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Many-particle dynamics - examples

polyh‘ier systems
Dissipative Particle Dynamics (DPD)

tethered nnospheres
Brownian Dynamics

supercooled liquids
Molecular Dynamics

surfactant coated surfaces
DPD with constraints
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Vi . .
polymer nanocomposites
coarse-grained Molecular Dynamics

supercoled liquids
2D Molecular Dynamics



Live demo

Demo of HOOMD-blue outside of presentation
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Benefits of GPU computing
Papers with CPU jobs... Papers with GPU jobs...

run thousands of serial jobs - often one month of |run thousands of single GPU jobs - one day of GPU
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compute a phase diagram for one polymer architecture compute phase diagrams for six polymer architectures

study one supercooled liquid model provide an in-depth comparison of four different models
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study three monodisperse tethered nanospheres study the effects of of varying polydispersit
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Method overview
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Pair potential

Example - Lennard-Jones
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Cell list
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Generating the cell list
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for each particle i in parallel

load posi
compute c
cur_size
write (ci

tion pos[i]
ell index ci

= atomicInc length[ci]

, pos[i]) to

cell list[ci][cur size]
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Cell list performance

102 e
'| —e— Host w/ memcpy
|| —v— Host w/o memcpy
10! f| —&— S1070 (sort)

; GTX 480 (simple)

10.8 GB/s
8.248 GFLOPs
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Creating the neighbor list

°
°
°
°
°
°
for each particle i in parallel
load position pos[i]
compute cell index ci . .
for each nearby cell cn Nelghbor IISt
for each particle p in cn
load cell list[cn][p] 7 6 7 ¢
if distance < rcut [
append to n_list[][i] Num Neighbors p—
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Neighbor list on GF100 and G200

GF100

for each particle i in parallel
load position pos[i]
compute cell index ci
for each nid from 0 to 27
cn=1ld.global adj list[ci][nid]
for each particle p in cn
ld.global cell list[cn][p]
if distance < rcut
append to n list[][1]

Notes
® Semi-random memory reads performed from LI
® Activate 48k LI for best perf.
® Spatial sorting (later) increases cache hit ratio
® Bottleneck becomes the incoherent n_list

append (only | in 8 writes pass the distance test)
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G200

for each particle i in parallel
load position pos[i]
compute cell index ci
for each nid from 0 to 27
cn=tex2D adj list[ci][nid]
for each particle p in cn
tex2D cell list[cn][p]
if distance < rcut
append to n list[][1]

Notes

® Semi-random memory reads performed from
2D tex cache




Neighbor list performance

10 —————
| —@— Host
| —A— S1070 (tex2D)
103 F GTX 480 (L1) 56.6 GB/s
§ 85.6 GFLOPs
- 91% cache hits
o 107
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Computing pair forces

Position array

ﬂ Neighbor list
25 7 3 18
13 9 8 20

for each particle i in parallel
load position pos[i]
for each neighbor n

j =n list[n][i]

load pos[j]

load coeffs for typei, typej

compute interaction i,j
write total interaction on i
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Computed forces and energies



Pair forces on Fermi vs. Tesla
GF100 G200

for each particle i in parallel
load position pos[i]
. . nextj = 1ld.global n list[n][i]
identical > for each neighbor n
curj = nextj
next j=ld.global n list[n+1][1i]
texlDfetch pos[curj]
l1d.shared coeffs[typei][typej]
compute interaction i,Jj
write total interaction on i

Notes
® Switching the pos[curj] read to use LI Notes
reduces performance ® Semi-random memory reads performed via

® |’'m not sure why...... 48k L1 >>> 8k tex cache
® Have tried a number of transformations without

success
® The coefficient 1d.shared can be converted

to 1d.global with no performance hit

tex1Dfetch
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Pair force performance

103

102§

| —®— Host
|| —&— 51070 (tex1Dfetch)

GTX 480 (tex1Dfetch)

101§

Time / ms

10-1

| 163.01 GB/s
1 189.83 GFLOPs
| |60% cache hits

102
102

103 10*
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10°

131.9 GB/s
188 GFLOPs
??% cache hits




Spatial sorting reorders particles
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Flexible pair potentials

template< class evaluator> _ global  void
gpu_compute pair forces kernel(float4 *d force, float4 *d pos, gpu nlist array nlist,
typename evaluator::param type *d params,

e.l)
{

extern _ shared  typename evaluator::param type s_params]]
// load data from d params into s params ...
__syncthreads();
unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
// load in data for particle idx ...
for (int neigh_idx = 0; neigh idx < n neigh; neigh idx++)
{
// access current neighbor ...
// calculate dr"2 (with periodic boundary conditions) ...
float rsq = dx*dx + dy*dy + dz*dz;
unsigned int typpair = typpair idx(_float as_int(posi.w), _ float as_int(posj.w));
typename evaluator::param type param = s_params|[typpair];

evaluator eval(rsq, rcutsq, param);
eval.evalForceAndEnergy (force_divr, pair_eng, energy_shift);

// tally results into force ...

}

d_force[idx] = force;

}

The Glotzer Group @ University of Michigan




Evaluator functor

class EvaluatorPairLJd

{
public:
typedef Scalar2 param type;
DEVICE EvaluatorPairLJ(Scalar _rsq, Scalar _rcutsq, const param type& _params)
: rsg(_rsq), rcutsqg(_rcutsq), 1ljl( params.x), 1j2(_params.y) { }
DEVICE void evalForceAndEnergy(Scalar& force divr, Scalar& pair eng)
{
if (rsqg < rcutsqg && 1jl1 != 0)
{
Scalar r2inv = Scalar(1.0)/rsq;
Scalar r6inv = r2inv * r2inv * r2inv;
force divr= r2inv * réinv * (Scalar(12.0)*1jl*r6inv - Scalar(6.0)*1j2);
pair_eng = r6inv * (ljl*ré6inv - 1j2);
}
}
protected:
Scalar rsq, rcutsq, 13j1, 1j2;
}i
class EvaluatorPairGauss
{
VS
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Flexible integration

Position array

. 6 10 I
Fixed Mobile

for each member g in parallel
i = load group idx[g]
load pos[7j] Notes

load vellj] ® Member list is maintained in a sorted order

load force[j] .
omputelipdaredigianiies ® This reduces the number of wasted memory

write pos[7j] transactions
write vel[j] N

Group member list
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Feature sheet

Integration Snapshot formats

® NVT (Nosée-Hoover) e MOL2

o NPT e DCD

® Brownian Dynamics e PDB

® Dissipative Particle Dynamics o XML

e NVE Pair forces

® FIRE energy minimization ® Lennard Jones
Bond forces ® Gaussian

® harmonic e CGCMM

e FENE ® Morse
Ang|e forces ® Table (arbitrary)

® harmonic ® Yukawa

e CGCMM ® PME (in developpment)
Dihedral/ Improper forces Many-body forces

® harmonic e EAM (in development)
Simulation types Hardware support

e 2D and 3D ® All recent NVIDIA GPUs

® Replica exchange (via script) ® Multi-core CPUs via OpenMP N
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Script example

Documentation online: http://codeblue.umich.edu/hoomd-blue/doc

1j = pair.lj(r cut=2.5)
lj.pair coeff.set('A’,

run(1l0e3)

from hoomd script import *

IAl’

init.read xml(filename='init.xml")

epsilon=1.0,

integrate.mode standard(dt=0.005)
integrate.nvt(T=1.2, tau=0.5)

sigma=1.0)
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Overall performance

li-fluid - N=64000
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... more performance
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supercooled liquids

N=6908

1 GPU 2154

8 CPU cores 265

1 CPU core 52.7

0 450 900 1350 1800 2250 2700

Performance (time steps per second)

surfactant coated surfaces
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N=18400
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polymer nanocomposites
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Cell list on GF100 and G200
GF100 G200

for each particle i in parallel
load position pos[i]

XYZ | XNZ | X0%Z | X%Z | X)Z

compute cell index ci . I
cur size = atomicInc length[ci] Read from gIo!JaI Store cell,index pairs in .
write (i) posril) to memory identify cell shared memory °

cell list[ci][cur size]

G0 [ (LH1G2) | 23] (14

Sort the pairs using cell l Done in parallel with a

Notes as the sort key bitonic sort o
® atomicInc in L2 cache - fast! .
® Typically ~30 possible collisions ( | ’2) ( | ’4) (2’3) (3’0) (3’2)
® Spatial sorting (later) increases chances that Identify common

collisions occur within the same block/warp sequences

(1,2) | (I,4) | (2,3) | (3,0) | (3,2)

® Only one atomicAdd per unique sequence is
needed
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