j = n_list[n][i]
 load pos[j]
 load coeffs for typei, typej

compute interaction i,j
write total interaction on i

. . .

Neighbor list

. . .

Computed forces and energies

Position array . . .

Vab

r

r

VVaa

GF100 G200

for each particle i in parallel
load position pos[i]
nextj = ld.global n_list[n][i]
for each neighbor n
 curj = nextj
 nextj=ld.global n_list[n+1][i]
 tex1Dfetch pos[curj]
 ld.shared coeffs[typei][typej]

compute interaction i,j
write total interaction on i

identical

Notes
• Switching the pos[curj] read to use L1

reduces performance
• I’m not sure why...... 48k L1 >>> 8k tex cache
• Have tried a number of transformations without

success
• The coefficient ld.shared can be converted

to ld.global with no performance hit

Notes
• Semi-random memory reads performed via

tex1Dfetch

N

T
im

e
/

m
s

Host
S1070 (tex1Dfetch)

GTX 480 (tex1Dfetch)

102 103 104 105 106
10−2

10−1

100

101

102

103

131.9 GB/s
188 GFLOPs
??% cache hits

63.01 GB/s
89.83 GFLOPs
60% cache hits

i/1000

j/
1
0
0
0

0 10 20 30 40 50 60
0

0.5 · 10
4

1.0 · 10
4

1.5 · 10
4

2.0 · 10
4

0

10

20

30

40

50

60

i/1000

j/
1
0
0
0

0 10 20 30 40 50 60
0

50

100

150

0

10

20

30

40

50

60

Random

Sorted

pair: 12.3 ms
4.2x speedup!

pair: 50.4 ms

template< class evaluator> __global__ void
gpu_compute_pair_forces_kernel(float4 *d_force, float4 *d_pos, gpu_nlist_array nlist,
 typename evaluator::param_type *d_params,
 ...)
 {
 extern __shared__ typename evaluator::param_type s_params[]
 // load data from d_params into s_params ...
 __syncthreads();
 unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
 // load in data for particle idx ...
 for (int neigh_idx = 0; neigh_idx < n_neigh; neigh_idx++)
 {
 // access current neighbor ...
 // calculate dr^2 (with periodic boundary conditions) ...
 float rsq = dx*dx + dy*dy + dz*dz;
 unsigned int typpair = typpair_idx(__float_as_int(posi.w), __float_as_int(posj.w));
 typename evaluator::param_type param = s_params[typpair];

 evaluator eval(rsq, rcutsq, param);
 eval.evalForceAndEnergy(force_divr, pair_eng, energy_shift);

 // tally results into force ...
 }
 d_force[idx] = force;
 }

class EvaluatorPairLJ
 {
 public:
 typedef Scalar2 param_type;

 DEVICE EvaluatorPairLJ(Scalar _rsq, Scalar _rcutsq, const param_type& _params)
 : rsq(_rsq), rcutsq(_rcutsq), lj1(_params.x), lj2(_params.y) { }

 DEVICE void evalForceAndEnergy(Scalar& force_divr, Scalar& pair_eng)
 {
 if (rsq < rcutsq && lj1 != 0)
 {
 Scalar r2inv = Scalar(1.0)/rsq;
 Scalar r6inv = r2inv * r2inv * r2inv;
 force_divr= r2inv * r6inv * (Scalar(12.0)*lj1*r6inv - Scalar(6.0)*lj2);

 pair_eng = r6inv * (lj1*r6inv - lj2);
 }
 }

 protected:
 Scalar rsq, rcutsq, lj1, lj2;
 };

class EvaluatorPairGauss
 {
 //...

for each member g in parallel
i = load group_idx[g]
load pos[j]
load vel[j]
load force[j]
compute updated quantities
write pos[j]
write vel[j]

Group member list

. . .

Position array . . .

Fixed Mobile

Notes
• Member list is maintained in a sorted order
• This reduces the number of wasted memory

transactions

Pair forces
• Lennard Jones
• Gaussian
• CGCMM
• Morse
• Table (arbitrary)
• Yukawa
• PME (in developpment)

Bond forces
• harmonic
• FENE

Angle forces
• harmonic
• CGCMM

Dihedral/Improper forces
• harmonic

Integration
• NVT (Nosé-Hoover)
• NPT
• Brownian Dynamics
• Dissipative Particle Dynamics
• NVE
• FIRE energy minimization

Many-body forces
• EAM (in development)

Simulation types
• 2D and 3D
• Replica exchange (via script)

Hardware support
• All recent NVIDIA GPUs
• Multi-core CPUs via OpenMP

Snapshot formats
• MOL2
• DCD
• PDB
• XML

Documentation online:

from hoomd_script import *

init.read_xml(filename=‘init.xml’)

lj = pair.lj(r_cut=2.5)
lj.pair_coeff.set('A', 'A', epsilon=1.0, sigma=1.0)

integrate.mode_standard(dt=0.005)
integrate.nvt(T=1.2, tau=0.5)

run(10e3)

http://codeblue.umich.edu/hoomd-blue/doc

lj-fluid - N=64000

Performance (time steps per second)

58.3

68.8

92.3

16.6

123

401

678

9.41

46.6

359

616

824

1 GPU
S1070

1 GPU
S2050

1 GPU
GTX 480

1 CPU core
E5540

8 CPU cores
E5540

32 CPU cores
E5540

64 CPU cores
E5540

1 CPU core
E5540

8 CPU cores
E5540

1 GPU
S1070

1 GPU
S2050

1 GPU
GTX 480

HOOMD

LAMMPS

OpenMM

0 150 300 450 600 750 900 1050

Performance (time steps per second)

319

2337

4100

4337

159

375

2016

2705

4078

1 CPU core
E5540

8 CPU cores
E5540

32 CPU cores
E5540

64 CPU cores
E5540

1 CPU core
E5540

8 CPU cores
E5540

1 GPU
S1070

1 GPU
S2050

1 GPU
GTX 480

HOOMD

LAMMPS

0 850 1700 2550 3400 4250 5100 5950

Performance (time steps per second)

52.7

265

966

1483

2154

1 CPU core
E5540

8 CPU cores
E5540

1 GPU
S1070

1 GPU
S2050

1 GPU
GTX 480

HOOMD

0 450 900 1350 1800 2250 2700

Performance (time steps per second)

7.67

57.3

198

359

4.34

24.1

205

368

482

1 CPU core
E5540

8 CPU cores
E5540

32 CPU cores
E5540

64 CPU cores
E5540

1 CPU core
E5540

8 CPU cores
E5540

1 GPU
S1070

1 GPU
S2050

1 GPU
GTX 480

HOOMD

LAMMPS

0 100 200 300 400 500 600

Performance (time steps per second)

67.6

458

1010

1471

9.65

46.3

356

588

775

1 CPU core
E5540

8 CPU cores
E5540

32 CPU cores
E5540

64 CPU cores
E5540

1 CPU core
E5540

8 CPU cores
E5540

1 GPU
S1070

1 GPU
S2050

1 GPU
GTX 480

HOOMD

LAMMPS

0 300 600 900 1200 1500 1800

Performance (time steps per second)

27.9

171

435

652

16.2

87.7

450

689

940

1 CPU core
E5540

8 CPU cores
E5540

32 CPU cores
E5540

64 CPU cores
E5540

1 CPU core
E5540

8 CPU cores
E5540

1 GPU
S1070

1 GPU
S2050

1 GPU
GTX 480

HOOMD

LAMMPS

0 200 400 600 800 1000 1200

Performance (time steps per second)

18.5

93.3

653

959

1297

1 CPU core
E5540

8 CPU cores
E5540

1 GPU
S1070

1 GPU
S2050

1 GPU
GTX 480

HOOMD

0 250 500 750 1000 1250 1500 1750

N=20000

N=6908 N=18400

N=36360

N=20000

N=64000

supercooled liquids

supercooled liquids

tethered nanospheres

polymer nanocompositessurfactant coated surfaces

polymer systems

HOOMD-blue is open source!
• Contributions from around the world
• Joshua Anderson, Aaron Keys, Trung Dac Nguyen, Carolyn Phillips (University of Michigan)
• Rastko Sknepnek (Northwestern)
• Alex Travesset (Iowa State University)
• Axel Kohlmeyer, David Lebard, and Ben Levine (Temple)
• Igor Morozov, Kazennov Andrey, Bystriy Roman (Russian Academy of Sciences)

for each particle i in parallel
load position pos[i]
compute cell index ci
cur_size = atomicInc length[ci]
write (ci, pos[i]) to

cell_list[ci][cur_size]

Notes
• atomicInc in L2 cache - fast!
• Typically ~30 possible collisions
• Spatial sorting (later) increases chances that

collisions occur within the same block/warp

x,y,z x,y,z x,y,z x,y,z x,y,z
Read from global
memory identify cell

Store cell,index pairs in
shared memory

(3,0) (1,1) (3,2) (2,3) (1,4)
Sort the pairs using cell
as the sort key

(1,2) (1,4) (2,3) (3,0) (3,2)

Done in parallel with a
bitonic sort

(1,2) (1,4) (2,3) (3,0) (3,2)

Identify common
sequences

. . .
. . .

• Only one atomicAdd per unique sequence is
needed

GF100 G200

