

# Banking on Monte Carlo ... and beyond

Dr Ian Reid

*ian.Reid@nag.co.uk*



Experts in numerical algorithms  
and HPC services

# Agenda

---

- Introduction
- What's the problem?
- GPUs – an opportunity?
- NAG's research/experience/feedback
- Real-world use: Monte-Carlo and beyond
- Next steps
- Summary

# NAG Background

---

- Founded 1970
  - Co-operative software project
  - Not-for-profit organisation
  - Surpluses fund on-going research
- ~\$12m financial turnover
- ~100 employees
  - ~65% developers/technical consultants
  - Oxford (HQ), Manchester, UK; Chicago, USA; Tokyo, Japan; Taipei, Taiwan



# NAG Products & Services

---

- Numerical and Statistical Libraries
  - Over 1600 user-callable components
- Consulting Services
  - Code development, tuning, tailoring
- HPC Services
  - Procurement advice, market watch, benchmarking
  - Computational Science and Engineering (CSE) support



- Experts in Numerical Engineering

# What Happened to my Escalator?

---

- Escalator?
  - Want a quicker solution? Buy a new processor
- Multi-core/Many-core are a major challenge for many existing codes
- The escalator has stopped... or gone into reverse!
  - Existing codes may well run slower

# What Can We Do?

---

- There is no “silver bullet”
  - (In most cases)
  - We’ve passed the end of this escalator
- It’s the software stupid!
  - Need to re-write/re-tune the software for new hardware
  - But which hardware?
- GPUs offer an interesting solution for some key applications
  - NVIDIA clearly lead the way with CUDA
  - OpenCL?/AMD?/Intel?

# GPUs – An Opportunity?

---

- Large-scale SIMD/SIMT
  - simplified logic so more of the chip for calculations
- Excellent bandwidth to the GPU memory
- $O(10)$  power savings [BNP Paribas]
- Good programming environment with CUDA
  - And hopefully OpenCL for portability
- Can work well for embarrassingly parallel applications

# GPUs in Computational Finance?

---

- Ovum report (August 2010)
- Lots of POCs – almost all with NVIDIA
- Monte Carlo, Finite Differences,  
Differential Equations
- Adopt CUDA or wait for open standard?
- Serious competition in 2012 (AMD/Intel)

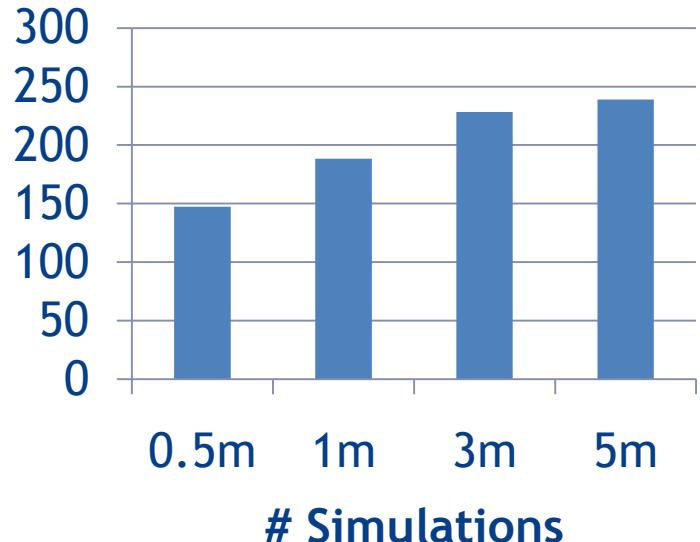
# Monte Carlo Methods

---

- Often used when infeasible/impractical to use a deterministic method
  - Take random samples of the input domain
  - Perform deterministic calculations based on the random inputs
  - Aggregate the results
- The more samples and the more ‘random’ the better
- Embarrassingly parallel (except RNGs!)
- Speed matters

# Early Market Pull

---


- NAG closely monitors the HPC marketplace
  - Enforced change painful
  - Many technologies being evaluated
- NAG's product implementation teams
  - Finance sector showing particular interest (POCs)
  - Monte Carlo methods particularly important ... but other areas now under investigation (e.g. PDEs, optimisation)
- NAG GPU Library (beta)
  - Worked closely with Prof Mike Giles, Oxford University
  - RNGs and distributions
  - PDEs ... very soon

# Early Successes (last year)

## ■ BNP Paribas

- NAG mrg32k3a works well in BNP Paribas CUDA “Local Vol Monte-Carlo”

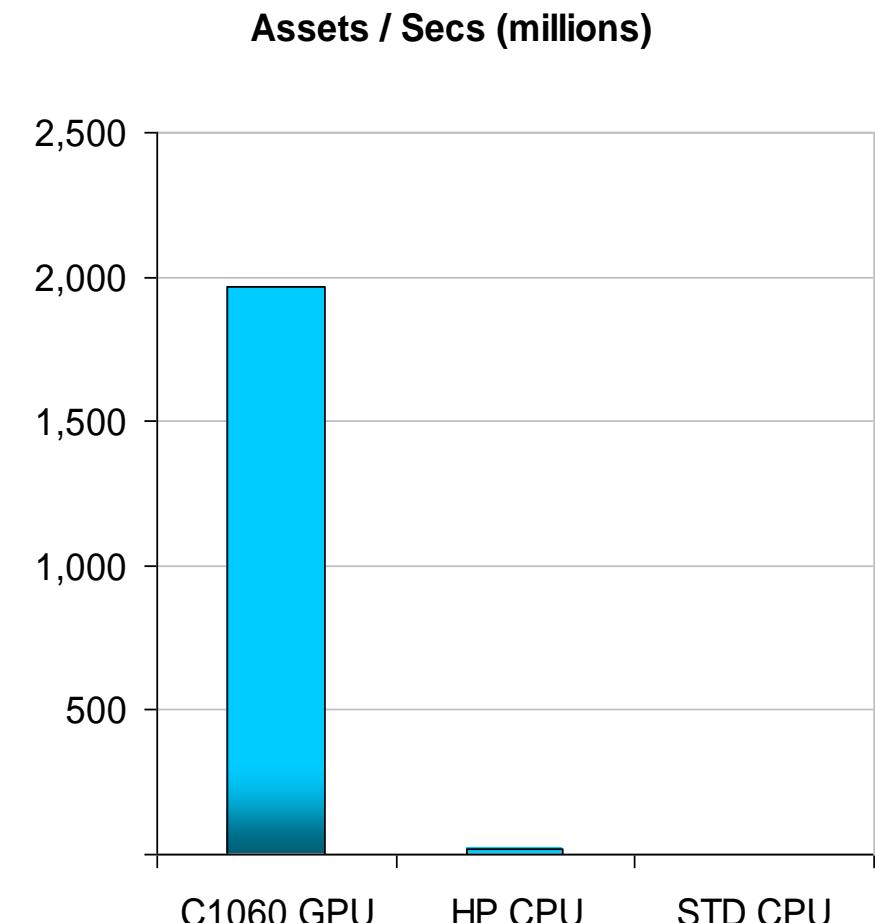
Speed-up NAG MRG32k3a/GX260  
versus BNPP CPU version



# Latest Successes

---

- (Almost) all tier 1's have POCs running
- Some close to going live on early projects
- E.g. Barclays Capital ...
  - Next two slides presented at Global Derivatives and Risk Management conference, Paris, May 2010 by Simon Rees
  - “Thank you for the GPU code, we have achieved speed ups of x120”


# LARGE-SCALE MONTE CARLO LOSS SIMULATION

---

- Focus of this presentation is a credit risk loss simulation
- **Why is a simulated approach taken?**
- Complex portfolio dynamics
  - small probabilities of default (PD)
  - large portfolios  $O(10^6)$
  - inter-dependence through default correlation
  - highly non-linear behaviour
- Analytical approach
  - restrictive assumptions
  - limited application
- **How many simulations are required?**
- Estimate  $O(10^9)$  simulations required

## BENCHMARKING: GPU VS. CPU ARCHITECTURE

- GPU Tesla C1060 vs. single core CPU
- Speed-up:
  - GPU vs. Hi-Performance CPU **108 ×**
  - GPU vs. Standard CPU **787 ×**
- Time to compute  $10^9$  simulations
  - Standard CPU would take around **2 months**
  - Hi-Performance CPU would take **over a week**
  - GPU would take **2.5 hours**
  - GPU (4 × ) server rack **less than 40 minutes**
- CPU optimisation can offer significant gains



# Is Monte Carlo the Answer?

---

- Not 'the' answer, but...
- ...given these speed-ups perhaps it can be used much more?
- Good list of application areas on Wikipedia
  - [en.wikipedia.org/wiki/Monte\\_Carlo\\_method#Applications](http://en.wikipedia.org/wiki/Monte_Carlo_method#Applications)
- In general, we need to be re-thinking:
  - How we solve problems - new (or old!) algorithms
  - Which techniques work best on which architectures
- Acid test
  - How well can it work for my application?

# Next Steps

---

## ■ NAG GPU Library

- Currently in beta, but pressure to productise
- RNGs/distributions/ Brownian bridge; PDEs – very soon
- Which other algorithms do we need to implement?

## ■ NAG Libraries (1600+ components)

- Should we implement on CPU calling out to GPU?
- ‘Automatic’ cross-compilation
- SMP implementations on multi-core CPU also works well

## ■ Algorithms

- Collaborating widely to look at new algorithms for new architectures

# NAG GPU Lib: Improvements and Issues

---

- Updated RNGs
  - Mersenne Twister (with skip-ahead)
  - Scrambled sequencing for Sobol (Hickernell)
  - Tuned for Fermi (next slide)
- Implementing PDEs
  - ADI/FD with Crank-Nicolson, Craig-Sneyd
  - Challenges because of lack of cache ...
  - Fermi implementation 15-20x CPU version
- Main issue for mainline product
  - Need to be able to allow GPU only (device level) functions but NOT have to supply source!

# RNG Performance Numbers

- From GEMS report (to be published soon)
  - Intel figures tuned by Intel

|       |      | Fermi GPU<br>(pts/ms) | Intel MKL on Xeon E5410 |           |           |         |
|-------|------|-----------------------|-------------------------|-----------|-----------|---------|
|       |      |                       | 1 Thread                | 2 Threads | 4 Threads |         |
| MRG   | Unif | dp                    | 7.71E+06                | 88.108x   | 52.854x   | 34.622x |
|       |      | sp                    | 7.45E+06                | 108.64x   | 74.197x   | 71.321x |
|       | Exp  | dp                    | 5.44E+06                | 76.024x   | 44.643x   | 28.767x |
|       |      | sp                    | 2.67E+06                | 47.935x   | 29.682x   | 25.148x |
|       | Norm | dp                    | 4.61E+06                | 81.436x   | 44.348x   | 26.291x |
|       |      | sp                    | 2.44E+06                | 66.789x   | 38.034x   | 23.044x |
|       | Unif | dp                    | 1.74E+07                | 110.97x   | 103.76x   | 71.724x |
|       |      | sp                    | 1.35E+07                | 142.68x   | 132.16x   | 129.88x |
| Sobol | Exp  | dp                    | 7.94E+06                | 60.732x   | 48.157x   | 37.243x |
|       |      | sp                    | 3.21E+06                | 43.312x   | 35.404x   | 30.304x |
|       | Norm | dp                    | 8.60E+06                | 66.137x   | 52.291x   | 40.346x |
|       |      | sp                    | 1.62E+06                | 21.904x   | 18.179x   | 15.314x |

# Summary

---

- Difficult/exciting times for all
- Exciting developments on NVIDIA GPUs – getting better all the time
- NAG is actively involved in R&D in this area and has beta software available
- NAG is seeking feedback on further areas of interest from the community

Thank You

[Ian.Reid@nag.co.uk](mailto:Ian.Reid@nag.co.uk)

[www.nag.co.uk/numeric/gpus](http://www.nag.co.uk/numeric/gpus)

# Acknowledgements

---

- Professor Mike Giles, Oxford University
  - CUDA code
  - Expertise
  - Unbounded enthusiasm
- Technology Strategy Board (TSB), Smith Institute
  - Project funding
- NVIDIA
  - Hardware support and general interaction