
GTC, San Jose Convention Center, CA | September 23, 2010

Correlated Paths for Monte Carlo

Overview

 Background

 Application structure

 Correlated random number generation

 Putting it all together

 Summary

Objective and Assumptions

 Derivative with path-dependence, multiple assets

— Complexity in time: How can we accelerate with the GPU?

— Complexity in space: How should we structure on the GPU?

— Correlation: How to implement on GPU?

— Flexible: How to scale the application?

 Assumptions

— Calibration is separate

— Correlation is constant (e.g. derived from historical data)

BACKGROUND

Option payoff

 Asian option*

 Basket option+

 Asian basket option

* European-style call, fixed strike, discrete arithmetic average
+ European-style call



payoff (tN) max
1

N
S(ti)

i1

N










K,0













payoff (tN) max w jS j (tN)
j1

M










K,0

















payoff (tN) max
1

N
w jS j (ti)

j1

M












i1

N














K,0















Volatility

 Several ways to model volatility

— Flat

— Local volatility surface

— Stochastic volatility

 For this exercise using Heston model for stochastic volatility

APPLICATION STRUCTURE

Preparation

 Batch work for efficiency

 Reuse paths

— Related derivatives

 Reuse (correlated) random numbers

— Derivatives based on same underlyings

— Greeks

Decomposing the Application

Correlated Random
Number Generation

Path
Generation

Payoff

Correlated Random
Number Generation

Path
Generation

Payoff

GPU 0

GPU 1

CORRELATED RANDOM NUMBER GENERATION

Uncorrelated RNG – CURAND

 Marsaglia’s XORWOW

— xor-shift generator

— Skip-ahead for non-overlapping streams

 Available in CUDA 3.2

— PRNG (XORWOW) and QRNG (Sobol’)

— Uniform and Normal distributions

— Batch and inline

Alternative RNGs

 NAG

— PRNG: l’Ecuyer’s MRG32k3a, MT19937

— QRNG: Sobol’

— www.nag.com/numeric/gpus

 Other

— Mersenne Twister for Graphics Processors (MTGP)

— www.math.sci.hiroshima-u.ac.jp/~m-mat

http://www.nag.com/numeric/gpus
http://www.math.sci.hiroshima-u.ac.jp/~m-mat
http://www.math.sci.hiroshima-u.ac.jp/~m-mat
http://www.math.sci.hiroshima-u.ac.jp/~m-mat
http://www.math.sci.hiroshima-u.ac.jp/~m-mat
http://www.math.sci.hiroshima-u.ac.jp/~m-mat

 Each asset is modeled by a traditional Heston model

Wiener processes Vi(t) and Ṽi(t) are independent,

asset-volatility correlation modeled as ρi

 Input 1: single-asset Heston parameters for each UA



dSi(t)

dvi(t)











Si(t) r(t) qi(t) 
 i v i  vi(t) 









dt 

Si(t) vi(t) 0

0 i vi(t)










1 0

i 1 i

2











dVi(t)

d ˜ V i(t)











Underlying Asset Volatility

 Correlation across assets is modeled in Vi(t)

 Vi(t) has correlation matrix Σ = ρi,j

— Asset-volatility correlation between assets i and j is transferred

from asset-asset (ρi,j) to asset-volatility by ρi and ρj

 Input 2: asset-asset correlations ρi,j

Cross-asset Correlation



dSi(t)

dvi(t)











Si(t) r(t) qi(t) 
 i v i  vi(t) 









dt 

Si(t) vi(t) 0

0 i vi(t)










1 0

i 1 i

2











dVi(t)

d ˜ V i(t)











Correlating the Vectors

 Initialization:

— Setup seeds

— Decompose correlation matrix (Cholesky)

 For each time-step in each simulation:

— Generate vector of i.i.d. random numbers, length NUA

— Apply asset-asset correlation (ρi,j) ⇒ X(t)

— Generate vector of i.i.d. random numbers, length NUA

— Apply asset-volatility correlation for each UA (ρi) ⇒ Y(t)

Generating X(t) and Y(t) on the GPU

 Option A: Generate all UAs per thread

i.e. X(0..T) and Y(0..T)

— Apply all asset-asset and asset-vol correlations in same thread

— Nthreads = Nsims

 Option B: Generate one UA per thread

i.e. Xi(0..T) and Yi (0..T)

— Threads cooperate for asset-asset correlation

— Nthreads = Nsims× NUAs

Option A: All UAs per thread

Launch Nsims threads…

for t in 0..Nfixings

for i in 0..NUAs

generate Normally distributed draw z1

for k in 0..i

apply asset-asset correlation-factor ⇒ v1

store v1 to shared memory

generate Normally distributed draw z2

apply asset-vol correlation ⇒ v2

store v1 and v2 to global memory (i.e. Xi(t) and Yi(t))

Option B: One UA per thread

Launch Nsims× NUAs threads…

for t in 0..Nfixings

generate Normally distributed draw z1

store z1 to shared memory, synchronize

for k in 0..rank

apply asset-asset correlation-factor ⇒ v1

generate Normally distributed draw z2

apply asset-vol correlation ⇒ v2

store v1 and v2 to global memory (i.e. Xrank(t) and Yrank(t))

Performance Comparison on C2050

Performance Comparison on C2050

Option A  save one value per UA per thread

 occupancy deteriorates

Option B  save one value per thread

 occupancy remains good

Comparison with Host

PUTTING IT ALL TOGETHER

Correlated Random Numbers

X

Timesteps
Nfixings

Simulations
Nsims

Underlyings
NUAs

UA index is fastest changing in memory

Y

Generating the paths

 Each UA path is independent ⇒ Nsims × NUAs paths

Launch Nsims× NUAs threads…

for t in 0..Nfixings

compute dS or d(log S) Use X(0..T) from CRNG

compute dv Use Y(0..T) from CRNG

update and store S(t), update v

Output from Path Generation

Simulation index is fastest changing in memory

S

Timesteps
Nfixings

Simulations
Nsims

Underlyings
NUAs

Computing the Expected Payoff

 Compute the payoff in each simulation, then reduce

Launch Nsims threads…

for t in 0..Nfixings

for k in 0..NUAs

add wkSk(t) to basket sum

add basket sum to path sum

compute mean

compute payoff

Flexible Payoffs with Thrust

 Thrust allows a more functional approach

thrust::transform(thrust::counting_iterator<unsigned int>(0),
thrust::counting_iterator<unsigned int>(0) + numSims,
payoffs.begin(),
compute_payoff(numFixings,

numUAs,
numSims,
thrust::raw_pointer_cast(&paths[0]),
params));

expayoff = thrust::reduce(payoffs.begin(), payoffs.end()) / numSims;

Flexible Payoff Functor

struct compute_payoff : public thrust::unary_function<unsigned int, Real>
{

unsigned int numFixings, numUAs, numSims;
Real strike, *paths;
__host__ __device__ compute_payoff(…) : … {}
__host__ __device__ Real operator()(unsigned int simIdx) {

Real *base = paths + simIdx;
Real sumBasketValue = static_cast<Real>(0);
for (unsigned int t = 0 ; t < numFixings ; t++) {

Real basketValue = static_cast<Real>(0);
for (unsigned int ua = 0 ; ua < numUAs ; ua++) {

basketValue += base[ua * numSims];
}
sumBasketValue += basketValue / numUAs;
base += numSims * numUAs;

}
return max((sumBasketValue / numFixings) – strike, 0);

}
};

struct compute_payoff : public thrust::unary_function<unsigned int, Real>
{

unsigned int numFixings, numUAs, numSims;
Real strike, *paths;
__host__ __device__ compute_payoff(…) : … {}
__host__ __device__ Real operator()(unsigned int simIdx) {

Real *base = paths + simIdx;
Real sumBasketValue = static_cast<Real>(0);
for (unsigned int t = 0 ; t < numFixings ; t++) {

Real basketValue = static_cast<Real>(0);
for (unsigned int ua = 0 ; ua < numUAs ; ua++) {

basketValue += base[ua * numSims];
}
sumBasketValue += basketValue / numUAs;
base += numSims * numUAs;

}
return max((sumBasketValue / numFixings) – strike, 0);

}
};

Flexible Payoff Functor

Determine

simulation index

Compute basket

value at each fixing

Compute payoff

SUMMARY

Maximizing Performance

 Monte Carlo phases are typically suited to GPU

— Calibration, RNG, path generation, payoff, reduction

 Application design leads to biggest speedup

— Create batches of similar work

— Reuse intermediate data if appropriate

Maximizing Productivity

 Leverage libraries

— RNGs CURAND, NAG, MTGP

— Thrust code.google.com/p/thrust/

— CUSP code.google.com/p/cusp-library/

— CUBLAS

— CULAtools/MAGMA

— CUFFT

— ...

http://code.google.com/p/thrust/
http://code.google.com/p/cusp-library/
http://code.google.com/p/cusp-library/
http://code.google.com/p/cusp-library/

