
M. Naumov*, L. S. Chien*, P. Vandermersch* and U. Kapasi*
San Jose, CA | September 23, 2010

CUSPARSE Library

*NVIDIA

Outline

 Introduction to CUSPARSE library
 Level-1, Level-2, Level-3 and Format Conversions

 Matrix-vector multiplication:
 Detailed description, performance results

 Application Examples
 Google PageRank Algorithm, Atmospheric Modeling

 Conclusion

Sparse Storage Formats

 Many choices for sparse matrix storage

 COO (more general)

 CSR

 CSC

 DIAG (more specific)

 ELL

 HYB (ELL + CSR)

 Things to keep in mind

 focused on more than matrix-vector multiplication

 focus on more general formats

 might add new formats in the future

Sparse Storage Formats

1

1

1.0

Row Index

Col Index

Values

 Coordinate (COO) Format

1.0

6.0

4.0

7.0

3.02.0

5.0

1 2 3 4

1

2

3

4

Sparse Storage Formats

1.0

6.0

4.0

7.0

3.02.0

5.0

1 2 3 4

1

2

3

4

1 2 2

1 1 2

1.0 2.0 3.0

Row Index

Col Index

Values

 Coordinate (COO) Format

Sparse Storage Formats

1 2 2 3

1 1 2 3

1.0 2.0 3.0 4.0

Row Index

Col Index

Values

1.0

6.0

4.0

7.0

3.02.0

5.0

1 2 3 4

1

2

3

4

 Coordinate (COO) Format

Sparse Storage Formats

1.0

6.0

4.0

7.0

3.02.0

5.0

1 2 3 4

1

2

3

4

1 2 2 3 4 4 4

1 1 2 3 1 3 4

1.0 2.0 3.0 4.0 5.0 6.0 7.0

Row Index

Col Index

Values

 Coordinate (COO) Format

 Coordinate (COO) Format

 Compressed Sparse Row (CSR)

1.0

6.0

4.0

7.0

3.02.0

5.0

1 2 3 4

1

2

3

4

row-major order

Sparse Storage Formats

1 2 2 3 4 4 4

1 1 2 3 1 3 4

1.0 2.0 3.0 4.0 5.0 6.0 7.0

Row Index

Col Index

Values

1

1

1.0

Row Ptr

Col Index

Values

 Coordinate (COO) Format

 Compressed Sparse Row (CSR)

1.0

6.0

4.0

7.0

3.02.0

5.0

1 2 3 4

1

2

3

4

row-major order

Sparse Storage Formats

1 2 2 3 4 4 4

1 1 2 3 1 3 4

1.0 2.0 3.0 4.0 5.0 6.0 7.0

Row Index

Col Index

Values

1 2

1 1 2

1.0 2.0 3.0

Row Ptr

Col Index

Values

Sparse Storage Formats

 Coordinate (COO) Format

 Compressed Sparse Row (CSR)

1 2 2 3 4 4 4

1 1 2 3 1 3 4

1.0 2.0 3.0 4.0 5.0 6.0 7.0

Row Index

Col Index

Values

1.0

6.0

4.0

7.0

3.02.0

5.0

1 2 3 4

1

2

3

4

1 2 4

1 1 2 3

1.0 2.0 3.0 4.0

Row Ptr

Col Index

Values

row-major order

Sparse Storage Formats

 Coordinate (COO) Format

 Compressed Sparse Row (CSR)

1 2 2 3 4 4 4

1 1 2 3 1 3 4

1.0 2.0 3.0 4.0 5.0 6.0 7.0

Row Index

Col Index

Values

1.0

6.0

4.0

7.0

3.02.0

5.0

1 2 3 4

1

2

3

4

1 2 4 5 8

1 1 2 3 1 3 4

1.0 2.0 3.0 4.0 5.0 6.0 7.0

Row Ptr

Col Index

Values

row-major order

Sparse Storage Formats

 Coordinate (COO) Format

 Compressed Sparse Row (CSR)

 Compressed Sparse Column (CSC)

1 2 2 3 4 4 4

1 1 2 3 1 3 4

1.0 2.0 3.0 4.0 5.0 6.0 7.0

Row Index

Col Index

Values

1.0

6.0

4.0

7.0

3.02.0

5.0

1 2 3 4

1

2

3

4

1 2 4 5 8

1 1 2 3 1 3 4

1.0 2.0 3.0 4.0 5.0 6.0 7.0

Row Ptr

Col Index

Values

1 2 4 2 3 4 4

1 4 5 7 8

1.0 2.0 3.0 4.0 5.0 6.0 7.0

Row Index

Col Ptr

Values

column-major order

row-major order

Basic Linear Algebra Subroutines
 Sparse vector storage

1.0 0.0 0.0 2.0 0.0 3.0

1 2 3 4 5 6

dense vector

Basic Linear Algebra Subroutines
 Sparse vector storage

1.0 2.0 3.0

1 4 6Index

Values 1.0 0.0 0.0 2.0 0.0 3.0

1 2 3 4 5 6

sparse vector dense vector

Basic Linear Algebra Subroutines
 Sparse vector storage

 Function naming convention
 Follows the general rule

cusparse<Type>[<sparse data format>]<operation>[<sparse data format>]

1.0 2.0 3.0

1 4 6Index

Values 1.0 0.0 0.0 2.0 0.0 3.0

1 2 3 4 5 6

sparse vector dense vector

Basic Linear Algebra Subroutines
 Sparse vector storage

 Function naming convention
 Follows the general rule

cusparse<Type>[<sparse data format>]<operation>[<sparse data format>]

 For example,

(i) single precision, sparse matrix (in csr storage) x dense vector =>

cusparseScsrmv

1.0 2.0 3.0

1 4 6Index

Values 1.0 0.0 0.0 2.0 0.0 3.0

1 2 3 4 5 6

sparse vector dense vector

Basic Linear Algebra Subroutines
 Sparse vector storage

 Function naming convention
 Follows the general rule

cusparse<Type>[<sparse data format>]<operation>[<sparse data format>]

 For example,

(i) single precision, sparse matrix (in csr storage) x dense vector =>

cusparseScsrmv

(ii) double precision, sparse matrix (in csr storage) x dense tall-matrix =>

cusparseDcsrmm

1.0 2.0 3.0

1 4 6Index

Values 1.0 0.0 0.0 2.0 0.0 3.0

1 2 3 4 5 6

sparse vector dense vector

(set of vectors)

Basic Linear Algebra Subroutines

 Level 1 (sparse vector x and dense vector y)
 axpyi (vector add) y = y + \alpha x

Basic Linear Algebra Subroutines

 Level 1 (sparse vector x and dense vector y)
 axpyi (vector add)

 doti (dot product)
y = y + \alpha x

\alpha = yT * x

Basic Linear Algebra Subroutines

 Level 1 (sparse vector x and dense vector y)
 axpyi (vector add)

 doti (dot product)

 dotci (conjugate dot product)

y = y + \alpha x

\alpha = yT * x

\alpha = yH * x

Basic Linear Algebra Subroutines

 Level 1 (sparse vector x and dense vector y)
 axpyi (vector add)

 doti (dot product)

 dotci (conjugate dot product)

 gthr (gather)

y = y + \alpha x

\alpha = yT * x

\alpha = yH * x

x = y

Basic Linear Algebra Subroutines

 Level 1 (sparse vector x and dense vector y)
 axpyi (vector add)

 doti (dot product)

 dotci (conjugate dot product)

 gthr (gather)

 gthrz (gather and zero-out)

y = y + \alpha x

\alpha = yT * x

\alpha = yH * x

x = y

x = y and x_pattern(y)=0

Basic Linear Algebra Subroutines

 Level 1 (sparse vector x and dense vector y)
 axpyi (vector add)

 doti (dot product)

 dotci (conjugate dot product)

 gthr (gather)

 gthrz (gather and zero-out)

 sctr (scatter)

y = y + \alpha x

\alpha = yT * x

\alpha = yH * x

x = y

y = x

x = y and x_pattern(y)=0

Basic Linear Algebra Subroutines

 Level 1 (sparse vector x and dense vector y)
 axpyi (vector add)

 doti (dot product)

 dotci (conjugate dot product)

 gthr (gather)

 gthrz (gather and zero-out)

 sctr (scatter)

 roti (Givens rotation)

y = y + \alpha x

\alpha = yT * x

\alpha = yH * x

x = y

y = x

[x, y] = [x, y] c -s

s c

x = y and x_pattern(y)=0

Basic Linear Algebra Subroutines

 Level 2 and 3

 csrmv (matrix-vector multiplication)

1.0

2.0

3.0

4.0

x1

x2

x3

x4

\alpha + \beta

1.0

6.0

4.0

7.0

3.02.0

5.0

x1

x2

x3

x4

Basic Linear Algebra Subroutines

 Level 2 and 3

 csrmv (matrix-vector multiplication)

 csrmm (matrix-tall-matrix multiplication)

1.0

2.0

3.0

4.0

x1

x2

x3

x4

\alpha + \beta

1.0

6.0

4.0

7.0

3.02.0

5.0

1.0

2.0

3.0

4.0

\alpha + \beta

1.0

6.0

4.0

7.0

3.02.0

5.0

5.0

6.0

7.0

8.0

x1

x2

x3

x4

x11

x21

x31

x41

x12

x22

x32

x42

x11

x21

x31

x41

x12

x22

x32

x42

Basic Linear Algebra Subroutines

 Level 2 and 3 (future work)

 csrtrsv (triangular solve with a single right-hand-side)

x1

x2

x3

x4

10.0

20.0

30.0

40.0

= \alpha

1.0

6.0

4.0

7.0

3.02.0

5.0

Basic Linear Algebra Subroutines

 Level 2 and 3 (future work)

 csrtrsv (triangular solve with a single right-hand-side)

 csrtrsm (triangular solve with multiple right-hand-sides)

x1

x2

x3

x4

10.0

20.0

30.0

40.0

= \alpha

1.0

6.0

4.0

7.0

3.02.0

5.0

x11

x21

x31

x41

10.0

20.0

30.0

40.0

= \alpha

1.0

6.0

4.0

7.0

3.02.0

5.0

x12

x22

x32

x42

50.0

60.0

70.0

80.0

Basic Linear Algebra Subroutines

 Conversions

 nnz

 dense2csr

 dense2csc

 csr2dense

 csc2dense

 csr2coo

 coo2csr

 csr2csc

1.0

6.0

4.0

7.0

3.02.0

5.0

1

2

1

3

by row

total: 7

Basic Linear Algebra Subroutines

 Conversions

 nnz

 dense2csr

 dense2csc

 csr2dense

 csc2dense

 csr2coo

 coo2csr

 csr2csc

1.0

6.0

4.0

7.0

3.02.0

5.0

3 1 2 1

by column

total: 7

Basic Linear Algebra Subroutines

 Conversions

 nnz

 dense2csr

 dense2csc

 csr2dense

 csc2dense

 csr2coo

 coo2csr

 csr2csc

1.0

6.0

4.0

7.0

3.02.0

5.0

1 2 4 5 8

1 1 2 3 1 3 4

1.0 2.0 3.0 4.0 5.0 6.0 7.0

Row Ptr

Col Index

Values

Basic Linear Algebra Subroutines

 Conversions

 nnz

 dense2csr

 dense2csc

 csr2dense

 csc2dense

 csr2coo

 coo2csr

 csr2csc

1.0

6.0

4.0

7.0

3.02.0

5.0

1 2 4 2 3 4 4

1 4 5 7 8

1.0 2.0 3.0 4.0 5.0 6.0 7.0

Row Index

Col Ptr

Values

Basic Linear Algebra Subroutines

 Conversions

 nnz

 dense2csr

 dense2csc

 csr2dense

 csc2dense

 csr2coo

 coo2csr

 csr2csc
1 2 4 5 8

1 1 2 3 1 3 4

1.0 2.0 3.0 4.0 5.0 6.0 7.0

Row Ptr

Col Index

Values

1 2 2 3 4 4 4

1 1 2 3 1 3 4

1.0 2.0 3.0 4.0 5.0 6.0 7.0

Row Index

Col Index

Values

1.0

6.0

4.0

7.0

3.02.0

5.0

Basic Linear Algebra Subroutines

 Conversions

 nnz

 dense2csr

 dense2csc

 csr2dense

 csc2dense

 csr2coo

 coo2csr

 csr2csc

1 2 4 2 3 4 4

1 4 5 7 8

1.0 2.0 3.0 4.0 5.0 6.0 7.0

Row Index

Col Ptr

Values

1 2 4 5 8

1 1 2 3 1 3 4

1.0 2.0 3.0 4.0 5.0 6.0 7.0

Row Ptr

Col Index

Values

1.0

6.0

4.0

7.0

3.02.0

5.0

Detailed study of csrmv

 Follow approach proposed by N. Bell & M. Garland (NVResearch)

 Multiple blocks Bi, each processing a group Gj of rows

 Each row is assigned a group of threads Tk

 A few additional tweaks for performance

Detailed study of csrmv

 Follow approach proposed by N. Bell & M. Garland (NVResearch)

 Multiple blocks Bi, each processing a group Gj of rows

 Each row is assigned a group of threads Tk

 A few additional tweaks for performance

 Consider 2 blocks, with 2 groups of 4 threads; matrix:

1.0

6.0

4.0

7.0

3.02.0

5.0

1

1 2

3

1 3 4

1.0

2.0 3.0

4.0

5.0 6.0 7.0

B0

B1

G0

G1

G0

G1

T0 T1 T2 T3

1 2 4 5 8

1 1 2 3 1 3 4

1.0 2.0 3.0 4.0 5.0 6.0 7.0

Row Ptr

Col Index

Values

y1

y2

y3

y4

x1

x2

x3

x4

Detailed study of csrmv

 Follow approach proposed by N. Bell & M. Garland (NVResearch)

 Multiple blocks Bi, each processing a group Gj of rows

 Each row is assigned a group of threads Tk

 A few additional tweaks for performance

 Consider 2 blocks, with 2 groups of 4 threads; matrix:

1.0

6.0

4.0

7.0

3.02.0

5.0

1

1 2

3

1 3 4

1.0

2.0 3.0

4.0

5.0 6.0 7.0

B0

B1

G0

G1

G0

G1

T0 T1 T2 T3

1 2 4 5 8

1 1 2 3 1 3 4

1.0 2.0 3.0 4.0 5.0 6.0 7.0

Row Ptr

Col Index

Values

y1

y2

y3

y4

x1

x2

x3

x4

Detailed study of csrmv

 Follow approach proposed by N. Bell & M. Garland (NVResearch)

 Multiple blocks Bi, each processing a group Gj of rows

 Each row is assigned a group of threads Tk

 A few additional tweaks for performance

 Consider 2 blocks, with 2 groups of 4 threads; matrix:

1.0

6.0

4.0

7.0

3.02.0

5.0

1

1 2

3

1 3 4

1.0

2.0 3.0

4.0

5.0 6.0 7.0

B0

B1

G0

G1

G0

G1

T0 T1 T2 T3

1 2 4 5 8

1 1 2 3 1 3 4

1.0 2.0 3.0 4.0 5.0 6.0 7.0

Row Ptr

Col Index

Values

y1

y2

y3

y4

x1

x2

x3

x4

Detailed study of csrmv

 Follow approach proposed by N. Bell & M. Garland (NVResearch)

 Multiple blocks Bi, each processing a group Gj of rows

 Each row is assigned a group of threads Tk

 A few additional tweaks for performance

 Consider 2 blocks, with 2 groups of 4 threads; matrix:

1.0

6.0

4.0

7.0

3.02.0

5.0

1

1 2

3

1 3 4

1.0

2.0 3.0

4.0

5.0 6.0 7.0

B0

B1

G0

G1

G0

G1

T0 T1 T2 T3

1 2 4 5 8

1 1 2 3 1 3 4

1.0 2.0 3.0 4.0 5.0 6.0 7.0

Row Ptr

Col Index

Values

y1

y2

y3

y4

x1

x2

x3

x4

Detailed study of csrmv

 Follow approach proposed by N. Bell & M. Garland (NVResearch)

 Multiple blocks Bi, each processing a group Gj of rows

 Each row is assigned a group of threads Tk

 A few additional tweaks for performance

i. adjust number of threads per row to minimize waste

 Consider 2 blocks, with 2 groups of 4 threads; matrix:

1.0

6.0

4.0

7.0

3.02.0

5.0

1

1 2

3

1 3 4

1.0

2.0 3.0

4.0

5.0 6.0 7.0

B0

B1

G0

G1

G0

G1

T0 T1 T2 T3

1 2 4 5 8

1 1 2 3 1 3 4

1.0 2.0 3.0 4.0 5.0 6.0 7.0

Row Ptr

Col Index

Values

x1

x2

x3

x4

y1

y2

y3

y4

Detailed study of csrmv

 Follow approach proposed by N. Bell & M. Garland (NVResearch)

 Multiple blocks Bi, each processing a group Gj of rows

 Each row is assigned a group of threads Tk

 A few additional tweaks for performance

i. adjust number of threads per row to minimize waste

ii. align threads per row for coalescing

 Consider 2 blocks, with 2 groups of 4 threads; matrix:

1.0

6.0

4.0

7.0

3.02.0

5.0

1

1 2

3

1 3 4

1.0

2.0 3.0

4.0

5.0 6.0 7.0

B0

B1

G0

G1

G0

G1

T0 T1 T2 T3

1 2 4 5 8

1 1 2 3 1 3 4

1.0 2.0 3.0 4.0 5.0 6.0 7.0

Row Ptr

Col Index

Values

x1

x2

x3

x4

y1

y2

y3

y4

Detailed study of csrmv

 Follow approach proposed by N. Bell & M. Garland (NVResearch)

 Multiple blocks Bi, each processing a group Gj of rows

 Each row is assigned a group of threads Tk

 A few additional tweaks for performance

i. adjust number of threads per row to minimize waste

ii. align threads per row for coalescing

iii. use shared memory and texture for performance

 Consider 2 blocks, with 2 groups of 4 threads; matrix:

1.0

6.0

4.0

7.0

3.02.0

5.0

1

1 2

3

1 3 4

1.0

2.0 3.0

4.0

5.0 6.0 7.0

B0

B1

G0

G1

G0

G1

T0 T1 T2 T3

1 2 4 5 8

1 1 2 3 1 3 4

1.0 2.0 3.0 4.0 5.0 6.0 7.0

Row Ptr

Col Index

Values

x1

x2

x3

x4

y1

y2

y3

y4

Performance of csrmv



0

5

10

15

20

25

30

35

40

45

50

s

d

c

z

GFlops

*NVIDIA C2050, ECC on

0

1

2

3

4

5

6

7

8

9

s

d

c

z

Performance of csrmv



Speedup

*NVIDIA C2050, ECC on

*MKL 10.2.3 , CoreTM i7 @ 3.07GHz

Detailed study of csrmm

 How about multiplication by multiple vectors (tall-matrices)

 Use similar approach for processing the sparse matrix

Detailed study of csrmm

 How about multiplication by multiple vectors (tall-matrices)

 Use similar approach for processing the sparse matrix

 Have a 2D grid of blocks (with second dimension processing columns of the tall-matrix)

B0,j

B1,j

Bn,j

B2,j

…

Bi,0 Bi,k…

Detailed study of csrmm

 How about multiplication by multiple vectors (tall-matrices)

 Use similar approach for processing the sparse matrix

 Have a 2D grid of blocks (with second dimension processing columns of the tall-matrix)

 Each block processes multiple columns (to minimize reading sparse matrix multiple times)

B0,j

B1,j

Bn,j

B2,j

…

Bi,0 Bi,k…

Detailed study of csrmm

 How about multiplication by multiple vectors (tall-matrices)

 Use similar approach for processing the sparse matrix

 Have a 2D grid of blocks (with second dimension processing columns of the tall-matrix)

 Each block processes multiple columns (to minimize reading sparse matrix multiple times)

 Consider 2x2 grid of blocks, with 2 groups of 4 threads; matrix:

1.0

6.0

4.0

7.0

3.02.0

5.01

1 2

3

1 3 4

1.0

2.0 3.0

4.0

5.0 6.0 7.0

B0,j

B1,j

G0,j

G1,j

G0,j

G1,j

T0 T1 T2 T3

1 2 4 5 8

1 1 2 3 1 3 4

1.0 2.0 3.0 4.0 5.0 6.0 7.0

Row Ptr

Col Index

Values

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

Detailed study of csrmm

 How about multiplication by multiple vectors (tall-matrices)

 Use similar approach for processing the sparse matrix

 Have a 2D grid of blocks (with second dimension processing columns of the tall-matrix)

 Each block processes multiple columns (to minimize reading sparse matrix multiple times)

 Consider 2x2 grid of blocks, with 2 groups of 4 threads; matrix:

1.0

6.0

4.0

7.0

3.02.0

5.01

1 2

3

1 3 4

1.0

2.0 3.0

4.0

5.0 6.0 7.0

B0,j

B1,j

G0,j

G1,j

G0,j

G1,j

T0 T1 T2 T3

1 2 4 5 8

1 1 2 3 1 3 4

1.0 2.0 3.0 4.0 5.0 6.0 7.0

Row Ptr

Col Index

Values

Bi,0 Bi,1

Performance of csrmm



0

20

40

60

80

100

120

140

s

d

c

z

GFlops

*NVIDIA C2050, ECC on

0

5

10

15

20

25

30

35

40

s

d

c

z

Performance of csrmm



Speedup

*NVIDIA C2050, ECC on

*MKL 10.2.3 , CoreTM i7 @ 3.07GHz

Detailed study of csrmv transpose



 What is the difficulty?

 Multiple blocks/threads writing to the same memory location

Detailed study of csrmv transpose



 What is the difficulty?

 Multiple blocks/threads writing to the same memory location

 Must use atomics to ensure correct results

Detailed study of csrmv transpose



 What is the difficulty?

 Multiple blocks/threads writing to the same memory location

 Must use atomics to ensure correct results

1.0

6.0

4.0

7.0

3.02.0

5.0

matrix storage view:

a1
T

a2
T

a4
T

A = =a3
T

Detailed study of csrmv transpose



1.0

6.04.0

7.0

3.0

2.0 5.0

 What is the difficulty?

 Multiple blocks/threads writing to the same memory location

 Must use atomics to ensure correct results

1.0

6.0

4.0

7.0

3.02.0

5.0

matrix storage view:matrix (transpose) logical view:

a1
T

a2
T

a4
T

A = =a3
Ta1 a2 a4AT = a3 =

Detailed study of csrmv transpose



1.0

6.04.0

7.0

3.0

2.0 5.0

 What is the difficulty?

 Multiple blocks/threads writing to the same memory location

 Must use atomics to ensure correct results

1.0

6.0

4.0

7.0

3.02.0

5.0

matrix storage view:matrix (transpose) logical view:

a1
T

a2
T

a4
T

A = =a3
T

B0 B1

G0 G1 G0 G1

a1 a2 a4AT = a3 =

Detailed study of csrmv transpose



1.0

6.04.0

7.0

3.0

2.0 5.0

 What is the difficulty?

 Multiple blocks/threads writing to the same memory location

 Must use atomics to ensure correct results

1.0

6.0

4.0

7.0

3.02.0

5.0

matrix storage view:matrix (transpose) logical view:

a1
T

a2
T

a4
T

A = =a3
T

B0 B1

G0 G1 G0 G1

a1 a2 a4AT = a3 =

y=a1*x1+a2*x2+a3*x3+a4*x4

a1 a2 a4a3
x1

x2

x3

x4

y =

Detailed study of csrmv transpose



1.0

6.04.0

7.0

3.0

2.0 5.0

 What is the difficulty?

 Multiple blocks/threads writing to the same memory location

 Must use atomics to ensure correct results

1.0

6.0

4.0

7.0

3.02.0

5.0

matrix storage view:matrix (transpose) logical view:

a1
T

a2
T

a4
T

A = =a3
T

B0 B1

G0 G1 G0 G1

a1 a2 a4AT = a3 =

y=a1*x1+a2*x2+a3*x3+a4*x4

a1 a2 a4a3
x1

x2

x3

x4

y =

=

x1

x2

x3

x4

y1

y2

y3

y4

6.0

1.0

4.0

7.0

3.0

2.0 5.0

Detailed study of csrmv transpose



1.0

6.04.0

7.0

3.0

2.0 5.0

 What is the difficulty?

 Multiple blocks/threads writing to the same memory location

 Must use atomics to ensure correct results

1.0

6.0

4.0

7.0

3.02.0

5.0

matrix storage view:matrix (transpose) logical view:

a1
T

a2
T

a4
T

A = =a3
T

B0 B1

G0 G1 G0 G1

a1 a2 a4AT = a3 =

y=a1*x1+a2*x2+a3*x3+a4*x4

a1 a2 a4a3
x1

x2

x3

x4

y =

=

x1

x2

x3

x4

y1

y2

y3

y4

1.0

6.04.0

7.0

3.0

2.0 5.0

Detailed study of csrmv transpose



1.0

6.04.0

7.0

3.0

2.0 5.0

 What is the difficulty?

 Multiple blocks/threads writing to the same memory location

 Must use atomics to ensure correct results

1.0

6.0

4.0

7.0

3.02.0

5.0

matrix storage view:matrix (transpose) logical view:

a1
T

a2
T

a4
T

A = =a3
T

B0 B1

G0 G1 G0 G1

a1 a2 a4AT = a3 =

y=a1*x1+a2*x2+a3*x3+a4*x4

a1 a2 a4a3
x1

x2

x3

x4

y =

=

x1

x2

x3

x4

y1

y2

y3

y4

1.0

6.04.0

7.0

3.0

2.0 5.0

Detailed study of csrmv transpose



1.0

6.04.0

7.0

3.0

2.0 5.0

 What is the difficulty?

 Multiple blocks/threads writing to the same memory location

 Must use atomics to ensure correct results

1.0

6.0

4.0

7.0

3.02.0

5.0

matrix storage view:matrix (transpose) logical view:

a1
T

a2
T

a4
T

A = =a3
T

B0 B1

G0 G1 G0 G1

a1 a2 a4AT = a3 =

y=a1*x1+a2*x2+a3*x3+a4*x4

a1 a2 a4a3
x1

x2

x3

x4

y =

=

x1

x2

x3

x4

y1

y2

y3

y4

1.0

6.04.0

7.0

3.0

2.0 5.0

Detailed study of csrmv transpose



1.0

6.04.0

7.0

3.0

2.0 5.0

 What is the difficulty?

 Multiple blocks/threads writing to the same memory location

 Must use atomics to ensure correct results

1.0

6.0

4.0

7.0

3.02.0

5.0

matrix storage view:matrix (transpose) logical view:

a1
T

a2
T

a4
T

A = =a3
T

B0 B1

G0 G1 G0 G1

a1 a2 a4AT = a3 =

y=a1*x1+a2*x2+a3*x3+a4*x4

a1 a2 a4a3
x1

x2

x3

x4

y =

=

x1

x2

x3

x4

y1

y2

y3

y4

1.0

6.04.0

7.0

3.0

2.0 5.0

0

2

4

6

8

10

12

14

16

s

d

c

z

Performance of csrmv transpose



GFlops

*NVIDIA C2050, ECC on

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

s

d

c

z

Performance of csrmv transpose



Speedup

*NVIDIA C2050, ECC on

*MKL 10.2.3 , CoreTM i7 @ 3.07GHz

Detailed study of csrmm transpose

  How about multiplication by multiple vectors (tall-matrices)

 Again use similar approach for processing the sparse matrix

Detailed study of csrmm transpose

  How about multiplication by multiple vectors (tall-matrices)

 Again use similar approach for processing the sparse matrix

 Have a 2D grid of blocks (with second dimension processing columns of the tall-matrix)

Detailed study of csrmm transpose

  How about multiplication by multiple vectors (tall-matrices)

 Again use similar approach for processing the sparse matrix

 Have a 2D grid of blocks (with second dimension processing columns of the tall-matrix)

 Each block processes multiple columns (to minimize reading sparse matrix multiple times

Detailed study of csrmm transpose

  How about multiplication by multiple vectors (tall-matrices)

 Again use similar approach for processing the sparse matrix

 Have a 2D grid of blocks (with second dimension processing columns of the tall-matrix)

 Each block processes multiple columns (to minimize reading sparse matrix multiple times)

 Lock multiple elements at once, instead of per element atomics

B0,j B1,j Bn,jB2,j … Bi,0 Bi,k…

0

10

20

30

40

50

60

70

s

d

c

z

Performance of csrmm transpose



GFlops

*NVIDIA C2050, ECC on

0

2

4

6

8

10

12

14

16

18

s

d

c

z

Performance of csrmm transpose



Speedup

*NVIDIA C2050, ECC on

*MKL 10.2.3 , CoreTM i7 @ 3.07GHz

CUSPARSE and other Libraries

 CUSPARSE
 C interface, CUDA Toolkit

 Sparse linear algebra (matrix multiplication, format conversions, triangular solve*)

 CUBLAS

 Dense linear algebra, CUDA Toolkit

 CUSP

 C++ interface, Google Code

 Iterative solvers, preconditioners, graph algorithms, …

 Thrust
 Standard Template Library (STL) like interface, Google Code

 Search, sort, reduce, … *: future work

…

CUSPARSE and other Libraries

 CUSPARSE
 C interface, CUDA Toolkit

 Sparse linear algebra (matrix multiplication, format conversions, triangular solve*)

 CUBLAS

 Dense linear algebra, CUDA Toolkit

 CUSP

 C++ interface, Google Code

 Iterative solvers, preconditioners, graph algorithms, …

 Thrust
 Standard Template Library (STL) like interface, Google Code

 Search, sort, reduce, … *: future work

…

CUSPARSE and other Libraries

 CUSPARSE
 C interface, CUDA Toolkit

 Sparse linear algebra (matrix multiplication, format conversions, triangular solve*)

 CUBLAS

 Dense linear algebra, CUDA Toolkit

 CUSP

 C++ interface, Google Code

 Iterative solvers, preconditioners, graph algorithms, …

 Thrust
 Standard Template Library (STL) like interface, Google Code

 Search, sort, reduce, … *: future work

…

CUSPARSE and other Libraries

 CUSPARSE
 C interface, CUDA Toolkit

 Sparse linear algebra (matrix multiplication, format conversions, triangular solve*)

 CUBLAS

 Dense linear algebra, CUDA Toolkit

 CUSP

 C++ interface, Google Code

 Iterative solvers, preconditioners, graph algorithms, …

 Thrust
 Standard Template Library (STL) like interface, Google Code

 Search, sort, reduce, … *: future work

…

Google PageRank

  Find the rank (importance) of a webpage

 Your rank ri is proportional to the # and rank of webpages with (in-) links to you

 ri = sum (rj / nj), where nj is the # of (out-) links of webpage j

 This problem can be formulated as an eigenvalue problem

 with column stochastic matrix (nonnegative elements & sum of col. elements =1)

 we need to obtain the largest eigenvalue (=1) and the corresponding eigenvector

(which will give us the ranks ri)

1/3

1/2

1/2

1/2

1/2

1/3

1/3

page 1

page 2

page 3

page 4

r1

r2

r3

r4

r1

r2

r3

r4

1 2 3 4

inout

1

Google PageRank

 Power Method

 Finds the largest eigenvalue and the corresponding eigenvector of a matrix

 Main ideas

 Let the eigenvalue problem to be solved be

A x = \lambda x

 Assume

\lambda1 =< … =< \lambdan-1 < \lambdan

 Then, notice (as k)

Ak x =

Google PageRank

 Power Method

 Finds the largest eigenvalue and the corresponding eigenvector of a matrix

 Main ideas

 Let the eigenvalue problem to be solved be

A x = \lambda x

 Assume

\lambda1 =< … =< \lambdan-1 < \lambdan

 Then, notice (as k)

Ak x = Ak (\alphanun + \alphan-1un-1 + … + \alpha1u1)

Google PageRank

 Power Method

 Finds the largest eigenvalue and the corresponding eigenvector of a matrix

 Main ideas

 Let the eigenvalue problem to be solved be

A x = \lambda x

 Assume

\lambda1 =< … =< \lambdan-1 < \lambdan

 Then, notice (as k)

Ak x = Ak (\alphanun + \alphan-1un-1 + … + \alpha1u1)

= \lambdan
k \alphanun + \lambdan-1

k \alphan-1un-1 + … + \lambda1
k \alpha1u1

Google PageRank

 Power Method

 Finds the largest eigenvalue and the corresponding eigenvector of a matrix

 Main ideas

 Let the eigenvalue problem to be solved be

A x = \lambda x

 Assume

\lambda1 =< … =< \lambdan-1 < \lambdan

 Then, notice (as k)

Ak x = Ak (\alphanun + \alphan-1un-1 + … + \alpha1u1)

= \lambdan
k \alphanun + \lambdan-1

k \alphan-1un-1 + … + \lambda1
k \alpha1u1

= \lambdan
k [\alphanun +(\lambdan-1/\lambdan)

k\alphan-1un-1 +…]

Google PageRank

 Power Method

 Finds the largest eigenvalue and the corresponding eigenvector of a matrix

 Main ideas

 Let the eigenvalue problem to be solved be

A x = \lambda x

 Assume

\lambda1 =< … =< \lambdan-1 < \lambdan

 Then, notice (as k)

Ak x = Ak (\alphanun + \alphan-1un-1 + … + \alpha1u1)

= \lambdan
k \alphanun + \lambdan-1

k \alphan-1un-1 + … + \lambda1
k \alpha1u1

= \lambdan
k [\alphanun +(\lambdan-1/\lambdan)

k\alphan-1un-1 + …]
0

Google PageRank

 Power Method

 Finds the largest eigenvalue and the corresponding eigenvector of a matrix

 Main ideas

 Let the eigenvalue problem to be solved be

A x = \lambda x

 Assume

\lambda1 =< … =< \lambdan-1 < \lambdan

 Then, notice (as k)

Ak x = Ak (\alphanun + \alphan-1un-1 + … + \alpha1u1)

= \lambdan
k \alphanun + \lambdan-1

k \alphan-1un-1 + … + \lambda1
k \alpha1u1

= \lambdan
k [\alphanun +(\lambdan-1/\lambdan)

k\alphan-1un-1 + …]

 Convergence is proportional to ratio

\lambdan-1 / \lambdan

0

Google PageRank

 Power Method

 Finds the largest eigenvalue and the corresponding eigenvector of a matrix

 Main ideas

 Let the eigenvalue problem to be solved be

A x = \lambda x

 Assume

\lambda1 =< … =< \lambdan-1 < \lambdan

 Then, notice (as k)

Ak x = Ak (\alphanun + \alphan-1un-1 + … + \alpha1u1)

= \lambdan
k \alphanun + \lambdan-1

k \alphan-1un-1 + … + \lambda1
k \alpha1u1

= \lambdan
k [\alphanun +(\lambdan-1/\lambdan)

k\alphan-1un-1 + …]

 Convergence is proportional to ratio

\lambdan-1 / \lambdan

 Key operation is sparse matrix-vector multiplication (csrmv)

0

Google PageRank

 Consider a realistic problem: Stanford-Berkeley (web connectivity matrix)

 Subspace Iteration
 faster convergence

 key operation is sparse matrix-tall-matrix multiplication (csrmm)

Double Precision, Stopping criteria: 54 iterations, 10-8

1.572

0.618
1

2.544

MKL CUSPARSE+CUBLAS

Time(s) Speedup

*NVIDIA C2050, ECC on

*MKL 10.2.3 , CoreTM i7 @ 3.07GHz

Google PageRank

 Consider a realistic problem: Stanford-Berkeley (web connectivity matrix)

 Subspace Iteration
 faster convergence

 key operation is sparse matrix-tall-matrix multiplication (csrmm)

Double Precision, Stopping criteria: 54 iterations, 10-8

2.5x speedup

1.572

0.618
1

2.544

MKL CUSPARSE+CUBLAS

Time(s) Speedup

*NVIDIA C2050, ECC on

*MKL 10.2.3 , CoreTM i7 @ 3.07GHz

Atmospheric Modeling

 Solve 3D Navier-Stokes equations

dV/dt = - RT grad P + m V (momentum equation)

dP/dt = - cp/cv div V (continuity equation)

dT/dt = - RT/cv div V (thermodynamic equation)

for unknown velocity V, pressure logarithm P and temperature T.

 Numerical Solution

 discretize using finite-difference or finite-element method

 starting with initial conditions find unknowns at some given time

 solving a large sparse linear system at every time step

Atmospheric Modeling

  Biconjugate Gradient Stabilized (BiCGStab) method
 Krylov subspace iterative method

Atmospheric Modeling

  Biconjugate Gradient Stabilized (BiCGStab) method
 Krylov subspace iterative method

 Designed for nonsymmetric linear systems: Ax=f

Atmospheric Modeling

  Biconjugate Gradient Stabilized (BiCGStab) method
 Krylov subspace iterative method

 Designed for nonsymmetric linear systems: Ax=f

for(i=0; i<maxit; i++){

\rhop=\rho

\rho = rTr

if (i > 0){

\beta = (\rho / rhop) (\alpha / \omega)

p = r + \beta (p – \omega v)

}

v=A p

\alpha = \rho / rTv

s = r – \alpha v

t = A s

\omega = tTs / tTt

x = x + \alpha p + \omega s

r = s - \omega t

}

Atmospheric Modeling

  Biconjugate Gradient Stabilized (BiCGStab) method
 Krylov subspace iterative method

 Designed for nonsymmetric linear systems: Ax=f

for(i=0; i<maxit; i++){

\rhop=\rho

\rho = rTr

if (i > 0){

\beta = (\rho / rhop) (\alpha / \omega)

p = r + \beta (p – \omega v)

}

v=A p

\alpha = \rho / rTv

s = r – \alpha v

t = A s

\omega = tTs / tTt

x = x + \alpha p + \omega s

r = s - \omega t

}

dot product (CUBLAS)

Atmospheric Modeling

  Biconjugate Gradient Stabilized (BiCGStab) method
 Krylov subspace iterative method

 Designed for nonsymmetric linear systems: Ax=f

for(i=0; i<maxit; i++){

\rhop=\rho

\rho = rTr

if (i > 0){

\beta = (\rho / rhop) (\alpha / \omega)

p = r + \beta (p – \omega v)

}

v=A p

\alpha = \rho / rTv

s = r – \alpha v

t = A s

\omega = tTs / tTt

x = x + \alpha p + \omega s

r = s - \omega t

}

dot product (CUBLAS)

scaled vector add (CUBLAS)

Atmospheric Modeling

  Biconjugate Gradient Stabilized (BiCGStab) method
 Krylov subspace iterative method

 Designed for nonsymmetric linear systems: Ax=f

for(i=0; i<maxit; i++){

\rhop=\rho

\rho = rTr

if (i > 0){

\beta = (\rho / rhop) (\alpha / \omega)

p = r + \beta (p – \omega v)

}

v=A p

\alpha = \rho / rTv

s = r – \alpha v

t = A s

\omega = tTs / tTt

x = x + \alpha p + \omega s

r = s - \omega t

}

dot product (CUBLAS)

matrix-vector multiply (CUSPARSE)

matrix-vector multiply (CUSPARSE)

scaled vector add (CUBLAS)

key operation

key operation

Atmospheric Modeling

  Consider a realistic problem: AtmosModD (finite-difference discretization)

 Block Krylov subspace methods

 faster convergence

 key operation is sparse matrix-tall-matrix multiplication (csrmm)

17.123

3.049
1

5.616

MKL CUSPARSE+CUBLAS

Time(s) Speedup

Double Precision, Stopping criteria: 256 iterations, 10-1

*NVIDIA C2050, ECC on

*MKL 10.2.3 , CoreTM i7 @ 3.07GHz

Atmospheric Modeling

  Consider a realistic problem: AtmosModD (finite-difference discretization)

 Block Krylov subspace methods

 faster convergence

 key operation is sparse matrix-tall-matrix multiplication (csrmm)

17.123

3.049
1

5.616

MKL CUSPARSE+CUBLAS

Time(s) Speedup

Double Precision, Stopping criteria: 256 iterations, 10-1

5.6x speedup

*NVIDIA C2050, ECC on

*MKL 10.2.3 , CoreTM i7 @ 3.07GHz

Conclusion

 CUSPARSE Library
 Set of Basic Linear Algebra Subroutines for Sparse Matrices

 Compressed Sparse Row format

+ conversion to and from other formats

 Applications

 Iterative solution of linear systems and eigenvalue problems

 Energy exploration, physical simulations and life sciences

 Future Work
 New sparse storage formats

 Solution of triangular linear systems

 Preconditioning

References

[1] N. Bell and M. Garland, “Efficient Sparse Matrix-Vector Multiplication on CUDA” NVIDIA

Technical Report NVR-2008-004, 2008.

[2] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, J. Demmel, “Optimization of Sparse

Matrix-Vector Multiplication on Emerging Multicore Platforms”, Supercomputing (SC), 2007.

[3] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo,

C. Romine and H. Van der Vorst, “Templates for the Solution of Linear Systems: Building

Blocks for Iterative Methods”, SIAM, Philadelphia, PA, 1994.

[4] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe and H. van der Vorst, “Templates for the Solution

of Algebraic Eigenvalue Problems: A Practical Guide”, SIAM, Philadelphia, PA, 2000

[5] The University of Florida Sparse Matrix Collection,

http://www.cise.ufl.edu/research/sparse/matrices/

Thank you

