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Outline

» Introduction to CUSPARSE library
v’ Level-1, Level-2, Level-3 and Format Conversions

» Matrix-vector multiplication:
v" Detailed description, performance results

» Application Examples
v Google PageRank Algorithm, Atmospheric Modeling

> Conclusion
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Sparse Storage Formats

» Many choices for sparse matrix storage
v COO (more general)
v CSR
v CSC
v DIAG (more specific)
v ELL
v HYB (ELL + CSR)

& > Things to keep in mind

: v focused on more than matrix-vector multiplication
v’ focus on more general formats

v might add new formats in the future
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Sparse Storage Formats

» Coordinate (COO) Format 5 3 4
Row Index @
Col Index . 24034
Values 1.0 3 4.0
' 4 5.0 6.0 ' 7.0
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Sparse Storage Formats
» Coordinate (COO) Format

2 3 4
Row Index 2 2 10 ™
Col Index 2 é 203 4.0
Values 1.02.03.0 4 50 6.0 ' 7.0
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Sparse Storage Formats

» Coordinate (COO) Format 5 3 4
Row Index 2 2 3 1.0
Values 1.02.03.04.0 4 50 60 170
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Sparse Storage Formats

» Coordinate (COO) Format 5 3 4
Row Index 2 2 3 4 4 4 1.0
Col Index 2 3 3 4 g 2.0 3.0 r
Values 1.02.03.04.05.06.0 7.0 1A <Ep 50 T 0=
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Sparse Storage Formats

» Coordinate (COO) Format 5 3 4
Row Index 2 2 3 4 4 4 1.0
Col Index 2 3 3 4 g 20 3.0 r
Values 1.02.03.04.05.06.07.0 4 50 60|70

» Compressed Sparse Row (CSR) of ord
row-major oraer

Row Ptr
Col Index !ji

Values 1.0
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Sparse Storage Formats

» Coordinate (COO) Format 5 3 4
Row Index 2 2 3 4 4 4 1.0
Col Index 2 3 3 4 g 20 3.0 r
Values 1.02.03.04.05.06.07.0 4 50 60|70

» Compressed Sparse Row (CSR) of ord
row-major oraer

Row Ptr 2
v ¥
Col Index Ll 2

Values 1.02.03.0
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Sparse Storage Formats

» Coordinate (COO) Format 5 3 4
Row Index 2 2 3 4 4 4 1.0
Col Index 2 3 3 4 g 20 3.0 r
Values 1.02.03.04.05.06.07.0 4 50 60|70

» Compressed Sparse Row (CSR) of ord
row-major oraer

Row Ptr ] 3 4
Col Index Ll 2 ]18]

Values 1.02.03.04.0
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Sparse Storage Formats

» Coordinate (COO) Format 5 3 4
Row Index 2 2 3 4 4 4 1.0
Col Index 2 3 3 4 g 20 3.0 r
Values 1.02.03.04.05.06.07.0 4 50 60|70

» Compressed Sparse Row (CSR) of ord
row-major oraer

Row Ptr 2 4 5 8
VR ~N
Col Index Ll 2013111l 3 4]

Values 1.02.03.04.05.06.07.0
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Sparse Storage Formats

» Coordinate (COO) Format 5 3 4
Row Index 2 2 3 4 4 4 1.0
Col Index 2 3 3 4 g 20 3.0 r
Values 1.02.03.04.05.06.07.0 4 50 60|70

» Compressed Sparse Row (CSR) of ord
row-major oraer

Row Ptr 2 4 5 8
VR ~N
Col Index Ll 2013111l 3 4]

Values 1.02.03.04.05.06.07.0

» Compressed Sparse Column (CSC) column-major order
Row Index |¢ /||/2|,|3 4114 ] m
Col Ptr 475 7 8

Values 1.02.03.04.05.06.07.0 rresenensr 24 NVIDIA.




Basic Linear Algebra Subroutines

> Sparse vector storage
dense vector
4

1 6
1.0 2.0003.0]
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Basic Linear Algebra Subroutines
» Sparse vector storage

sparse vector dense vector
Index 1 4 6 pu 1 4 6
Values 1.0 2.0 3.0 1.0 2.00030]
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Basic Linear Algebra Subroutines
» Sparse vector storage

sparse vector dense vector
Index 1 4 6 pu 1 4 6
Values 1.0 2.0 3.0 1.0 2.00030]

» Function naming convention
v’ Follows the general rule

cusparse<Type>[<sparse data format>]|<operation>[<sparse data format>]
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Basic Linear Algebra Subroutines
» Sparse vector storage

sparse vector dense vector
Index 1 4 6 pu 1 4 6
Values 1.0 2.0 3.0 1.0 2.00030]

» Function naming convention
v’ Follows the general rule

cusparse<Type>[<sparse data format>]|<operation>[<sparse data format>]
v For example,

(1) single precision, sparse matrix (in csr storage) x dense vector =>
cusparsesScsrmv
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Basic Linear Algebra Subroutines
» Sparse vector storage

sparse vector dense vector
Index 1 4 6 pu 1 4 6
Values 1.0 2.0 3.0 1.0 2.00030]

» Function naming convention
v’ Follows the general rule

cusparse<Type>[<sparse data format>]|<operation>[<sparse data format>]

v For example,
(1) single precision, sparse matrix (in csr storage) x dense vector =>

cusparsesScsrmv
(i) double precision, sparse matrix (in csr storage) x dense tall-matrix =>
cusparsebDcsrmm (set of vectors)
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Basic Linear Algebra Subroutines

» Level 1 (sparse vector x and dense vector y)
v axpyi (vector add) y =y + \alpha x
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Basic Linear Algebra Subroutines

» Level 1 (sparse vector x and dense vector y)
v axpyi (vector add) y =y + \alpha x
v doti  (dot product) \alpha = yT * x

eresenenay. 8 MVIDIA.




Basic Linear Algebra Subroutines

» Level 1 (sparse vector x and dense vector y)

v axpyi (vector add) y =y + \alpha x
v doti  (dot product) \alpha = yT * x
v' dotci (conjugate dot product) \alpha = yH * x
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Basic Linear Algebra Subroutines

» Level 1 (sparse vector x and dense vector y)

v axpyi (vector add) y =y + \alpha x
v doti  (dot product) \alpha = yT * x
v  dotci (conjugate dot product) \alpha = y" * x
v gthr (gather) X=y
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Basic Linear Algebra Subroutines

» Level 1 (sparse vector x and dense vector y)

v axpyi (vector add) y =y + \alpha x

v doti  (dot product) \alpha = yT * x

v  dotci (conjugate dot product) \alpha = y" * x

v gthr (gather) X=y

v gthrz (gather and zero-out) x =y and x_pattern(y)=0
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Basic Linear Algebra Subroutines

» Level 1 (sparse vector x and dense vector y)

v axpyi (vector add) y =y + \alpha x

v doti  (dot product) \alpha = yT * x

v  dotci (conjugate dot product) \alpha = y" * x

v gthr (gather) X=y

v gthrz (gather and zero-out) x =y and x_pattern(y)=0
v sctr (scatter) y =X
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Basic Linear Algebra Subroutines

» Level 1 (sparse vector x and dense vector y)

v axpyi (vector add) y =y + \alpha x
v doti  (dot product) \alpha = yT * x
v  dotci (conjugate dot product) \alpha = y" * x
v gthr (gather) X=y
v gthrz (gather and zero-out) x =y and x_pattern(y)=0
v sctr (scatter) y =X
v roti  (Givens rotation) X, y] = [X, V] [ c _S}
S C
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Basic Linear Algebra Subroutines

» Level 2 and 3
v’ csrmv (matrix-vector multiplication)

x| 1.0 10 X, |
X3 4.0 3.0 X3
L X2 ] L 5.0 6.0 '7.0— _4-0_ Y ]
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Basic Linear Algebra Subroutines

» Level 2 and 3
v’ csrmv (matrix-vector multiplication)

x| 1.0 10 X, |
X3 4.0 3.0 X3
L X2 ] L 5.0 6.0 '7.0— _4-0_ Y ]

v_ csrmm (matrix-tall-matrix multiplication)

X11 X1_2T 1.0 1.0 5.0 X11 )(12T
X21 X322 | =\alpha |-2.0 3.0 2.0 6.0 |+ \peta | X21 X22
X31 X3 4.0 3.07.0 X31 X3z
_X41 X42_ L 5.0 6.0 '7.0 — _4-0 8-0_ _X41 X42_

eresenenay. 8 MVIDIA.




Basic Linear Algebra Subroutines

» Level 2 and 3 (future work)
v' csrtrsv (triangular solve with a single right-hand-side)

10 ES 100 |
2.0 3.0 X, = \alpha | 20.0
4.0 Xg 30.0

[ 5.0 6.0 '7.0_J| X4 | | 40.0 |
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Basic Linear Algebra Subroutines

» Level 2 and 3 (future work)
v' csrtrsv (triangular solve with a single right-hand-side)

10 ES 100 |
2.0 3.0 X, = \alpha | 20.0
4.0 Xg 30.0

[ 5.0 6.0 '7.0_J| X4 | | 40.0 |

v' csrirsm (triangular solve with multiple right-hand-sides)

1.0 Ny xi, 1 10.0 500 |
20 3.0 Xa1 X | =\alpha| 20-0 60.0
4.0 Xa1 X 30.0 70.0

50 6.0 7.0 | X1 X 400 80.0
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Basic Linear Algebra Subroutines

> Conversions

v’ nnz by row
10 —————r————r———7 -1 1
20--30-+—-F——- - 2
—————— ~-40-r———--—> 1
50— ~6:0--7.0> 3
total: 7

eresenenay. 8 MVIDIA.




Basic Linear Algebra Subroutines

> Conversions

v’ nnz by column
1.0 | | |
210 30 1 | |
| | 4J|O |
|50 | 6070
% \ \ v
I

total: 7
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Basic Linear Algebra Subroutines

> Conversions
v

v dense2csr 10 —
2.0 3.0
v’ csr2dense 4.0
| 5.0 6.0 /7.0 |
Row Ptr 2 4 5 8
vy ~
Col Index Ll 2118311 3 4]
Values 1.02.03.04.05.06.0 7.0
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Basic Linear Algebra Subroutines

> Conversions

1.0
v’ dense2csc 50 30
4.0
v csc2dense | 5.0 6.0 7.0
Row Index |4\ /I)I/ZIIS 4114 ]
Col Ptr 45 7 8
Values 1.02.03.04.05.06.0 7.0
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Basic Linear Algebra Subroutines

1.0
20 3.0

> Conversions 4.0
5.0 6.0' 7.0

Row Index 2 2 3 4 4 4
Col Index 2 3 3 4
Values 1.02.03.04.05.06.07.0
v’ CSr2coo 1 I
v
CooZCsr Row Ptr 4 5 8
v w ~
Col Index Ll 2118311 3 4]
Values 1.02.03.04.05.06.07.0
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Basic Linear Algebra Subroutines

1.0
20 3.0

> Conversions 4.0
5.0 6.0' 7.0

Row Index |¢ /LﬂIS 4114 ]
Col Ptr A4 5 7 8
Values 1.02.03.04.05.06.07.0
Row Ptr 2 4 5 8
v VAR ~
csraesc Colindex |1 211313 4
Values 1.02.03.04.05.06.07.0
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Detailed study of csrmv

» Follow approach proposed by N. Bell & M. Garland (NVResearch)

v" Multiple blocks B,, each processing a group G; of rows
v Each row is assigned a group of threads T,
v A few additional tweaks for performance
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Detailed study of csrmv

» Follow approach proposed by N. Bell & M. Garland (NVResearch)

v" Multiple blocks B,, each processing a group G; of rows
v Each row is assigned a group of threads T,
v A few additional tweaks for performance

1.0
2.0 3.0
_ _ _ 4.0
v' Consider 2 blocks, with 2 groups of 4 threads; matrix: | 5 g 60 7.0
Ty i o
v B 6 “‘f """"""" 10 7 He
Yo 1Po} Yo LT XY 5% Row Ptr 2 4 5 8
Yol—1! 1 2 203.0 | x, vV
va| BT 3] 10 e Colindex [ [lL 23] [ 3 4]
K ! (el I S .. 3
Va :_“":““"““"“3“"4} _______ 5_ :(_)_6:9“7_._0":' X, Values 1.02.03.04.05.06.07.0
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Detailed study of csrmv

» Follow approach proposed by N. Bell & M. Garland (NVResearch)

v" Multiple blocks B,, each processing a group G; of rows
v Each row is assigned a group of threads T,
v A few additional tweaks for performance

1.0
2.0 3.0
_ _ _ 4.0
v' Consider 2 blocks, with 2 groups of 4 threads; matrix: | 5 g 60 7.0
Ty T4 N N
] BT |Fl """""" 10 7 i
Yo 1 Po; o] ey =Y 5% Row Ptr 2 4 5 8
Yol-t 1 Gy 1 2 203.0 | x, Vv
va| B CT 3] 10 e Colindex [ [lL 23] [ 3 4]
K ! (el I S .. 3
Va :_“":““"““"“3“"4} _______ 5_ :(_)_6:9“7_._0":' X, Values 1.02.03.04.05.06.07.0
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Detailed study of csrmv

» Follow approach proposed by N. Bell & M. Garland (NVResearch)

v" Multiple blocks B,, each processing a group G; of rows
v Each row is assigned a group of threads T,
v A few additional tweaks for performance

1.0
2.0 3.0
_ _ _ 4.0
v' Consider 2 blocks, with 2 groups of 4 threads; matrix: | 5 g 60 7.0
1o B :

yi| 1Bt &0 L) 10 5 Xy Row Ptr 2 4 5 8

Ya|=i_ . g 2 2030 | % VoV

v.| (B e BT 10 e Colindex [ [lL 23] [ 3 4]

K ! oo O = .. 3
V. E_____E______________3____£]' _______ 5_ :(_)_6:9“7_._0":' X, Values 1.02.03.04.05.06.07.0
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Detailed study of csrmv

» Follow approach proposed by N. Bell & M. Garland (NVResearch)

v" Multiple blocks B,, each processing a group G; of rows
v Each row is assigned a group of threads T,
v A few additional tweaks for performance

1.0
2.0 3.0
_ _ _ 4.0
v' Consider 2 blocks, with 2 groups of 4 threads; matrix: | 5 g 60 ' 7.0
TO T1 TZ B B
Yi| i Bo :L) ;830 _______ i % RowPtr | 2 4 5 8
G ST a0 % ColIndex [ 1.2 ]13] [ 3 4]
3 I b0 NN N T ) 3
M :_____E__gl_________é‘i__ﬂ' ------- 5- '_Q_@_'_O_?_'_O__:I _X4_ Values 1.02.03.04.05.06.07.0
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Detailed study of csrmv

» Follow approach proposed by N. Bell & M. Garland (NVResearch)

v" Multiple blocks B,, each processing a group G; of rows
v Each row is assigned a group of threads T,
v A few additional tweaks for performance
I. adjust number of threads per row to minimize waste

1.0
2.0 3.0
_ _ _ 4.0
v' Consider 2 blocks, with 2 groups of 4 threads; matrix: | 5 g 60 ' 7.0
TO T1 TZ B B
Yi| i Bo :L) ;830 _______ i % RowPtr | 2 4 5 8
G ST a0 % ColIndex [ 1.2 ]13] [ 3 4]
3 I b0 NN N T ) 3
M :_____E__gl_________é‘i__ﬂ' ------- 5- '_Q_@_'_O_?_'_O__:I _X4_ Values 1.02.03.04.05.06.07.0
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Detailed study of csrmv

» Follow approach proposed by N. Bell & M. Garland (NVResearch)

v" Multiple blocks B,, each processing a group G; of rows
v Each row is assigned a group of threads T,
v A few additional tweaks for performance
I. adjust number of threads per row to minimize waste

li. align threads per row for coalescing 10 ]
2.0 3.0
_ _ _ 4.0
v' Consider 2 blocks, with 2 groups of 4 threads; matrix: | 5 g 60 ' 7.0
TO T1 TZ B B
yp| 1Boi G0 )| | 10 X Row Pt 2 4 5 8
A T 7 2030 || x, OWF gy g
vl BT FER i0 o Colindex [ Il._ 21131 3 4]
3 I R I el 2. /2 B | 3
M :_____E__gl_________é‘i__ﬂ' ------- 5- '_Q_@_'_O_?_'_O__:I _X4_ Values 1.02.03.04.05.06.07.0
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Detailed study of csrmv

» Follow approach proposed by N. Bell & M. Garland (NVResearch)

v" Multiple blocks B,, each processing a group G; of rows
v Each row is assigned a group of threads T,
v A few additional tweaks for performance
I. adjust number of threads per row to minimize waste

Ii. align threads per row for coalescing 10

lii.  use shared memory and texture for performance 50 30
4.0
v' Consider 2 blocks, with 2 groups of 4 threads; matrix: | 5 g 6.0 | 7.0
T, T, T, B —

yp| 1Boi G0 )| | 10 X Row Pt 2 4 5 8
Yo|=t 17 2030 | x, OWFI ¢ ¢

BT 21 | i0 : Colindex [ 1l 2131 [ 3 4]
Y3 P Ev """""" SeaTat| Values 1.02.03.04.05.06.07.0

(Yo ¢+ 1 G L3 4] . 5.06.0 7.0 1] x| VeV ol O DA T
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Performance of csrmyv
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*NVIDIA C2050, ECC on
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Performance of csrmyv
Speedup

*MKL 10.2.3 , Core™ i7 @ 3.07GHz

*NVIDIA C2050, ECC on




Detailed study of csrmm

» How about multiplication by multiple vectors (tall-matrices)
v’ Use similar approach for processing the sparse matrix
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Detailed study of csrmm

» How about multiplication by multiple vectors (tall-matrices)

v’ Use similar approach for processing the sparse matrix
v' Have a 2D grid of blocks (with second dimension processing columns of the tall-matrix)

Bo;
Byy )

B, ; .

n}j 1 1
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Detailed study of csrmm

» How about multiplication by multiple vectors (tall-matrices)

v’ Use similar approach for processing the sparse matrix
v' Have a 2D grid of blocks (with second dimension processing columns of the tall-matrix)
v Each block processes multiple columns (to minimize reading sparse matrix multiple times)

Bi,O Bi,k
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Detailed study of csrmm

» How about multiplication by multiple vectors (tall-matrices)

v’ Use similar approach for processing the sparse matrix

v' Have a 2D grid of blocks (with second dimension processing columns of the tall-matrix)

v Each block processes multiple columns (to minimize reading sparse matrix multiple times)
v Consider 2x2 grid of blocks, with 2 groups of 4 threads; matrix:

1.0

2.0 3.0
_____ 4.0
Boi Gy L1 10 ! 5.0 6.0 ' 7.0
Gy 1 2] . 203.0 | B N
B G 31 40
. 3 4 5.06.07.0 RowPr 1 2 4 5. 8
Collndex [ |I. 211311 3 4]

Values 1.02.03.04.05.06.07.0
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Detailed study of csrmm

» How about multiplication by multiple vectors (tall-matrices)

v’ Use similar approach for processing the sparse matrix

v' Have a 2D grid of blocks (with second dimension processing columns of the tall-matrix)

v Each block processes multiple columns (to minimize reading sparse matrix multiple times)
v Consider 2x2 grid of blocks, with 2 groups of 4 threads; matrix:

1.0

20 3.0
_____ L U B N S Bi,O | Bi,1 ~ 40
Bosi G0y L) 1O ] 10.0:50.0 | 5.0 6070
G 1 2] 203.0 ] 20.0:60.0
By G, 3 40 1] 30.0!70.0
G, L3 a] 506.07.0 | 40.0:80.0 RowPr 1 2 4 5 8

" Collndex | Il 21131 1.3 4]

Values 1.02.03.04.05.06.07.0
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Performance of csrmm
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Performance of csrmm

*MKL 10.2.3 , Core™ i7 @ 3.07GHz

*NVIDIA C2050, ECC on




Detailed study of csrmv transpose

» What is the difficulty?
v’ Multiple blocks/threads writing to the same memory location
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Detailed study of csrmv transpose

» What is the difficulty?

v’ Multiple blocks/threads writing to the same memory location
v" Must use atomics to ensure correct results
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Detailed study of csrmv transpose

» What is the difficulty?

v’ Multiple blocks/threads writing to the same memory location
v" Must use atomics to ensure correct results

matrix storage view:

a 1.0
Ao @ | | 20 3.0
" oal | 4.0
4 | |50 6.0 ' 7.0
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Detailed study of csrmv transpose

» What is the difficulty?

v’ Multiple blocks/threads writing to the same memory location
v" Must use atomics to ensure correct results

matrix (transpose) logical view: matrix storage view:

1020 |50] aﬂ_ 1.0
a
AT= a a a a = 30 _ — 2 — 20 30
[1 ’ 3] 4.0 6.0 A :31 40
B 7.0 | 3 | |50 6.0 | 7.0
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Detailed study of csrmv transpose

» What is the difficulty?

v’ Multiple blocks/threads writing to the same memory location
v" Must use atomics to ensure correct results

matrix (transpose) logical view: matrix storage view:

1020 |50] aﬂ_ 1.0
a
AT= a a a a = 30 _ — 2 — 20 30
[1 ’ 3] 4.0 6.0 A :31 40
B 7.0 | 3 | |50 6.0 | 7.0
B, B,
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Detailed study of csrmv transpose
» What is the difficulty?

v’ Multiple blocks/threads writing to the same memory location
v" Must use atomics to ensure correct results

matrix (transpose) logical view: matrix storage view:
1020 |50 aﬂ_ 1.0
a
AT= d,; d, d;, A, = 30 _ — 2 — 20 30
[1 - 4.0 6.0 A 331 40
u 7.0 | 4 | |50 6.0 ' 7.0
B, B,
y = F‘j a; a3 ﬂ X1
- =
X3
| X4 ]

y=a,*X{+a,"X,+a3"X3+a, X, rresenteosy <4 NVIDIA.




Detailed study of csrmv transpose

» What is the difficulty?
v’ Multiple blocks/threads writing to the same memory location
v" Must use atomics to ensure correct results

matrix (transpose) logical view: matrix storage view:

1020 |50] aﬂ_ 1.0
a
AT= a aza a4 = 30 _ A= 2T — 20 30
[1 = 4.0 6.0 a3T 40
u 7.0 | 4 | |50 6.0 ' 7.0
B, B, )

y = |p{edaja] | x| 1020 |50 | [x ] F>v
B | Xy 3.0 X =1 Y2
X3 4.0 6.0 Xs Ys
| X4 ] - 7.0_ | X4 R

y=a,*X{+a,"X,+a3"X3+a, X, rresenteosy <4 NVIDIA.




Detailed study of csrmv transpose

» What is the difficulty?

v’ Multiple blocks/threads writing to the same memory location
v" Must use atomics to ensure correct results

matrix (transpose) logical view: matrix storage view:
1.02.0 |50 a’ | | 10
a
A =|a a,a,a, = 3.0 — Ao 2 |_| 20 3.0
2im a2 4.0 6.0 a7 4.0
n 7.0 | 4 | |50 6.0'7.0
By B,

y=|plaladpd | % 1.020 |50 [ [ {>v]
- | X 3.0----f---o-- - EXgteze 1> Y
X 4.0 6.0 | | x Y3
L% — 70 [ x| Ve

y=a,*X{+a,"X,+a3"X3+a, X, rresenteosy <4 NVIDIA.




Detailed study of csrmv transpose

» What is the difficulty?

v’ Multiple blocks/threads writing to the same memory location
v" Must use atomics to ensure correct results

matrix (transpose) logical view:

1020 |50]
AT=aa2a a4= 30
2052, 4.0 6.0
_ 7.0 |
B, B,
y = F‘T aj s ﬂ X1
4 = N
X3
| Xq

—_ * * * *
y=ay Xq+ay Xp+az X3ta, Xy

matrix storage view:

4 A=
1.02.0 |50 |
3.0 S

4.0 6.0
. 7.0 |

a,’
a,’

~ -

1.0
2.0

3.0

4.0

5.0

6.0 '7.0
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Detailed study of csrmv transpose

» What is the difficulty?

v’ Multiple blocks/threads writing to the same memory location
v" Must use atomics to ensure correct results

matrix (transpose) logical view:

1020 |50]
AT=aa2a a4= 30
2052, 4.0 6.0
_ 7.0 |
B, B,
y = F‘T aj s ﬂ X1
4 = N
X3
| Xq

—_ * * * *
y=ay Xq+ay Xp+az X3ta, Xy

matrix storage view:

4 A=
1.02.0 |50
3.0
4.0 6.0-{-.
. 7.0-1-

a,’
a,’

1.0
2.0

3.0

4.0

1> Y3

5.0

=>Y4
%)

__>yi

6.0 '7.0
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Detailed study of csrmv transpose

» What is the difficulty?
v’ Multiple blocks/threads writing to the same memory location
v" Must use atomics to ensure correct results

matrix (transpose) logical view: matrix storage view:

1020 |5.0] aﬂ_ 1.0
T_ _ 3.0 3, 20 3.0
B 7.0 3 | | 50 6.0 | 7.0
Bo B, 3

y=[aladalal [ x| 1.0 20 | 5.0}y,

B ] X5 3.0----1- ___::::""XZ_ -—t>Y2

X4 4.0 6.0-{-{7357T===1> V3

Xy B 7.0-9-x04-1> Va

y=a,*X{+a,"X,+a3"X3+a, X, rresenteosy <4 NVIDIA.




Performance of csrmyv transpose
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Performance of csrmyv transpose

4.5

Speedup
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*NVIDIA C2050, ECC on
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Detailed study of csrmm transpose

» How about multiplication by multiple vectors (tall-matrices)
v’ Again use similar approach for processing the sparse matrix
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» How about multiplication by multiple vectors (tall-matrices)

v’ Again use similar approach for processing the sparse matrix
v' Have a 2D grid of blocks (with second dimension processing columns of the tall-matrix)
v Each block processes multiple columns (to minimize reading sparse matrix multiple times
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Detailed study of csrmm transpose

» How about multiplication by multiple vectors (tall-matrices)

v’ Again use similar approach for processing the sparse matrix

v' Have a 2D grid of blocks (with second dimension processing columns of the tall-matrix)

v Each block processes multiple columns (to minimize reading sparse matrix multiple times)
v Lock multiple elements at once, instead of per element atomics

Bo; By ; BZ,jI Bn,j Bio .. B;

]

eresenenay. 8 MVIDIA.
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Performance of csrmm transpose
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*NVIDIA C2050, ECC on
*MKL 10.2.3 , Core™ i7 @ 3.07GHz

eresenenay. 8 MVIDIA.




CUSPARSE and other Libraries

» CUSPARSE
v' C interface, CUDA Toolkit
v’ Sparse linear algebra (matrix multiplication, format conversions, triangular solve?®)

» CUBLAS
v’ Dense linear algebra, CUDA Toolkit

§ » CUSP

v C++ interface, Google Code
v' Iterative solvers, preconditioners, graph algorithms, ...

& > Thrust
2 v Standard Template Library (STL) like interface, Google Code

v' Search, sort, reduce, ... * f ﬁ%ﬁ’:\ﬁrk
PRESENTED BY .
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CUSPARSE and other Libraries

» CUSPARSE
v' C interface, CUDA Toolkit
v’ Sparse linear algebra (matrix multiplication, format conversions, triangular solve?*)

» CUBLAS
v’ Dense linear algebra, CUDA Toolkit

§ » CUSP

v C++ interface, Google Code
v' Iterative solvers, preconditioners, graph algorithms, ...

& > Thrust
v' Standard Template Library (STL) like interface, Google Code

v" Search, sort, reduce, ... * f ﬂ%ﬁ’:\ﬁrk
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Google PageRank

» Find the rank (importance) of a webpage

v’ Your rank I, IS proportional to the # and rank of webpages with (in-) links to you
v r;=sum (r;/ n;), where n; is the # of (out-) links of webpage |

» This problem can be formulated as an eigenvalue problem

v’ with column stochastic matrix (nonnegative elements & sum of col. elements =1)
v' we need to obtain the largest eigenvalue (=1) and the corresponding eigenvector
(which will give us the ranks r,)

1 2 3 4
| B 1/2 N _rl ) o 7 Page 2*%
2 | = | L3 Vel age 17 > page 4
: ig 1 12 el o g /P :
r I
BRI R LT ] \page3/

eresenenay. 8 MVIDIA.




Google PageRank

» Power Method

v’ Finds the largest eigenvalue and the corresponding eigenvector of a matrix
v' Main ideas

» Let the eigenvalue problem to be solved be

A x =\lambda x
= Assume
\lambda, =< ... =<\lambda,,_, <\lambda,
* Then, notice (as k — <o)
Ak x =

PRESENTED BY @ NVIDIA.
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» Let the eigenvalue problem to be solved be
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v' Main ideas
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» Power Method

v’ Finds the largest eigenvalue and the corresponding eigenvector of a matrix
v' Main ideas
» Let the eigenvalue problem to be solved be
A x =\lambda x
= Assume
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* Then, notice (as k — <o)
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» Power Method

v’ Finds the largest eigenvalue and the corresponding eigenvector of a matrix
v' Main ideas
» Let the eigenvalue problem to be solved be
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» Power Method

v’ Finds the largest eigenvalue and the corresponding eigenvector of a matrix
v' Main ideas
» Let the eigenvalue problem to be solved be
A x =\lambda x
= Assume
\lambda, =< ... =<\lambda,,_, <\lambda,
* Then, notice (as k — <o)
Ak x = Ak(\alpha,u,, + \alpha, ;u, , + ... + \alpha,u,)
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= Convergence is proportional to ratio
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Google PageRank

» Power Method

v’ Finds the largest eigenvalue and the corresponding eigenvector of a matrix
v' Main ideas
» Let the eigenvalue problem to be solved be
A x =\lambda x
= Assume
\lambda, =< ... =<\lambda,,_, <\lambda,
= Then, notice (as k — <o)
@ Ak(\alpha,u, +\alpha, ,u,, *+ ... + \alpha,u,)
= \lambda, * \alpha,u, + \lambda,_,*\alpha,_,u., + ... + \lambda ¥ \alpha,u,
= \lambda, X \alpha,u,
= Convergence is proportional to ratio
\lambda, _,/ \lambda,

v Key operation is sparse matrix-vector multiplication (csrmv) SANVIDIA




Google PageRank

» Consider a realistic problem: Stanford-Berkeley (web connectivity matrix)

®m Time(s) ™ Speedup

2.544

0.618

MKL CUSPARSE+CUBLAS
Double Precision, Stopping criteria: 54 iterations, 108

v’ faster convergence
v’ key operation is sparse matrix-tall-matrix multiplication (csrmm)

*NVIDIA C2050, ECC on
*MKL 10.2.3 , Core™ i7 @ 3.07GHz eresenrener 8 MVIDIA.



Google PageRank

» Consider a realistic problem: Stanford-Berkeley (web connectivity matrix)

®m Time(s) ™ Speedup

2.544

0.618

MKL CUSPARSE+CUBLAS
Double Precision, Stopping criteria: 54 iterations, 108

2.5x speedup

v’ faster convergence
v’ key operation is sparse matrix-tall-matrix multiplication (csrmm)

*NVIDIA C2050, ECC on
*MKL 10.2.3 , Core™ i7 @ 3.07GHz eresenrener 8 MVIDIA.



Atmospheric Modeling

» Solve 3D Navier-Stokes equations

- dV/dt=-RT grad P + mAV  (momentum equation)
1 dP/dt=- cy/c, divV (continuity equation)
 dT/dt =-RT/c, divV (thermodynamic equation)

for unknown velocity V, pressure logarithm P and temperature T.

» Numerical Solution

v’ discretize using finite-difference or finite-element method
v' starting with initial conditions find unknowns at some given time
v’ solving a large sparse linear system at every time step

PRESENTED BY @ NVIDIA.



Atmospheric Modeling

» Biconjugate Gradient Stabilized (BICGStab) method

v Krylov subspace iterative method
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v’ Designed for nonsymmetric linear systems: Ax=f
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Atmospheric Modeling

» Biconjugate Gradient Stabilized (BICGStab) method

v Krylov subspace iterative method
v’ Designed for nonsymmetric linear systems: Ax=f

for(i=0; i<maxit; i++){

\rhop=\rho

\rho =rTr

if (i > 0){
\beta = (\rho / rhop) (\alpha / \omega)
p =r + \beta (p — \omega v)

}

V=ADp

\alpha =\rho / r'v

s=r—-\alphav

t=As

\omega =t's / tTt

X =x + \alpha p + \omega s

r=s- \OmEQa t PRESENTED BY @n‘"DlA-




Atmospheric Modeling

» Biconjugate Gradient Stabilized (BICGStab) method

v Krylov subspace iterative method
v’ Designed for nonsymmetric linear systems: Ax=f

for(i=0; i<maxit; i++){
\rhop=\rho
\rho =@
if (i > 0){
\beta = (\rho / rhop) (\alpha / \omega)
p = r + \beta (p — \omega v)

dot product (CUBLAS)

7z

}
V=ADp

\alpha = \rh /@
s=r—\alphav
t=As

\omega =(t"s /"t
X =x + \alpha p + \omega s
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Atmospheric Modeling

» Biconjugate Gradient Stabilized (BICGStab) method

v Krylov subspace iterative method
v’ Designed for nonsymmetric linear systems: Ax=f

for(i=0; i<maxit; i++){
\rhop=\rho
\rho =@
if (i > 0){
\beta = (\rho / rhop) (\alpha / \omega)
p  Fr+\beta (p-\omega v) scaled vector add (CUBLAS)

dot product (CUBLAS)

7z

}
V=ADp

\alpha = \rho /@
S=r-— \alpljua Vv

t=As
\omega =(t's /\t"t

X =X + \alpha p + \omega s
r=Ss- \Omega t PRESENTED BY @n‘"DlA-




Atmospheric Modeling

» Biconjugate Gradient Stabilized (BICGStab) method

v Krylov subspace iterative method

v’ Designed for nonsymmetric linear systems: Ax=f

for(i=0; i<maxit; i++){
\rhop=\rho

\rho =@ 3

if (i > 0){
\beta = (\rho / rhop) (\alpha / \omega)
p =r + \beta (p - \omega v)

}

dot product (CUBLAS)

scaled vector add (CUBLAS)

vzg |>
\alpha = \rhpo /@

s:r—\alpljuav
t=

key operation . matrix-vector multiply (CUSPARSE)

key operation . matrix-vector multiply (CUSPARSE)

|
\omega :@/ tTt
X = x + \alpha p + \omega s
r=s-\omegat
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Atmospheric Modeling

» Consider a realistic problem: AtmosModD (finite-difference discretization)

m Time(s) ™ Speedup

(VAVX
5.616
1 3.049 -
MKL CUSPARSE+CUBLAS

Double Precision, Stopping criteria: 256 iterations, 10"

> Block Krylov subspace methods

v’ faster convergence

v’ key operation is sparse matrix-tall-matrix multiplication (csrmm)

*NVIDIA C2050, ECC on
*MKL 10.2.3 , Core™ i7 @ 3.07GHz resacosr 3 NVIDIA.




Atmospheric Modeling

» Consider a realistic problem: AtmosModD (finite-difference discretization)

m Time(s) ™ Speedup

(VAVX
5.616
1 3.049 -
MKL CUSPARSE+CUBLAS

Double Precision, Stopping criteria: 256 iterations, 10"

» Block Krylov subspace methods 5.6x speedup

v’ faster convergence

v’ key operation is sparse matrix-tall-matrix multiplication (csrmm)

*NVIDIA C2050, ECC on
*MKL 10.2.3 , Core™ i7 @ 3.07GHz resacosr 3 NVIDIA.




Conclusion

» CUSPARSE Library

v’ Set of Basic Linear Algebra Subroutines for Sparse Matrices
v’ Compressed Sparse Row format
+ conversion to and from other formats

» Applications

v Iterative solution of linear systems and eigenvalue problems
v' Energy exploration, physical simulations and life sciences

> Future Work

v New sparse storage formats
v" Solution of triangular linear systems
v" Preconditioning

eresenenay. 8 MVIDIA.
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