HOOUD

—Dblue

- Fast and flexible many-particle dynamics on
the GPU

Joshua A. Anderson

The Glotzer Group @ University of Michigan

Many-particle dynamics - examples

polyh‘ier systems
Dissipative Particle Dynamics (DPD)

tethered nnospheres
Brownian Dynamics

supercooled liquids
Molecular Dynamics

surfactant coated surfaces
DPD with constraints

The Glotzer Group @ University of Michigan

Vi . .
polymer nanocomposites
coarse-grained Molecular Dynamics

supercoled liquids
2D Molecular Dynamics

Live demo

Demo of HOOMD-blue outside of presentation

The Glotzer Group @ University of Michigan

Benefits of GPU computing
Papers with CPU jobs... Papers with GPU jobs...

run thousands of serial jobs - often one month of |run thousands of single GPU jobs - one day of GPU

CPU time for each time for each
. s ChBrtic
20 'l.‘ " 14,32 |asssasntn LAAAAAALAGY P ArAAAAAALY
0 5
- N 25 < -
o © 8) " s Mixed s Gyroid 8
164 Nanoparticles .*) \‘ - N
- « 0y T sy Gy
p p 4 + Polymer o* Jommmsy “ o CL* \\\)
. ¢ 4 ¢° Mixed [&85 e
by 12 A4 * - ~ ~
& + * * emm=a ! ~. -
I‘l(£ € /kTio ,' . '0 Perforated Lamellar ~\ S, v
s WK CrBc
3 y 08 4 " + Carpeted Gyroid .
\-‘> ¢ Hsonaly Distred « &Gyroid 1 Gyroid 3
ost »7 teagonl ~)
- . .
04 e LT D -’
¢ mm o F== . ,
02le . Qe G10* AAQL BT OGO !
Hexagonal + Nanoparticles Gas = & | . 7.5auars cohurhiar
. N)

%0 0 1 2 3 . B o o 1 2 3 1 5 O 0 1 2 3 1 5 6

00 05 1.0 1.5 20 25 30 35 40
€./kT
compute a phase diagram for one polymer architecture compute phase diagrams for six polymer architectures

study one supercooled liquid model provide an in-depth comparison of four different models
@F, =042 ®)F, = 1.00 ©F, =195 . om‘ 189

o 0 / £, e 490 jobs just for one
; , _— N - figure!
o e o SRR 8 | — igure!

[T | < 1 I s0%

03 04 (23 o3 (on(c::nnm 03 04 0s ‘ﬂ ;‘;g\ydisp“ssrsﬂy‘ 2‘0 2‘5 (;0 v

study three monodisperse tethered nanospheres study the effects of of varying polydispersit

The Glotzer Group @ University of Michigan

Method overview

;i (¢
v . 7 8
‘ 1
“. k. Calculate aielerations
i |
o @ 7 (t + 0t)

¥;(t + ot)

Pair potential

Example - Lennard-Jones

\
V

The Glotzer Group @ University of Michigan

Cell list

‘e

Generating the cell list

2,2

o
2,1 F
o©

6 O
O

for each particle i in parallel

load posi
compute c
cur_size
write (ci

tion pos[i]
ell index ci

= atomicInc length[ci]

, pos[i]) to

cell list[ci][cur size]

The Glotzer Group @ University of Michigan

0,0
1,0
2,0
0,1
[, |
2,1
0,2
1,2
2,2

{213 5
Length Cell list
3 19 21 22

Cell list performance

102 e
'| —e— Host w/ memcpy
|| —v— Host w/o memcpy
10! f| —&— S1070 (sort)

; GTX 480 (simple)

10.8 GB/s
8.248 GFLOPs

102 103 10* 10° 106

The Glotzer Group @ University of Michigan

Creating the neighbor list

°
°
°
°
°
°
for each particle i in parallel
load position pos[i]
compute cell index ci . .
for each nearby cell cn Nelghbor IISt
for each particle p in cn
load cell list[cn][p] 7 6 7 ¢
if distance < rcut [
append to n_list[][i] Num Neighbors p—

The Glotzer Group @ University of Michigan

Neighbor list on GF100 and G200

GF100

for each particle i in parallel
load position pos[i]
compute cell index ci
for each nid from 0 to 27
cn=1ld.global adj list[ci][nid]
for each particle p in cn
ld.global cell list[cn][p]
if distance < rcut
append to n list[][1]

Notes
® Semi-random memory reads performed from LI
® Activate 48k LI for best perf.
® Spatial sorting (later) increases cache hit ratio
® Bottleneck becomes the incoherent n_list

append (only | in 8 writes pass the distance test)

The Glotzer Group @ University of Michigan

G200

for each particle i in parallel
load position pos[i]
compute cell index ci
for each nid from 0 to 27
cn=tex2D adj list[ci][nid]
for each particle p in cn
tex2D cell list[cn][p]
if distance < rcut
append to n list[][1]

Notes

® Semi-random memory reads performed from
2D tex cache

Neighbor list performance

10 —————
| —@— Host
| —A— S1070 (tex2D)
103 F GTX 480 (L1) 56.6 GB/s
§ 85.6 GFLOPs
- 91% cache hits
o 107
2 [
= 10'f 208.3 GB/s
i 315 GFLOPs
' 96% cache hits
100 -
1071

102 103 10* 10° 106

The Glotzer Group @ University of Michigan

Computing pair forces

Position array

ﬂ Neighbor list
25 7 3 18
13 9 8 20

for each particle i in parallel
load position pos[i]
for each neighbor n

j =n list[n][i]

load pos[j]

load coeffs for typei, typej

compute interaction i,j
write total interaction on i

The Glotzer Group @ University of Michigan

Computed forces and energies

Pair forces on Fermi vs. Tesla
GF100 G200

for each particle i in parallel
load position pos[i]
. . nextj = 1ld.global n list[n][i]
identical > for each neighbor n
curj = nextj
next j=ld.global n list[n+1][1i]
texlDfetch pos[curj]
l1d.shared coeffs[typei][typej]
compute interaction i,Jj
write total interaction on i

Notes
® Switching the pos[curj] read to use LI Notes
reduces performance ® Semi-random memory reads performed via

® |’'m not sure why...... 48k L1 >>> 8k tex cache
® Have tried a number of transformations without

success
® The coefficient 1d.shared can be converted

to 1d.global with no performance hit

tex1Dfetch

The Glotzer Group @ University of Michigan

Pair force performance

103

102§

| —®— Host
|| —&— 51070 (tex1Dfetch)

GTX 480 (tex1Dfetch)

101§

Time / ms

10-1

| 163.01 GB/s
1 189.83 GFLOPs
| |60% cache hits

102
102

103 10*

The Glotzer Group @ University of Michigan

10°

131.9 GB/s
188 GFLOPs
??% cache hits

Spatial sorting reorders particles

10}

g &
\ z\\

, : 150

\. IAQ//IAIAooQ) 20k
Q‘)\\'s'x»‘x's’s'\'\'\'s‘\ =

o ke

"\ \’\TL\ WA N \A ‘ Random g 30 100
AN \\‘ A\\) VAW A / P \‘ s 4 ‘ S 40+

) S 7 NS -
5}

J
\l
f<
0

\ \; {5 ‘_ Q\‘ /- pair: 50.4 ms 50;

\ 60 'l
\ A YRR 5
r

<\§_ 67 u ' 0 10 20 30 40 50 60
-—" \R=— i/1000

'\ X (e v WM
RN AN Y O 4
< o. VN v
Y 4 VLY SNy
‘ h\"/ Sorted
...... YV YAY
veav SN g Y I\ :
‘\v,', SIS IR) P) A pair: 12.3 ms
) AP BINFY ¥ 4.2x speedup!
LAY AN L/

2.0-10*

1.5-10%

/1000

1.0 - 10*

0.5-10%

0 10 20 30 40 50 60 N
i/1000 N

The Glotzer Group @ University of Michigan

Flexible pair potentials

template< class evaluator> _ global void
gpu_compute pair forces kernel(float4 *d force, float4 *d pos, gpu nlist array nlist,
typename evaluator::param type *d params,

e.l)
{

extern _ shared typename evaluator::param type s_params]]
// load data from d params into s params ...
__syncthreads();
unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
// load in data for particle idx ...
for (int neigh_idx = 0; neigh idx < n neigh; neigh idx++)
{
// access current neighbor ...
// calculate dr"2 (with periodic boundary conditions) ...
float rsq = dx*dx + dy*dy + dz*dz;
unsigned int typpair = typpair idx(_float as_int(posi.w), _ float as_int(posj.w));
typename evaluator::param type param = s_params|[typpair];

evaluator eval(rsq, rcutsq, param);
eval.evalForceAndEnergy (force_divr, pair_eng, energy_shift);

// tally results into force ...

}

d_force[idx] = force;

}

The Glotzer Group @ University of Michigan

Evaluator functor

class EvaluatorPairLJd

{
public:
typedef Scalar2 param type;
DEVICE EvaluatorPairLJ(Scalar _rsq, Scalar _rcutsq, const param type& _params)
: rsg(_rsq), rcutsqg(_rcutsq), 1ljl(params.x), 1j2(_params.y) { }
DEVICE void evalForceAndEnergy(Scalar& force divr, Scalar& pair eng)
{
if (rsqg < rcutsqg && 1jl1 != 0)
{
Scalar r2inv = Scalar(1.0)/rsq;
Scalar r6inv = r2inv * r2inv * r2inv;
force divr= r2inv * réinv * (Scalar(12.0)*1jl*r6inv - Scalar(6.0)*1j2);
pair_eng = r6inv * (ljl*ré6inv - 1j2);
}
}
protected:
Scalar rsq, rcutsq, 13j1, 1j2;
}i
class EvaluatorPairGauss
{
VS

The Glotzer Group @ University of Michigan

Flexible integration

Position array

. 6 10 I
Fixed Mobile

for each member g in parallel
i = load group idx[g]
load pos[7j] Notes

load vellj] ® Member list is maintained in a sorted order

load force[j] .
omputelipdaredigianiies ® This reduces the number of wasted memory

write pos[7j] transactions
write vel[j] N

Group member list

The Glotzer Group @ University of Michigan

Feature sheet

Integration Snapshot formats

® NVT (Nosée-Hoover) e MOL2

o NPT e DCD

® Brownian Dynamics e PDB

® Dissipative Particle Dynamics o XML

e NVE Pair forces

® FIRE energy minimization ® Lennard Jones
Bond forces ® Gaussian

® harmonic e CGCMM

e FENE ® Morse
Ang|e forces ® Table (arbitrary)

® harmonic ® Yukawa

e CGCMM ® PME (in developpment)
Dihedral/ Improper forces Many-body forces

® harmonic e EAM (in development)
Simulation types Hardware support

e 2D and 3D ® All recent NVIDIA GPUs

® Replica exchange (via script) ® Multi-core CPUs via OpenMP N

The Glotzer Group @ University of Michigan

Script example

Documentation online: http://codeblue.umich.edu/hoomd-blue/doc

1j = pair.lj(r cut=2.5)
lj.pair coeff.set('A’,

run(1l0e3)

from hoomd script import *

IAl’

init.read xml(filename='init.xml")

epsilon=1.0,

integrate.mode standard(dt=0.005)
integrate.nvt(T=1.2, tau=0.5)

sigma=1.0)

The Glotzer Group @ University of Michigan

Overall performance

li-fluid - N=64000

o OONDI 1
Lapy 616
1 GPU V ‘ ‘ | | |
SO 6.6
O 9.41 | | ; |
G ey cores ILAMMPS : : i 678
7 I U
R
LCPU core | e
G%}?% ;92.3 ;Open;MM
Loy 268.8
51070 283 i ; ; ;
0 150 300 450 600 750 900 1050
Performance (time steps per second) ———

The Glotzer Group @ University of Michigan

... more performance

N=20000

1 GPU
GTX 480
1 GPU
S2050)
1 GPU
S1070

8 CPU cores
E5540)

940

87.7

1 CPU core
o 0| 16.2
64 CPU cores
s [LAMMPS | 652

32 CPU cores H.|
E5540) 435
8 CPU cores
E5540:' 171
1 CPU core
E5540:| 279
0 200 400 600 800 1000 1200

Performance (time steps per second)

N=36360

775

1 GPU
GTX 480

1 GPU
52050

1 GPU
S1070

8 CPU cores
E550)
1 CPU core
E5310 9.65
64 CPU cores]
s LAMMPS J 1471

32 CPU cores
e i 1010

8 CPU cores
el) 458
1 CPU core
o 1 ere
0 300 600 900 1200 1500 1800

Performance (time steps per second)

356
46.3

N=64000

1 GPU
GTX 480|
1 GPU
52050
1 GPU
51070
8 CPU cores
E5540

1 CPU core
F530 4.34

64 CPU cores
F550 LAMMPS 359

32 CPU cores I
E5540) 198
8 CPU cores
e] 573

1 CPU core
o Al 7.67

0 100 200 300 400 500 600

Performance (time steps per second)

482

368

24.1

supercooled liquids

N=6908

1 GPU 2154

8 CPU cores 265

1 CPU core 52.7

0 450 900 1350 1800 2250 2700

Performance (time steps per second)

surfactant coated surfaces

The Glotzer Group @ University of Michigan

N=18400

1 GPU
GTX 480

1 GPU
S§2050

1 GPU
S1070)

1297

8 CPU cores
E5540 93.3
1 CPU core 18.5

E5540
0 250 500 750 1000 1250 1500 1750

Performance (time steps per second)

polymer nanocomposites

N=20000

4078

64 CPU cores]
o] LAMMPS | 4337
32 CPU cores
e | 4100

8 CPU cores
F5540 ' 2337

1 CPU core :' 319

E5540)
0 850 1700 2550 3400 4250 5100 5950
Performance (time steps per second) v
)& ole ~-e L e

Acknowledgements

HOOMD-blue is open source!
® Contributions from around the world
Joshua Anderson, Aaron Keys, Trung Dac Nguyen, Carolyn Phillips (University of Michigan)
Rastko Sknepnek (Northwestern)
Alex Travesset (lowa State University)
Axel Kohlmeyer, David Lebard, and Ben Levine (Temple)
lgor Morozov, Kazennov Andrey, Bystriy Roman (Russian Academy of Sciences)

The Glotzer Group @ University of Michigan

Cell list on GF100 and G200
GF100 G200

for each particle i in parallel
load position pos[i]

XYZ | XNZ | X0%Z | X%Z | X)Z

compute cell index ci . I
cur size = atomicInc length[ci] Read from gIo!JaI Store cell,index pairs in .
write (i) posril) to memory identify cell shared memory °

cell list[ci][cur size]

G0 [(LH1G2) | 23] (14

Sort the pairs using cell l Done in parallel with a

Notes as the sort key bitonic sort o
® atomicInc in L2 cache - fast! .
® Typically ~30 possible collisions (| ’2) (| ’4) (2’3) (3’0) (3’2)
® Spatial sorting (later) increases chances that Identify common

collisions occur within the same block/warp sequences

(1,2) | (I,4) | (2,3) | (3,0) | (3,2)

® Only one atomicAdd per unique sequence is
needed

The Glotzer Group @ University of Michigan

