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Outline

 Introduction to CUSPARSE library
 Level-1, Level-2, Level-3 and Format Conversions 

 Matrix-vector multiplication: 
 Detailed description, performance results

 Application Examples 
 Google PageRank Algorithm, Atmospheric Modeling 

 Conclusion



Sparse Storage Formats

 Many choices for sparse matrix storage 

 COO (more general)

 CSR

 CSC

 DIAG (more specific)

 ELL  

 HYB (ELL + CSR)  

 Things to keep in mind

 focused on more than matrix-vector multiplication

 focus on more general formats 

 might add new formats in the future 
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 Coordinate (COO) Format

 Compressed Sparse Row (CSR)
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Sparse Storage Formats

 Coordinate (COO) Format
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 Coordinate (COO) Format
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Sparse Storage Formats

 Coordinate (COO) Format

 Compressed Sparse Row (CSR)

 Compressed Sparse Column (CSC)

1 2    2    3    4    4    4

1    1 2 3 1 3 4

1.0 2.0 3.0 4.0 5.0 6.0 7.0

Row Index

Col Index

Values

1.0

6.0

4.0

7.0

3.02.0

5.0

1 2 3 4

1 

2 

3

4

1 2    4    5    8

1    1 2 3 1 3 4

1.0 2.0 3.0 4.0 5.0 6.0 7.0

Row Ptr

Col Index

Values

1    2    4 2    3    4    4

1 4 5 7    8

1.0 2.0 3.0 4.0 5.0 6.0 7.0

Row Index

Col Ptr

Values

column-major order

row-major order



Basic Linear Algebra Subroutines
 Sparse vector storage

1.0 0.0 0.0 2.0 0.0 3.0

1    2    3 4    5 6

dense vector



Basic Linear Algebra Subroutines
 Sparse vector storage

1.0 2.0 3.0

1    4    6Index

Values 1.0 0.0 0.0 2.0 0.0 3.0

1    2    3 4    5 6

sparse vector dense vector



Basic Linear Algebra Subroutines
 Sparse vector storage

 Function naming convention
 Follows the general rule
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Basic Linear Algebra Subroutines
 Sparse vector storage

 Function naming convention
 Follows the general rule

cusparse<Type>[<sparse data format>]<operation>[<sparse data format>]

 For example,

(i) single precision, sparse matrix (in csr storage) x dense vector => 

cusparseScsrmv

(ii) double precision, sparse matrix (in csr storage) x dense tall-matrix => 

cusparseDcsrmm

1.0 2.0 3.0

1    4    6Index

Values 1.0 0.0 0.0 2.0 0.0 3.0

1    2    3 4    5 6

sparse vector dense vector

(set of vectors)
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 Level 1 (sparse vector x and dense vector y)
 axpyi (vector add) y = y + \alpha x 
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 Level 1 (sparse vector x and dense vector y)
 axpyi (vector add)

 doti    (dot product) 

 dotci  (conjugate dot product)

 gthr    (gather) 

 gthrz  (gather and zero-out)

 sctr    (scatter)

y = y + \alpha x 

\alpha = yT * x 

\alpha = yH * x 

x = y

y = x

x = y and x_pattern(y)=0



Basic Linear Algebra Subroutines

 Level 1 (sparse vector x and dense vector y)
 axpyi (vector add)

 doti    (dot product) 

 dotci  (conjugate dot product)

 gthr    (gather) 

 gthrz  (gather and zero-out)

 sctr    (scatter)

 roti     (Givens rotation)

y = y + \alpha x 

\alpha = yT * x 

\alpha = yH * x 

x = y

y = x

[x, y] = [x, y]   c  -s 

s   c

x = y and x_pattern(y)=0



Basic Linear Algebra Subroutines

 Level 2 and 3

 csrmv (matrix-vector multiplication)
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Basic Linear Algebra Subroutines

 Level 2 and 3

 csrmv (matrix-vector multiplication)

 csrmm (matrix-tall-matrix multiplication)
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Basic Linear Algebra Subroutines

 Level 2 and 3 (future work)

 csrtrsv (triangular solve with a single right-hand-side)
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Basic Linear Algebra Subroutines

 Level 2 and 3 (future work)

 csrtrsv (triangular solve with a single right-hand-side)

 csrtrsm (triangular solve with multiple right-hand-sides)
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 Follow approach proposed by N. Bell & M. Garland (NVResearch)

 Multiple blocks Bi, each processing a group Gj of rows

 Each row is assigned a group of threads Tk

 A few additional tweaks for performance
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 Follow approach proposed by N. Bell & M. Garland (NVResearch)
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 Follow approach proposed by N. Bell & M. Garland (NVResearch)

 Multiple blocks Bi, each processing a group Gj of rows

 Each row is assigned a group of threads Tk

 A few additional tweaks for performance

i. adjust number of threads per row to minimize waste

 Consider 2 blocks, with 2 groups of 4 threads; matrix: 
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Detailed study of csrmv

 Follow approach proposed by N. Bell & M. Garland (NVResearch)

 Multiple blocks Bi, each processing a group Gj of rows

 Each row is assigned a group of threads Tk

 A few additional tweaks for performance

i. adjust number of threads per row to minimize waste

ii. align threads per row for coalescing

 Consider 2 blocks, with 2 groups of 4 threads; matrix: 
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Detailed study of csrmv

 Follow approach proposed by N. Bell & M. Garland (NVResearch)

 Multiple blocks Bi, each processing a group Gj of rows

 Each row is assigned a group of threads Tk

 A few additional tweaks for performance

i. adjust number of threads per row to minimize waste

ii. align threads per row for coalescing

iii. use shared memory and texture for performance

 Consider 2 blocks, with 2 groups of 4 threads; matrix: 
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Detailed study of csrmm

 How about multiplication by multiple vectors (tall-matrices)

 Use similar approach for processing the sparse matrix

 Have a 2D grid of blocks (with second dimension processing columns of the tall-matrix)

 Each block processes multiple columns (to minimize reading sparse matrix multiple times)

 Consider 2x2 grid of blocks, with 2 groups of 4 threads; matrix: 
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Detailed study of csrmm

 How about multiplication by multiple vectors (tall-matrices)

 Use similar approach for processing the sparse matrix

 Have a 2D grid of blocks (with second dimension processing columns of the tall-matrix)

 Each block processes multiple columns (to minimize reading sparse matrix multiple times)

 Consider 2x2 grid of blocks, with 2 groups of 4 threads; matrix: 
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  How about multiplication by multiple vectors (tall-matrices)

 Again use similar approach for processing the sparse matrix

 Have a 2D grid of blocks (with second dimension processing columns of the tall-matrix)

 Each block processes multiple columns (to minimize reading sparse matrix multiple times) 

 Lock multiple elements at once, instead of per element atomics 

B0,j B1,j Bn,jB2,j … Bi,0 Bi,k…
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CUSPARSE and other Libraries

 CUSPARSE
 C interface, CUDA Toolkit
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 Standard Template Library (STL) like interface, Google Code 
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Google PageRank

  Find the rank (importance) of a webpage 

 Your rank ri is proportional to the # and rank of webpages with (in-) links to you

 ri = sum ( rj / nj ), where nj is the # of (out-) links of webpage j

 This problem can be formulated as an eigenvalue problem

 with column stochastic matrix (nonnegative elements & sum of col. elements =1)

 we need to obtain the largest eigenvalue (=1) and the corresponding eigenvector

(which will give us the ranks ri)  
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Google PageRank

 Consider a realistic problem: Stanford-Berkeley (web connectivity matrix)

 Subspace Iteration
 faster convergence 

 key operation is sparse matrix-tall-matrix multiplication (csrmm) 

Double Precision, Stopping criteria: 54 iterations, 10-8
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Atmospheric Modeling

 Solve 3D Navier-Stokes equations

dV/dt = - RT grad P + m   V    (momentum equation)

dP/dt = - cp/cv div V                (continuity equation)

dT/dt = - RT/cv div V               (thermodynamic equation)

for unknown velocity V, pressure logarithm P and temperature T.

 Numerical Solution

 discretize using finite-difference or finite-element method

 starting with initial conditions find unknowns at some given time

 solving a large sparse linear system at every time step 
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Atmospheric Modeling

  Consider a realistic problem: AtmosModD (finite-difference discretization)

 Block Krylov subspace methods

 faster convergence 

 key operation is sparse matrix-tall-matrix multiplication (csrmm) 
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Conclusion

 CUSPARSE Library
 Set of Basic Linear Algebra Subroutines for Sparse Matrices

 Compressed Sparse Row format 

+ conversion to and from other formats 

 Applications

 Iterative solution of linear systems and eigenvalue problems 

 Energy exploration, physical simulations and life sciences  

 Future Work
 New sparse storage formats

 Solution of triangular linear systems

 Preconditioning
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