
Implementing CUDA Audio Networks

Giancarlo Del Sordo
Acustica Audio

giancarlo@acusticaudio.com

©2010 ACUSTICA AUDIO

Motivation

• Vintage gear processing in software domain
• High audio quality results
• Low cost and user-driven content approach

©2010 ACUSTICA AUDIO

Outline

• Audio theory
• Basic engine solution
• Network implementation
• Results

©2010 ACUSTICA AUDIO

Audio theory

©2010 ACUSTICA AUDIO

Standard DSP approach

c = pow(0.5, (128-cutoff) / 16.0);

r = pow(0.5, (resonance+24) / 16.0);

//Loop:

v0 = (1-r*c)*v0 - (c)*v1 + (c)*input;

v1 = (1-r*c)*v1 + (c)*v0;

output = v1;

Example: simple 2 poles filter (source www.musicdsp.org)

input output

Drawbacks:

• time/costs required for achieving good
quality algorithms

• complexity for taking advantage of GPU
resources

©2010 ACUSTICA AUDIO

Volterra Series

x(n) y(n)

x(n)

h1(n) h2(n) h3(n)

+ +

*x(n) *x(n)

y(n)

©2010 ACUSTICA AUDIO

Solution for dynamic processing (preamps,reverbs)

h3(n)
h2(n)

h1(n)

preamplifiers

h3(n)
h2(n)

h1(n)

reverbs

0 dB

-2 dB

-4 dB

Envelope

detector/follower

Length: 2ms to 200ms
Refresh: 2ms to 50ms

Length: 200ms to 10s
Refresh: up to 180ms

©2010 ACUSTICA AUDIO

Solution for dynamic processing (comp/limiters)

0 dB

-2 dB

-4 dBEnvelope

detector/follower

Tf (input, output)

Transfer curve

Length: 2ms to 200ms
Refresh: 2ms to 50ms

©2010 ACUSTICA AUDIO

Solution for equalizers/filters

leafsnodes

root

knob 1 knob 2

Length: 10ms to 500ms

©2010 ACUSTICA AUDIO

Solution for time-varying fx (chorus, flanger, …)

0 ms 20 ms 40 ms 60 ms time

interpolation

root

leafs

Length: 2ms to 200ms
Refresh: 2ms to 50ms

©2010 ACUSTICA AUDIO

Block diagram of the engine (1)

Vectorial engine
Refresh: 2ms to 180ms

x(n)
*x(n)

y(n)h1(n) h2(n)

+

Kernel engine
Realtime

Advantages:

• low costs required for achieving
accurate algorithms (sampling approach)

• easy CUDA implementation for Kernel
engine

©2010 ACUSTICA AUDIO

Block diagram of the engine (2)

Kernel enginex iVldim

0 iVextendedbufferbytes

FFT

X

H1

1
H1

2

^2

0

FFT

H2

1

* *∑

circular accumulator

IFFTy

iVldim

iVbins

H2

2

*

©2010 ACUSTICA AUDIO

Basic engine solution

©2010 ACUSTICA AUDIO

Inner block (1)

memset (cVtemp, 0, cOp32->iVextendedbufferbytes);

for (iV = 0; iV < cOp32->iVldim; iV++) cVtemp [iV].x = (float) dX_ [iV];

cudaMemcpyAsync (cVtemp_, cVtemp, cOp32->iVextendedbufferbytes, cudaMemcpyHostToDevice,

cOp32->iVstream);

x iVldim

0

Input

if (!bUpdate) acfftExecC2C (cOp32->cVacplanx, cVtemp_, cVtemp_, CUFFT_FORWARD, cOp32->iVstream);

else {

…

cudaMemcpyAsync (cOp32->fVirfftpartition_ [iIrchannel], cOp32->fVirfftpartition

[iIrchannel], cOp32->iVcircularbufferbytes, cudaMemcpyHostToDevice,

cOp32->iVstream);

acfftExecC2C (cOp32->cVacplany [iIrchannel],

(cufftComplex*) cOp32->fVcoalescedirfftpartition_ [iIrchannel],

(cufftComplex*) cOp32->fVcoalescedirfftpartition_ [iIrchannel],

CUFFT_FORWARD, cOp32->iVstream);

}

FFT (input and kernel)

FFT

H1

1

muacp<<<iCpar0, iCpar1, 0, cOp32->iVstream>>> (

cVtemppointera_, (tCcomplex*) fVtemppointerb_, (tCcomplex*) fVtemppointerc_,

cOp32->iVbins, cOp32->iVpartitions, cOp32->iVcircularpointer);

Multiply and add
* ∑

©2010 ACUSTICA AUDIO

Inner block (2)

switch (cOp32->iVchainedposition) {

case iCchainedfirst_:

cudaMemcpyAsync (&cOp32->fVchainedbuffer_ [iVtemp2],

fVtemppointerc_, cOp32->iVextendedbufferbytes,

cudaMemcpyDeviceToDevice, cOp32->iVstream);

…

break;

case iCchainedmiddle:

addfl<<<iCpar0, iCpar1, 0, cOp32->iVstream>>> (fVtemppointerc_,

&cOp32->fVchainedbuffer_ [iVtemp2],

cOp32->iVextendedsection);

…

break;

case iCchainedlast__:

addfl<<<iCpar0, iCpar1, 0, cOp32->iVstream>>> (&cOp32->fVchainedbuffer_ [iVtemp2],

fVtemppointerc_,

cOp32->iVextendedsection);

case iCchainednone__:

acfftExecC2C (cOp32->cVacplanxinv, (cufftComplex*) fVtemppointerc_, cVtemp_,

CUFFT_INVERSE, cOp32->iVstream);

…

cudaMemcpyAsync (cOp32->fVextendedbuffer, cVtemp_, cOp32->iVextendedbufferbytes,

cudaMemcpyDeviceToHost, cOp32->iVstream);

Output

IFFT

y

©2010 ACUSTICA AUDIO

Inner block (3)

muacp<<<…>>> (…);

In-depth analysis: multiply and add
* ∑

static __global__ void muacp (tCcomplex* cA, tCcomplex* cB, tCcomplex* cC, int iSize,

int iPartitions, int iCircularpointer) {

const int iCnumthreads = blockDim.x * gridDim.x;

const int iCthreadid = blockIdx.x * blockDim.x + threadIdx.x;

int iVctemp;

for (int iV = iCthreadid; iV < iSize; iV += iCnumthreads)

for (int iVinner = 0; iVinner < iPartitions; iVinner++) {

iVctemp = iSize * ((iCircularpointer + iVinner) % iPartitions) + iV;

cC [iVctemp] = masce (cA [iV], cB [iSize * iVinner + iV], cC [iVctemp]);

}

}

static __device__ __host__ inline tCcomplex masce (tCcomplex cA, tCcomplex cB, tCcomplex cC) {

tCcomplex cVreturn;

cVreturn.x = cC.x + cA.x*cB.x - cA.y*cB.y;

cVreturn.y = cC.y + cA.x*cB.y + cA.y*cB.x;

return cVreturn;

}

iCnumthreads

Grid

©2010 ACUSTICA AUDIO

Inner block (4)

acfftExecC2C (…)

In-depth analysis: FFT
FFT

void acfftExecC2C (ACFFTLOCHANDLE cPlan, float2* cInput, float2* cOutput,

int iDirection, int iStream = 0) {

((ACFFTLOC*) cPlan)->cVexecutefun [iDirection <= 0 ? 0 : 1] (cInput, cOutput, cPlan, iStream);

}

int iVacfftsize [] = {8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384};

ACFFTFUN cVacfftfunfw [] =

{acfnv, acfnv, acfnv, acfnv, acfnv, acfnv, acf01, acf02, acf03, acf04, acf05, acf06};

(*cPlan)->cVexecutefun [0] = cVacfftfunfw […];

void acf06 (float2* cInput, float2* cOutput, ACFFTLOCHANDLE cAcfft,int iStream = 0) {

ACFFTLOC* cVloc = (ACFFTLOC*) cAcfft;

v2_16<<< grid2D(cVloc->iVbatches*(16384/16)/64), 64, 0, iStream >>>(cInput, cOutput);

v1024<<< grid2D(cVloc->iVbatches*16), 64, 0, iStream >>>(cOutput, cOutput);

}

Vasily Volkov inner blocks:
1024 = 16*4*16
16384 = 16*1024

custom FFT:
acfnv = basic c2c radix2

©2010 ACUSTICA AUDIO

Buffer tuning and latency (1)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 100 200 300 400 500 600

compressors
preamps

equalizers

ms

FFT buffer (iVextendedbuffersize)

early reflections

rooms
long TMV

CUDA accelleration

reverbs

©2010 ACUSTICA AUDIO

Buffer tuning and latency (2)

ms

0

5

10

15

20

25

700 2700 4700 6700 8700 10700

GPU

CPU

% load

CPU: Core2 Duo T5800 2.0 Ghz
GPU: GeForce 9600M GT

Results:
• real-time resources are doubled adding
GPU-powered instances

©2010 ACUSTICA AUDIO

Buffer tuning and latency (3)
CPU: Core2 Duo T5800 2.0 Ghz
GPU: GeForce 9600M GT

3 instances, 1 kernel, 5.5 seconds, FFT buf = 16384, 30 partitions

IPP (Intel Performance Primitives): CPU 40%
FFTW: CPU 44%

CUDA – cufft library: CPU 5%, GPU 90%

CUDA – custom fft implementation: CPU 5%, GPU 36%

FFT

IFFT

©2010 ACUSTICA AUDIO

Audio processing buffers (1)

latency compensation

input

processed

output

sleeps

realtime headroom

©2010 ACUSTICA AUDIO

Audio processing buffers (2)

FFT output

processed

refresh period (kernel swap)

result: per-sample smoothing

example: linear interpolation

FFT buffer

©2010 ACUSTICA AUDIO

Audio processing buffers (3)

Example: premplifier featuring 50 ms kernels

Without interpolation

Custom
interpolation

Log interpolation

dB

©2010 ACUSTICA AUDIO

Threading model

Host/DSP thread

GUI thread
loading command

CUDA thread
alloc H1 alloc H2 chaining

bypass sending old data

proc H1 proc H2

new data

critical section critical section

latency

CUDA RUNTIME

©2010 ACUSTICA AUDIO

Block diagram of a plug-in implementation
HOST

DSP EDITOR

ENGINE

KERNEL VECTORIAL

BRIDGE

CUDA RUNTIME

DSP EDITOR

ENGINE

KERNEL VECT

BRIDGE

DSP EDITOR

ENGINE

KERNEL VECT

BRIDGE

©2010 ACUSTICA AUDIO

Network implementation

©2010 ACUSTICA AUDIO

Network implementation
HOST

DSP EDITOR

ENGINE

KERNEL VECTORIAL

SERVER

DSP EDITOR

ENGINE

KERNEL VECT

DSP EDITOR

ENGINE

KERNEL VECT

IPC

©2010 ACUSTICA AUDIO

Inter-process communication (1)

cVsocket = new CoreSckt (type);

Custom socket implementation

Socket Named pipes/
domain socket

accept

connect

bind

listen

send

recv

• Reliable
• Slower
• Remote host

UDP

• Not reliable
(only for media data)

• Remote host

• Reliable
• Fast (10x)
• Local host

©2010 ACUSTICA AUDIO

Inter-process communication (2)

cVprocess->setbb(CorePrcs::iCbeanbypass, true);

Example: set a 2 state variable bean

cVtransportopcode->setvl (0, iCopcodesetbb);

cVtransportopcode->send_ (cVlocalsocket);

cVbeanstructb->setvl (0, iObject);

cVbeanstructb->setvl (1, bValue);

cVbeanstructb->send_ (cVlocalsocket);

cVlocalsocket->lflsh ();

cVtransportack->recve (cVlocalsocket);

Client

iCopcodesetbb

iCbeanbypassL

ValueL

case iCopcodesetbb:

cVbeanstructb->recve (cVlocalsocket);

cVbeanstructb->getvl (0, iVsubopcode);

cVbeanstructb->getvl (1, bVtemp);

cVbeanstructb->getvl (2, cVbeanstruct.iVobject);

cVbeanstructb->getvl (3, cVbeanstruct.iVsubobject);

cVprocess->setbb

(iVsubopcode, bVtemp, &cVbeanstruct);

cVtransportack->send_ (cVlocalsocket);

Server

class is wrapped
message

Different threads on server side:

• Audio processing
• Editor: low priority beans

opcode

subopcode/bean item

©2010 ACUSTICA AUDIO

32 bits legacy hosts in 64 bits OS

HOST

PLUG-IN

SERVER

IPC

BRIDGE

CUDA runtime/drivers

64 bits:

• extended address space
• easy CUDA installation (driver, toolkit)
• very low overhead using named
pipes/domain sockets

• lacking of memory fragmentation effect
and fault tolerance

32 bits:
• x64 version is not available
• plug-in is a dynamic library

©2010 ACUSTICA AUDIO

Multi-servers/Multi-clients block diagram

HOST

PLUG-IN

SERVER

IPC

BRIDGE

CUDA runtime/drivers

PLUG-IN PLUG-IN

SERVER

IPC

BRIDGE

SERVER

IPC

BRIDGE

CUDA
runtime

HOST 1

HOST 3HOST 2

Achievements:

• single control point, shared
resources, easy mantainance

• more OS are available at the same time
(example: MAC OSX host connected
to cheap windows servers)

©2010 ACUSTICA AUDIO

Results

©2010 ACUSTICA AUDIO

The library

• MAC OSX Tiger..Snow Leopard, Windows XP... 7
• Support for Microsoft, Borland/CodeGear, Apple compilers
• Support for IPP library
• Optional support for FFTW library
• Direct convolution implemented in ASM ia32 and x64
• Automatic application aimed to vintage gear sampling
• Huge number of emulations available and used daily in professional audio productions

©2010 ACUSTICA AUDIO

On the road

• Big recording facility
• Client/Server as replacement
of missing outboard

sampling

©2010 ACUSTICA AUDIO

Next steps

• CUDA implementation of the vectorial engine
• Resource optimization (clients connected to the same server instance could share resources)
• New features based on client-to-client communication (ie cross-talk modeling)

