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tethered nanospheres
Brownian Dynamics

surfactant coated surfaces
DPD with constraints

supercooled liquids
Molecular Dynamics

supercooled liquids
2D Molecular Dynamics

polymer nanocomposites
coarse-grained Molecular Dynamics

polymer systems
Dissipative Particle Dynamics (DPD)



Demo of HOOMD-blue outside of presentation



Papers with CPU jobs... Papers with GPU jobs...
run thousands of serial jobs - often one month of 

CPU time for each
run thousands of single GPU jobs - one day of GPU 

time for each

compute a phase diagram for one polymer architecture compute phase diagrams for six polymer architectures
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study one supercooled liquid model provide an in-depth comparison of four different models

study three monodisperse tethered nanospheres study the effects of of varying polydispersity

490 jobs just for one 
figure!
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Example - Lennard-Jones
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Length

. . . 

for each particle i in parallel
load position pos[i]
compute cell index ci
cur_size = atomicInc length[ci]
write (ci, pos[i]) to

cell_list[ci][cur_size]



10.8 GB/s
8.248 GFLOPs
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Neighbor list

. . . 
. . . 

Num Neighbors

. . . 

for each particle i in parallel
load position pos[i]
compute cell index ci
for each nearby cell cn
   for each particle p in cn
      load cell_list[cn][p]

if distance < rcut
append to n_list[][i]
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for each particle i in parallel
load position pos[i]
compute cell index ci
for each nid from 0 to 27

 cn=ld.global adj_list[ci][nid]
   for each particle p in cn
      ld.global cell_list[cn][p]

if distance < rcut
append to n_list[][i]

GF100 G200
for each particle i in parallel

load position pos[i]
compute cell index ci
for each nid from 0 to 27

 cn=tex2D adj_list[ci][nid]
   for each particle p in cn
      tex2D cell_list[cn][p]

if distance < rcut
append to n_list[][i]

Notes
• Semi-random memory reads performed from L1
• Activate 48k L1 for best perf.
• Spatial sorting (later) increases cache hit ratio
• Bottleneck becomes the incoherent n_list 

append (only 1 in 8 writes pass the distance test)

Notes
• Semi-random memory reads performed from 

2D tex cache



208.3 GB/s
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for each particle i in parallel
load position pos[i]
for each neighbor n
  j = n_list[n][i]
  load pos[j]
  load coeffs for typei, typej

compute interaction i,j
write total interaction on i

. . . 

Neighbor list

. . . 

Computed forces and energies

Position array . . . 
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GF100 G200

for each particle i in parallel
load position pos[i]
nextj = ld.global n_list[n][i]
for each neighbor n
  curj = nextj
  nextj=ld.global n_list[n+1][i]
  tex1Dfetch pos[curj]
  ld.shared coeffs[typei][typej]

compute interaction i,j
write total interaction on i

identical

Notes
• Switching the pos[curj] read to use L1 

reduces performance
• I’m not sure why...... 48k L1 >>> 8k tex cache
• Have tried a number of transformations without 

success
• The coefficient ld.shared can be converted 

to ld.global with no performance hit

Notes
• Semi-random memory reads performed via 

tex1Dfetch
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template< class evaluator> __global__ void 
gpu_compute_pair_forces_kernel(float4 *d_force, float4 *d_pos, gpu_nlist_array nlist,
                                               typename evaluator::param_type *d_params,
                                               ...)
    {
    extern __shared__ typename evaluator::param_type s_params[]
    // load data from d_params into s_params ...
    __syncthreads();
    unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
    // load in data for particle idx ...
    for (int neigh_idx = 0; neigh_idx < n_neigh; neigh_idx++)
        {
        // access current neighbor ...
        // calculate dr^2 (with periodic boundary conditions) ...
        float rsq = dx*dx + dy*dy + dz*dz;
        unsigned int typpair = typpair_idx(__float_as_int(posi.w), __float_as_int(posj.w));
        typename evaluator::param_type param = s_params[typpair];

        evaluator eval(rsq, rcutsq, param);
        eval.evalForceAndEnergy(force_divr, pair_eng, energy_shift);

        // tally results into force ...
        }
    d_force[idx] = force;
    }



class EvaluatorPairLJ
    {
    public:
        typedef Scalar2 param_type;

        DEVICE EvaluatorPairLJ(Scalar _rsq, Scalar _rcutsq, const param_type& _params)
            : rsq(_rsq), rcutsq(_rcutsq), lj1(_params.x), lj2(_params.y) { }
        
        DEVICE void evalForceAndEnergy(Scalar& force_divr, Scalar& pair_eng)
            {
            if (rsq < rcutsq && lj1 != 0)
                {
                Scalar r2inv = Scalar(1.0)/rsq;
                Scalar r6inv = r2inv * r2inv * r2inv;
                force_divr= r2inv * r6inv * (Scalar(12.0)*lj1*r6inv - Scalar(6.0)*lj2);
                
                pair_eng = r6inv * (lj1*r6inv - lj2);
                }
            }
        
    protected:
        Scalar rsq, rcutsq, lj1, lj2;
    };
    
class EvaluatorPairGauss
    {
    //...



for each member g in parallel
i = load group_idx[g]
load pos[j]
load vel[j]
load force[j]
compute updated quantities
write pos[j]
write vel[j]

Group member list

. . . 

Position array . . . 

Fixed Mobile

Notes
• Member list is maintained in a sorted order
• This reduces the number of wasted memory 

transactions



Pair forces
• Lennard Jones
• Gaussian
• CGCMM
• Morse
• Table (arbitrary)
• Yukawa
• PME (in developpment)

Bond forces
• harmonic
• FENE

Angle forces
• harmonic
• CGCMM

Dihedral/Improper forces
• harmonic

Integration
• NVT (Nosé-Hoover)
• NPT
• Brownian Dynamics
• Dissipative Particle Dynamics
• NVE
• FIRE energy minimization

Many-body forces
• EAM (in development)

Simulation types
• 2D and 3D
• Replica exchange (via script)

Hardware support
• All recent NVIDIA GPUs
• Multi-core CPUs via OpenMP

Snapshot formats
• MOL2
• DCD
• PDB
• XML



Documentation online:

from hoomd_script import *

init.read_xml(filename=‘init.xml’)

lj = pair.lj(r_cut=2.5)
lj.pair_coeff.set('A', 'A', epsilon=1.0, sigma=1.0)

integrate.mode_standard(dt=0.005)
integrate.nvt(T=1.2, tau=0.5)

run(10e3)

http://codeblue.umich.edu/hoomd-blue/doc



lj-fluid - N=64000
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HOOMD-blue is open source!
• Contributions from around the world
• Joshua Anderson,  Aaron Keys, Trung Dac Nguyen, Carolyn Phillips (University of Michigan)
• Rastko Sknepnek (Northwestern)
• Alex Travesset (Iowa State University)
• Axel Kohlmeyer, David Lebard, and Ben Levine (Temple)
• Igor Morozov, Kazennov Andrey, Bystriy Roman (Russian Academy of Sciences)



for each particle i in parallel
load position pos[i]
compute cell index ci
cur_size = atomicInc length[ci]
write (ci, pos[i]) to

cell_list[ci][cur_size]

Notes
• atomicInc in L2 cache - fast!
• Typically ~30 possible collisions
• Spatial sorting (later) increases chances that 

collisions occur within the same block/warp

x,y,z x,y,z x,y,z x,y,z x,y,z
Read from global 
memory identify cell

Store cell,index pairs in
shared memory

(3,0) (1,1) (3,2) (2,3) (1,4)
Sort the pairs using cell
as the sort key

(1,2) (1,4) (2,3) (3,0) (3,2)

Done in parallel with a
bitonic sort

(1,2) (1,4) (2,3) (3,0) (3,2)

Identify common 
sequences

. . .
. . .

• Only one atomicAdd per unique sequence is 
needed

GF100 G200


