<
=
=
®

Correlated Paths for Monte Carlo

GTC, San Jose Convention Center, CA | September 23, 2010

Overview

» Background

= Application structure

» Correlated random number generation
= Putting it all together

= Summary

PRESENTED BY @ NVIDIA.

Objective and Assumptions

= Derivative with path-dependence, multiple assets
— Complexity in time: How can we accelerate with the GPU?
— Complexity in space: How should we structure on the GPU?
— Correlation: How to implement on GPU?
— Flexible: How to scale the application?

» Assumptions
— Calibration is separate
— Correlation is constant (e.g. derived from historical data)

PRESENTED BY @ NVIDIA.

eresenenay. 8 MVIDIA.

()
Z
>
®
o
O
4
@)
<
(an

Option payoff

= Asian option’ payoff (t,) = max((%ZS(ti)] —K,OJ
= Basket option* payoff (t,) = max{(ijSj (tN)] —K,OJ

= Asian basket option FUZ AR =NE %

3%k

i=1 \j

* European-style call, fixed strike, discrete arithmetic average
+ European-style call eresenteney <24 MVIDIA.

Volatility

= Several ways to model volatility
— Flat
— Local volatility surface
— Stochastic volatility

= For this exercise using Heston model for stochastic volatility

PRESENTED BY @ NVIDIA.

eresenenay. 8 MVIDIA.

Ll
o
-
—
O
>
oz
—
w
Z
o
=
—
-l
(a8
(a
<

Preparation

» Batch work for efficiency
= Reuse paths
— Related derivatives

» Reuse (correlated) random numbers
— Derivatives based on same underlyings
— Greeks

PRESENTED BY @ NVIDIA.

Decomposing the Application

GPUO

PRESENTED BY @ n‘"DlA.

CORRELATED RANDOM NUMBER GENERATION

eresenenay. 8 MVIDIA.

Uncorrelated RNG - CURAND

= Marsaglia’s XORWOW

— xor-shift generator
— Skip-ahead for non-overlapping streams

= Available in CUDA 3.2
— PRNG (XORWOW) and QRNG (Sobol’)
— Uniform and Normal distributions
— Batch and inline

PRESENTED BY @ NVIDIA.

Alternative RNGs

* NAG
— PRNG: U’Ecuyer’s MRG32k3a, MT19937
— QRNG: Sobol’
— Www.hag.com/numeric/gpus

= Other

— Mersenne Twister for Graphics Processors (MTGP)

— www.math.sci.hiroshima-u.ac.jp/~m-mat

PRESENTED BY @ NVIDIA.

http://www.nag.com/numeric/gpus
http://www.math.sci.hiroshima-u.ac.jp/~m-mat
http://www.math.sci.hiroshima-u.ac.jp/~m-mat
http://www.math.sci.hiroshima-u.ac.jp/~m-mat
http://www.math.sci.hiroshima-u.ac.jp/~m-mat
http://www.math.sci.hiroshima-u.ac.jp/~m-mat

Underlying Asset Volatility

= Each asset is modeled by a traditional Heston model

[dSi(t)] [S (O () - q,(t))] {Sl.(t)v,.(t) 0 J(l 0 j{dVi(t)]
)

dv (1) V1=p; \dV (1)

K(v, —v, (t)) 0 /v, (t

= Wiener processes V,(t) and V;(t) are independent,
asset-volatility correlation modeled as p.

* [nput 1: single-asset Heston parameters for each UA

EEEEEEEEEEE <SANVIDIA.

Cross-asset Correlation

» Correlation across assets is modeled in V,(t)

(dSi(t)]_[Sl.(t)(r(t)—q,.(t))]dtJ{Si(t)v,.(t) 0 J(l 0 j{dlé(z)}
N

OV) V1= \dV(1)

0 Vit
= Vi(t) has correlation matrix Z = p; ;

— Asset-volatility correlation between assets i and j is transferred
from asset-asset (p; ;) to asset-volatility by p; and p;

" Input 2: asset-asset correlations p; ;

eresenenay. 8 MVIDIA.

Correlating the Vectors

» |[nitialization:
— Setup seeds
— Decompose correlation matrix (Cholesky)

= For each time-step in each simulation:
— Generate vector of i.i.d. random numbers, length N,
— Apply asset-asset correlation (p; ;) = X(t)
— Generate vector of i.i.d. random numbers, length N,
— Apply asset-volatility correlation for each UA (p;) = Y(t)

PRESENTED BY @ NVIDIA.

Generating X(t) and Y(t) on the GPU

= Option A: Generate all UAs per thread
i.e. X(0..T) and Y(0..T)

— Apply all asset-asset and asset-vol correlations in same thread

I Nthreads = Nsims

» Option B: Generate one UA per thread
i.e. X,(0..T)and Y, (0..7)

— Threads cooperate for asset-asset correlation

i Nthreads = Nsims X NUAs

PRESENTED BY @ NVIDIA.

Option A: All UAs per thread

Launch Ng;, threads...

for t in 0. .Nejings
for 1 in 0. .N,,.
generate Normally distributed draw z;
for k in 0..1
apply asset-asset correlation-factor = v,

store v; to shared memory
generate Normally distributed draw z,
apply asset-vol correlation = v,

store v; and v, to global memory (i.e. X;(t) and Y;(t))

PRESENTED BY @ NVIDIA.

Option B: One UA per thread

Launch N, X Nyas threads...

for t in 0. .Nejings
generate Normally distributed draw z;
store z; to shared memory, synchronize
for k in 0..rank
apply asset-asset correlation-factor = v,
generate Normally distributed draw z,
apply asset-vol correlation = v,

store v; and v, to global memory (i.e. X_,(t) and Y, (t))

PRESENTED BY @ NVIDIA.

Performance Comparison on C2050

. ® Option A (single)
. A Option B (single)
., @ Option A (double)
A Option B (double)

Gigasamples/sec

_ rresenensr 24 NVIDIA.
UAs in basket

Performance Comparison on C2050

Option A ® save one value per UA per thread
& occupancy deteriorates
Option B o save one value per thread
g & occupancy remains good
2
v
K
(=}
£
o
w
]
2
o
----------------------------------- .."
0 ' - . L TTmmeeeeas ®
0 20 40 60 80 100

UAs in basket

eresenenay. 8 MVIDIA.

Comparison with Host

W CPU: 6 cores @ 2.93 GHz
B GPU: C2050

(N

=]

)

7]

w

~—

w

@ 1

o

£

(1]

©

o

&)

00 30 100

eresenenay. 8 MVIDIA.

UAs in basket

eresenenay. 8 MVIDIA.

o
L]
L
T
L
3
et
—
-
<
=
O
Z
T
T
-
a1

Correlated Random Numbers

Simulations

Underlyings T
\

N UAs
sims

Timesteps
Nfixings

UA index is fastest changing in memory

eresenenay. 8 MVIDIA.

Generating the paths
= Each UA path is independent = N.... X Ny, paths

Launch N, X Nyas threads...

for t in 0. .Nejings
compute dS or d(log S) Use X(0..T7) from CRNG
compute dv Use Y(0..T) from CRNG
update and store S(t), update v

PRESENTED BY @ NVIDIA.

Output from Path Generation

Simulations

Underlyings T
Nsims

N UAs

Timesteps
Nfixings

Simulation index is fastest changing in memory

eresenenay. 8 MVIDIA.

Computing the Expected Payoff

= Compute the payoff in each simulation, then reduce

Launch Ny, threads...

for t in 0. .Nejings
for k in 0..N,,.
add w, S, (t) to basket sum
add basket sum to path sum
compute mean

compute payoff

eresenenay. 8 MVIDIA.

Flexible Payoffs with Thrust

= Thrust allows a more functional approach

thrust::transform(thrust: :counting_iterator<unsigned int>(0),
thrust::counting_iterator<unsigned int>(0) + numSims,
payoffs.begin(),
compute_payoff(numFixings,
NUMUAS ,
numsims,
thrust::raw_pointer_cast(&paths[0]),
params)) ;

expayoff = thrust::reduce(payoffs.begin(), payoffs.end()) / numSims;

PRESENTED BY @ NVIDIA.

Flexible Payoff Functor

struct compute_payoff : public thrust::unary_function<unsigned int, Real>
{
unsigned int numFixings, numUAS, numSims;
Real strike, *paths;
__host__ __device__ compute_payoff(.) : .. {}
__host__ __device__ Real operator() (unsigned int simIdx) {
Real *base = paths + simIdx;
Real sumBasketvalue = static_cast<Real>(0);
for (unsigned int t = 0 ; t < numFixings ; t++) {
Real basketvalue = static_cast<Real>(0);
for (unsigned int ua = 0 ; ua < numUAs ; ua++) {
basketvalue += base[ua * numSims];
}
sumBasketvalue += basketvalue / numUAs;
base += numSims * numUAS;

}

return max((sumBasketvalue / numFixings) - strike, 0);

};
PRESENTED BY @ NVIDIA.

Flexible Payoff Functor

struct compute_payoff : public thrust::unary_function<unsigned int, Real>
{
unsigned int numFixings, numUAS, numSims;
Real strike, *paths;
__host__ __devjce__ compute_payoff(..) Do {} . _ Determine
__host__ __dey1ce__ Real operaFor()(uns1gned int simIdx) { /////w simulation index
Real *base = paths + simIdx;
Real sumBasketvalue = static_cast<Real>(0);
for (unsigned int t = 0 ; t < numFixings ; t++) {
Real basketvalue = static_cast<Real>(0);
for (unsigned int ua = 0 ; ua < numUAs ; ua++) {
basketvalue += base[ua * numSims]; Compute basket
1 value at each fixing
sumBasketvalue += basketvalue / numUAs;
base += numSims * numUAS;

}
return max((sumBasketvalue / numFixings) - strike, O)\;\\\\1

1 Compute payoff

PRESENTED BY @ NVIDIA.

<
=
=
®

Maximizing Performance

= Monte Carlo phases are typically suited to GPU
— Calibration, RNG, path generation, payoff, reduction

= Application design leads to biggest speedup
— Create batches of similar work
— Reuse intermediate data if appropriate

PRESENTED BY @ NVIDIA.

Maximizing Productivity

» | everage libraries
— RNGs CURAND, NAG, MTGP
— Thrust code.google.com/p/thrust/

— CUSP code.google.com/p/cusp-library/

— CUBLAS
— CULAtools/MAGMA
— CUFFT

PRESENTED BY @ NVIDIA.

http://code.google.com/p/thrust/
http://code.google.com/p/cusp-library/
http://code.google.com/p/cusp-library/
http://code.google.com/p/cusp-library/

