

GPU TECHNOLOGY CONFERENCE

Correlated Paths for Monte Carlo

GTC, San Jose Convention Center, CA | September 23, 2010

Overview

- Background
- Application structure
- Correlated random number generation
- Putting it all together
- Summary

Objective and Assumptions

- Derivative with path-dependence, multiple assets
 - Complexity in time: How can we accelerate with the GPU?
 - Complexity in space: How should we structure on the GPU?
 - Correlation: How to implement on GPU?
 - Flexible: How to scale the application?
- Assumptions
 - Calibration is separate
 - Correlation is constant (e.g. derived from historical data)

BACKGROUND

Option payoff

- Asian option^{*}

$$\text{payoff}(t_N) = \max\left(\left(\frac{1}{N} \sum_{i=1}^N S(t_i)\right) - K, 0\right)$$

- Basket option⁺

$$\text{payoff}(t_N) = \max\left(\left(\sum_{j=1}^M w_j S_j(t_N)\right) - K, 0\right)$$

- Asian basket option

$$\text{payoff}(t_N) = \max\left(\left(\frac{1}{N} \sum_{i=1}^N \left(\sum_{j=1}^M w_j S_j(t_i)\right)\right) - K, 0\right)$$

^{*} European-style call, fixed strike, discrete arithmetic average

⁺ European-style call

Volatility

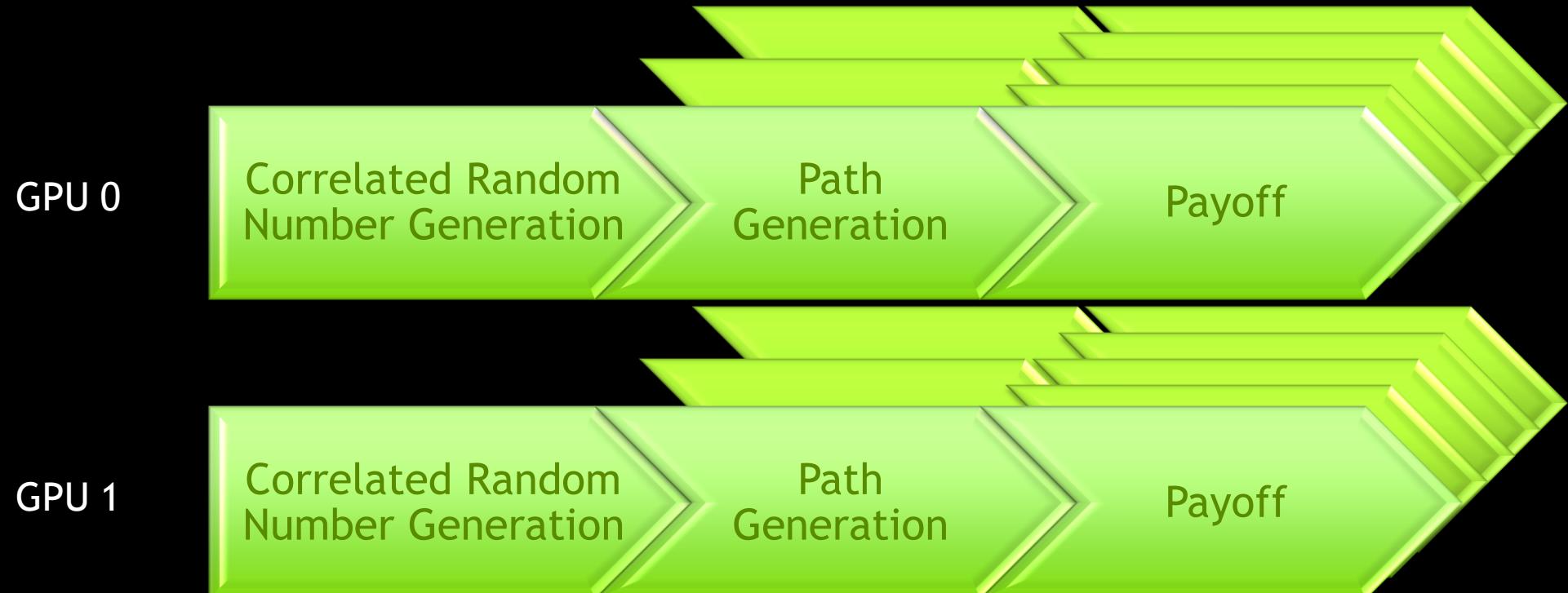
- Several ways to model volatility
 - Flat
 - Local volatility surface
 - Stochastic volatility
- For this exercise using Heston model for stochastic volatility

APPLICATION STRUCTURE

Preparation

- Batch work for efficiency
- Reuse paths
 - Related derivatives
- Reuse (correlated) random numbers
 - Derivatives based on same underlyings
 - Greeks

Decomposing the Application



CORRELATED RANDOM NUMBER GENERATION

Uncorrelated RNG - CURAND

- Marsaglia's XORWOW
 - xor-shift generator
 - Skip-ahead for non-overlapping streams
- Available in CUDA 3.2
 - PRNG (XORWOW) and QRNG (Sobol')
 - Uniform and Normal distributions
 - Batch and inline

Alternative RNGs

- NAG
 - PRNG: l'Ecuyer's MRG32k3a, MT19937
 - QRNG: Sobol'
 - www.nag.com/numeric/gpus
- Other
 - Mersenne Twister for Graphics Processors (MTGP)
 - www.math.sci.hiroshima-u.ac.jp/~m-mat

Underlying Asset Volatility

- Each asset is modeled by a traditional Heston model

$$\begin{pmatrix} dS_i(t) \\ dv_i(t) \end{pmatrix} = \begin{pmatrix} S_i(t)(r(t) - q_i(t)) \\ \kappa_i(\bar{v}_i - v_i(t)) \end{pmatrix} dt + \begin{pmatrix} S_i(t)\sqrt{v_i(t)} & 0 \\ 0 & \eta_i\sqrt{v_i(t)} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \rho_i & \sqrt{1 - \rho_i^2} \end{pmatrix} \begin{pmatrix} dV_i(t) \\ d\tilde{V}_i(t) \end{pmatrix}$$

- Wiener processes $V_i(t)$ and $\tilde{V}_i(t)$ are independent, asset-volatility correlation modeled as ρ_i
- Input 1: single-asset Heston parameters for each UA

Cross-asset Correlation

- Correlation across assets is modeled in $V_i(t)$

$$\begin{pmatrix} dS_i(t) \\ dv_i(t) \end{pmatrix} = \begin{pmatrix} S_i(t)(r(t) - q_i(t)) \\ \kappa_i(\bar{v}_i - v_i(t)) \end{pmatrix} dt + \begin{pmatrix} S_i(t)\sqrt{v_i(t)} & 0 \\ 0 & \eta_i\sqrt{v_i(t)} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \rho_i & \sqrt{1 - \rho_i^2} \end{pmatrix} \begin{pmatrix} dV_i(t) \\ d\tilde{V}_i(t) \end{pmatrix}$$

- $V_i(t)$ has correlation matrix $\Sigma = \rho_{i,j}$
 - Asset-volatility correlation between assets i and j is transferred from asset-asset ($\rho_{i,j}$) to asset-volatility by ρ_i and ρ_j
- Input 2: asset-asset correlations $\rho_{i,j}$

Correlating the Vectors

- Initialization:
 - Setup seeds
 - Decompose correlation matrix (Cholesky)
- For each time-step in each simulation:
 - Generate vector of i.i.d. random numbers, length N_{UA}
 - Apply asset-asset correlation ($\rho_{i,j}$) $\Rightarrow X(t)$
 - Generate vector of i.i.d. random numbers, length N_{UA}
 - Apply asset-volatility correlation for each UA (ρ_i) $\Rightarrow Y(t)$

Generating $X(t)$ and $Y(t)$ on the GPU

- Option A: Generate all UAs per thread
 - i.e. $X(0..T)$ and $Y(0..T)$
 - Apply all asset-asset and asset-vol correlations in same thread
 - $N_{\text{threads}} = N_{\text{sims}}$
- Option B: Generate one UA per thread
 - i.e. $X_i(0..T)$ and $Y_i(0..T)$
 - Threads cooperate for asset-asset correlation
 - $N_{\text{threads}} = N_{\text{sims}} \times N_{\text{UAs}}$

Option A: All UAs per thread

Launch N_{sims} threads...

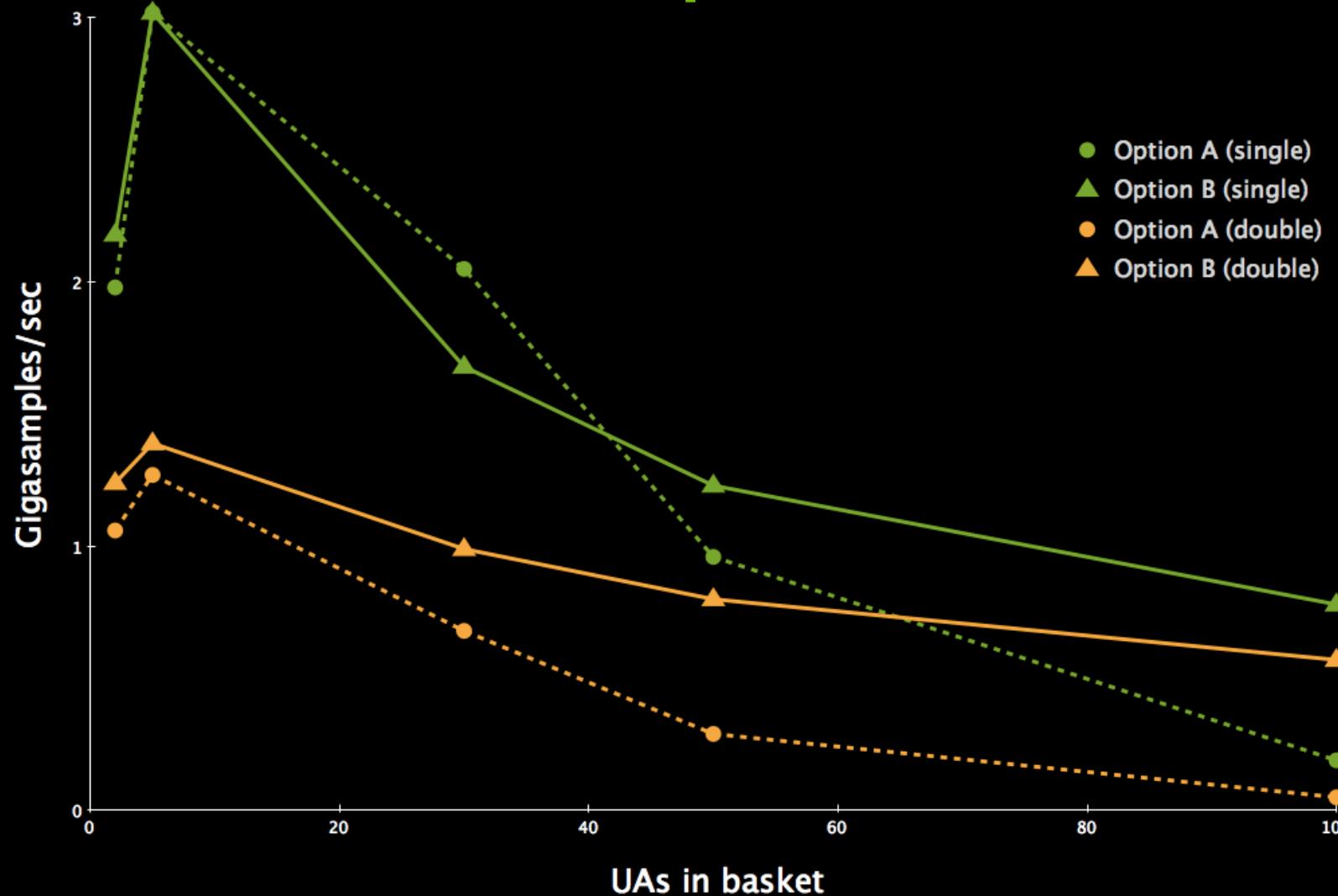
```
for t in 0..N_fixings
    for i in 0..N_UAs
        generate Normally distributed draw  $z_1$ 
        for k in 0..i
            apply asset-asset correlation-factor  $\Rightarrow v_1$ 
            store  $v_1$  to shared memory
            generate Normally distributed draw  $z_2$ 
            apply asset-vol correlation  $\Rightarrow v_2$ 
            store  $v_1$  and  $v_2$  to global memory (i.e.  $x_i(t)$  and  $y_i(t)$ )
```

Option B: One UA per thread

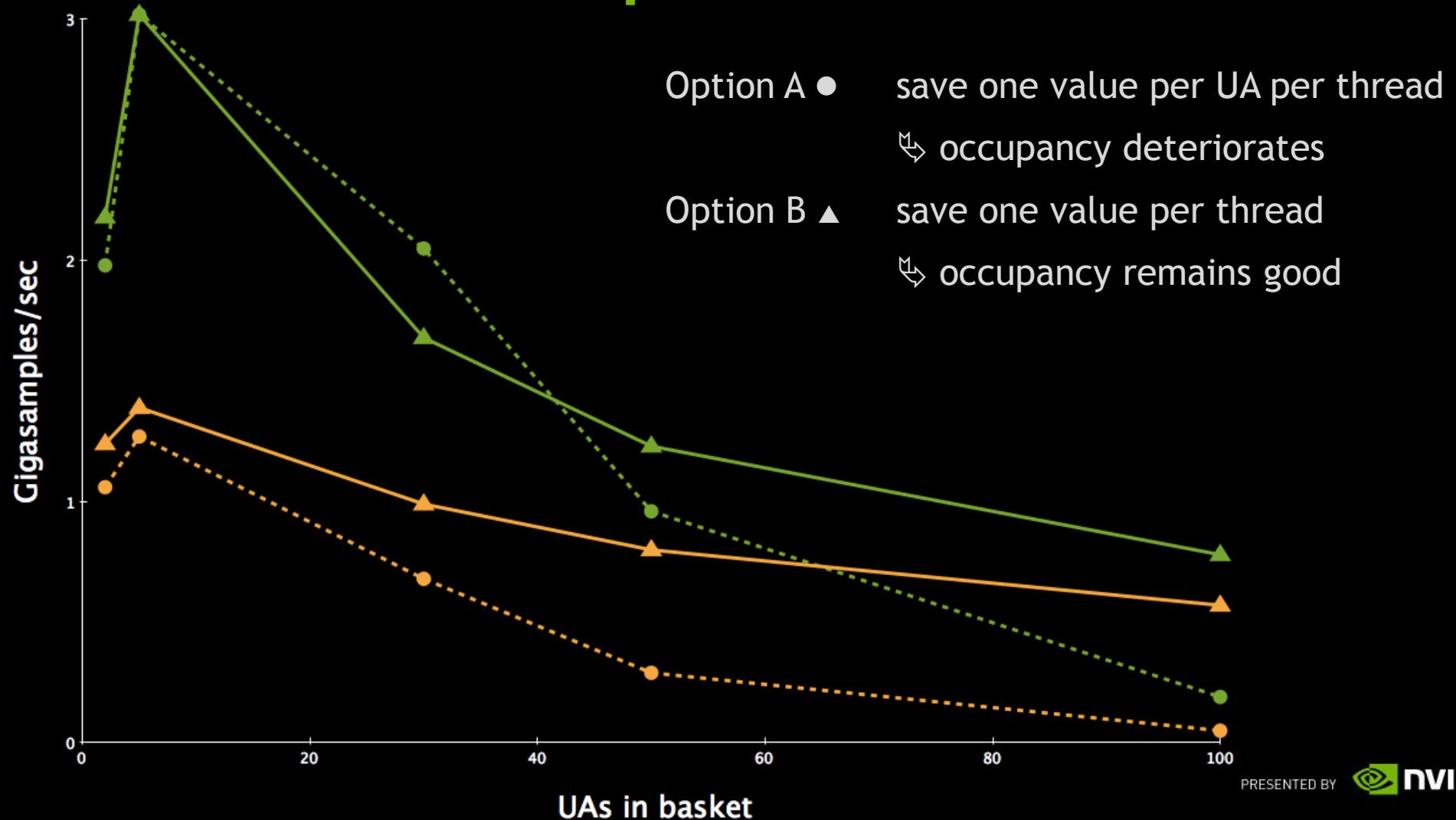
Launch $N_{\text{sims}} \times N_{\text{UAs}}$ threads...

```
for t in 0..Nfixings
    generate Normally distributed draw  $z_1$ 
    store  $z_1$  to shared memory, synchronize
    for k in 0..rank
        apply asset-asset correlation-factor  $\Rightarrow v_1$ 
        generate Normally distributed draw  $z_2$ 
        apply asset-vol correlation  $\Rightarrow v_2$ 
        store  $v_1$  and  $v_2$  to global memory (i.e.  $x_{\text{rank}}(t)$  and  $y_{\text{rank}}(t)$ )
```

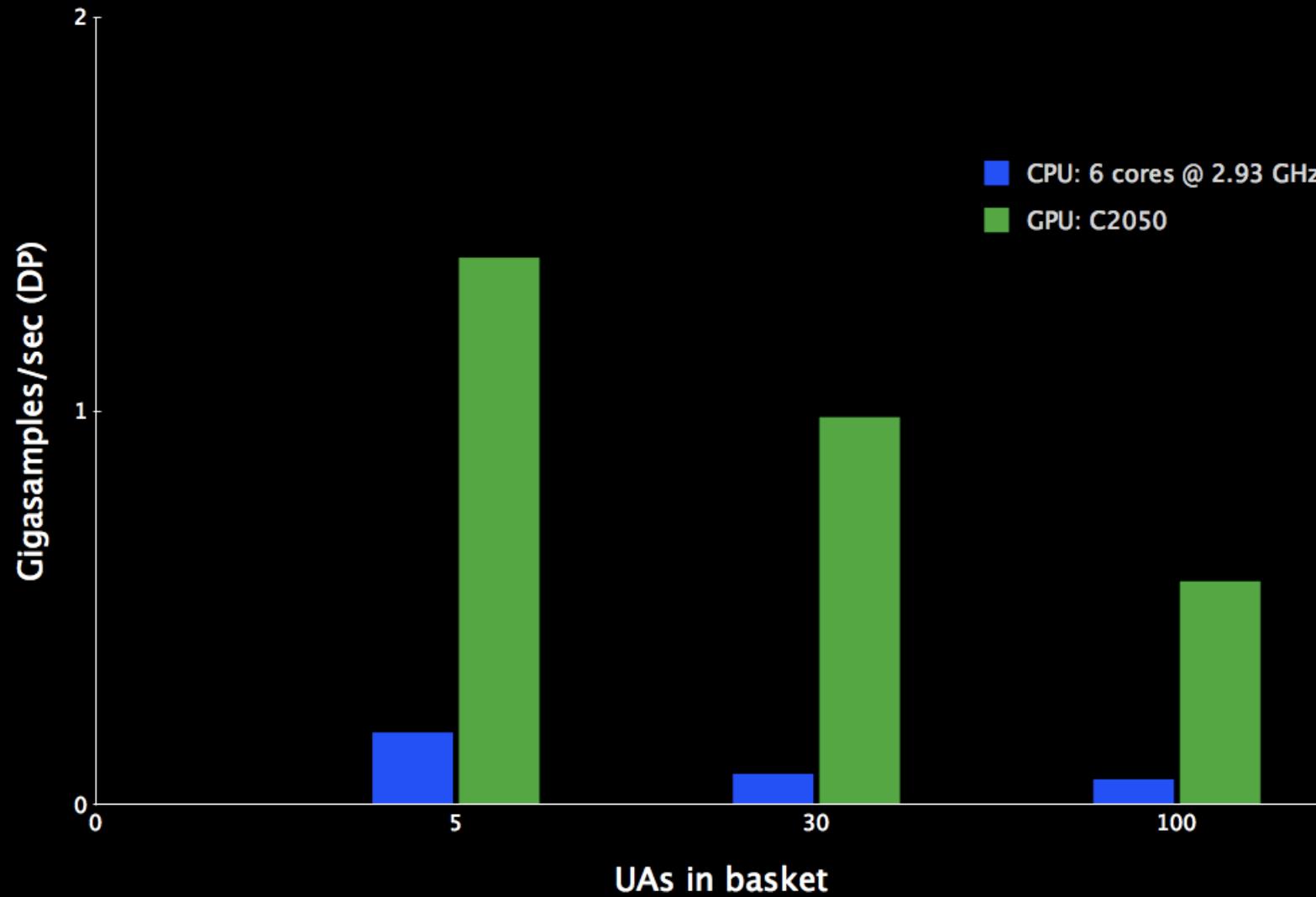
Performance Comparison on C2050



Performance Comparison on C2050

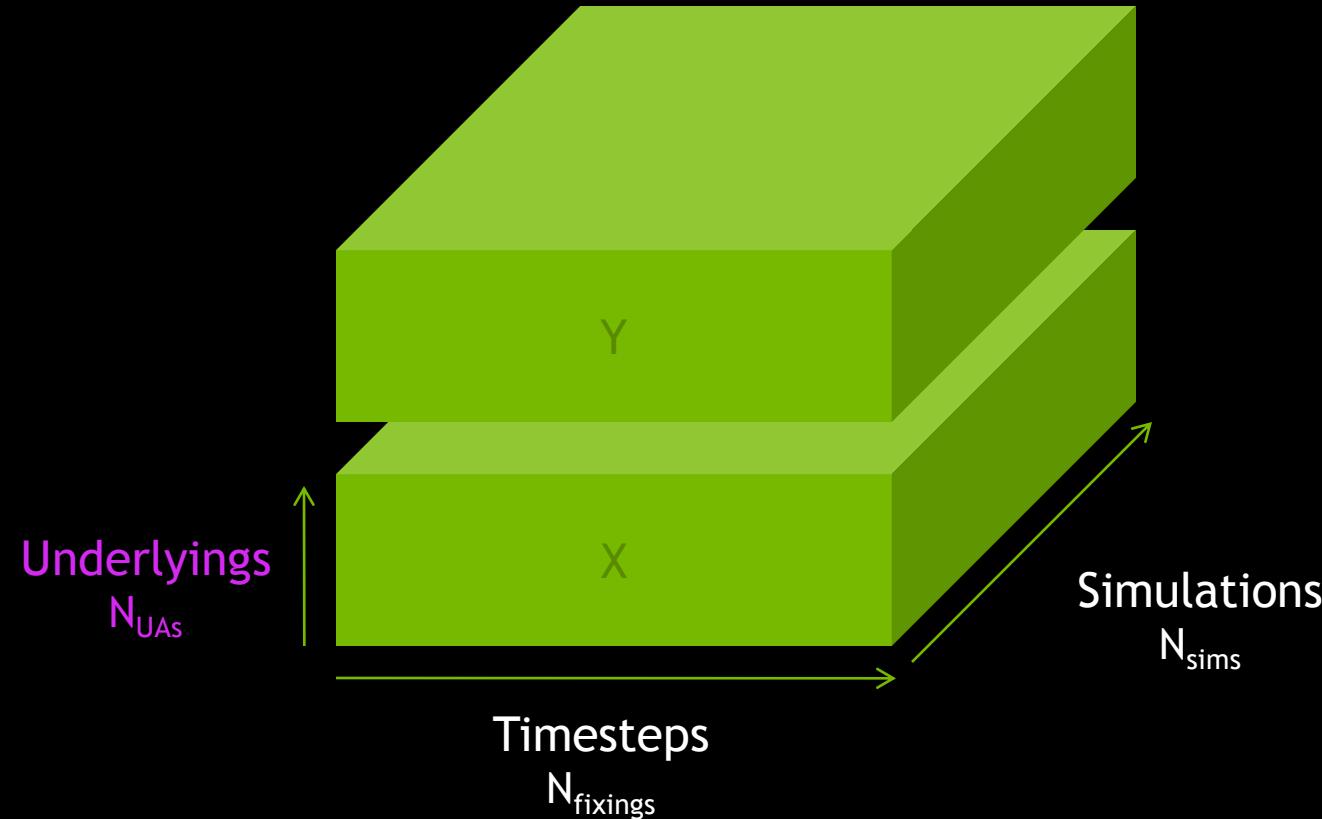


Comparison with Host



PUTTING IT ALL TOGETHER

Correlated Random Numbers



UA index is fastest changing in memory

Generating the paths

- Each UA path is independent $\Rightarrow N_{\text{sims}} \times N_{\text{UAs}}$ paths

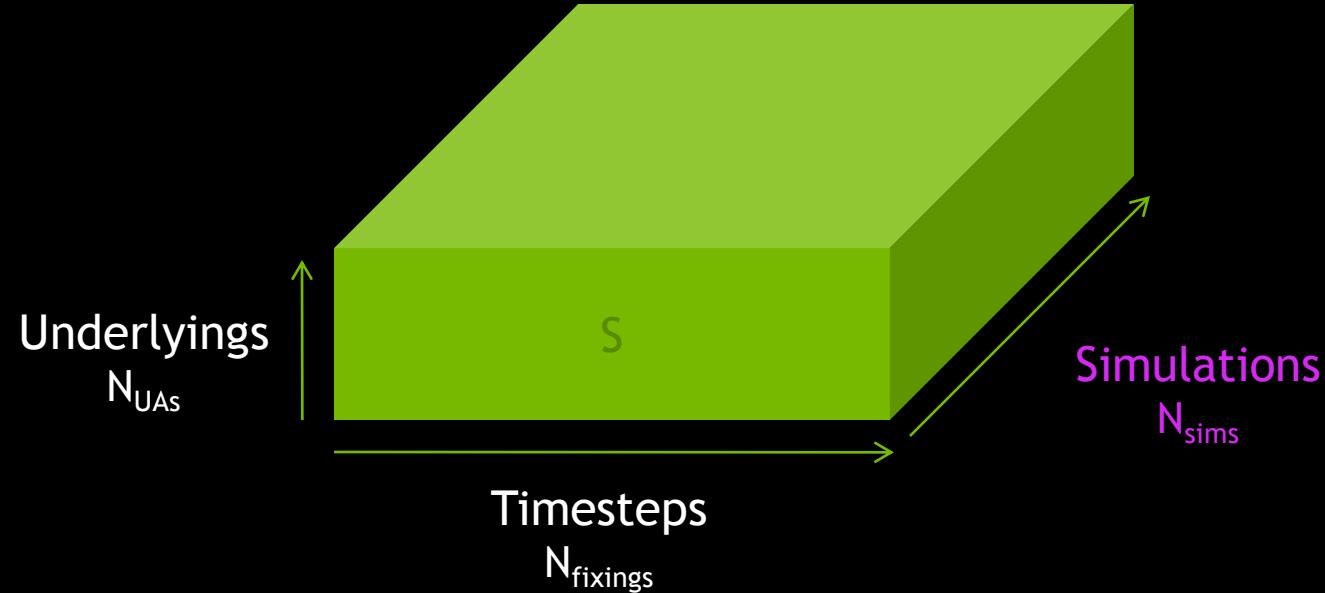
Launch $N_{\text{sims}} \times N_{\text{UAs}}$ threads...

```
for t in 0..Nfixings
    compute ds or d(log S)
    compute dv
    update and store S(t), update v
```

use $X(0..T)$ from CRNG

use $Y(0..T)$ from CRNG

Output from Path Generation



Simulation index is fastest changing in memory

Computing the Expected Payoff

- Compute the payoff in each simulation, then reduce

Launch N_{sims} threads...

```
for t in 0..N_fixings
    for k in 0..N_UAs
        add  $w_k s_k(t)$  to basket sum
        add basket sum to path sum
    compute mean
    compute payoff
```

Flexible Payoffs with Thrust

- Thrust allows a more functional approach

```
thrust::transform(thrust::counting_iterator<unsigned int>(0),
                 thrust::counting_iterator<unsigned int>(0) + numSims,
                 payoffs.begin(),
                 compute_payoff(numFixings,
                               numUAs,
                               numSims,
                               thrust::raw_pointer_cast(&paths[0]),
                               params));

expayoff = thrust::reduce(payoffs.begin(), payoffs.end()) / numSims;
```

Flexible Payoff Functor

```
struct compute_payoff : public thrust::unary_function<unsigned int, Real>
{
    unsigned int numFixings, numUAs, numSims;
    Real strike, *paths;
    __host__ __device__ compute_payoff(...) : ... {}
    __host__ __device__ Real operator()(unsigned int simIdx) {
        Real *base = paths + simIdx;
        Real sumBasketValue = static_cast<Real>(0);
        for (unsigned int t = 0 ; t < numFixings ; t++) {
            Real basketValue = static_cast<Real>(0);
            for (unsigned int ua = 0 ; ua < numUAs ; ua++) {
                basketValue += base[ua * numSims];
            }
            sumBasketValue += basketValue / numUAs;
            base += numSims * numUAs;
        }
        return max((sumBasketValue / numFixings) - strike, 0);
    }
};
```

Flexible Payoff Functor

```
struct compute_payoff : public thrust::unary_function<unsigned int, Real>
{
    unsigned int numFixings, numUAs, numSims;
    Real strike, *paths;
    __host__ __device__ compute_payoff(...) : ... {}
    __host__ __device__ Real operator()(unsigned int simIdx) {
        Real *base = paths + simIdx;
        Real sumBasketValue = static_cast<Real>(0);
        for (unsigned int t = 0 ; t < numFixings ; t++) {
            Real basketValue = static_cast<Real>(0);
            for (unsigned int ua = 0 ; ua < numUAs ; ua++) {
                basketValue += base[ua * numSims];
            }
            sumBasketValue += basketValue / numUAs;
            base += numSims * numUAs;
        }
        return max((sumBasketValue / numFixings) - strike, 0);
    }
};
```

Determine simulation index

Compute basket value at each fixing

Compute payoff

SUMMARY

Maximizing Performance

- Monte Carlo phases are typically suited to GPU
 - Calibration, RNG, path generation, payoff, reduction
- Application design leads to biggest speedup
 - Create batches of similar work
 - Reuse intermediate data if appropriate

Maximizing Productivity

- Leverage libraries

- RNGs CURAND, NAG, MTGP
- Thrust code.google.com/p/thrust/
- CUSP code.google.com/p/cusp-library/
- CUBLAS
- CULAtools/MAGMA
- CUFFT
- ...

