| GTC-interior.png I

Implementing CUDA Audio Networks

Giancarlo Del Sordo
-¢ Acustica Audio
giancarlo@acusticaudio.com

Motivation

* VVintage gear processing in software domain
* High audio quality results
* Low cost and user-driven content approach

GPU correrence

Outline

* Audio theory

* Basic engine solution

* Network implementation
* Results

GPU Corerence

Audio theory

GPU conrerence

e .
- ef. ©2010 ACUSTICA AUDIO
L

input

Standard DSP approach

output

> L
OO
oz
i
o
=L
05
O
=
o
(O

c = pow (0.5, (128-cutoff) / 16.0);
r = pow (0.5, (resonance+24) / 16.0);

‘@& - //Loop:

vl = (l-r*c)*vl + (c)*vO0;

v0) = (l-r*c)*v0 - (c)*vl + (c

Example: simple 2 poles filter (source www.musicdsp.org)

v

Drawbacks:

* time/costs required for achieving good

quality algorithms

* complexity for taking advantage of GPU

resources

©2010 ACUSTICA AUDIO

GPU Corerence

Volterra Series

x(n)

-26
-39
-52
R
-78
-g1
-104
117
-120

y(n)

e

/ / A\
/ Mh

o0 zcy s00 I 2« sic \ 10K

/ \

x(n)

S () xx(n—1)

+ S (D xx2(n—1) + B R (D) x 23 (n—1) + ..

(o)

N

)
e

h,(n)

hs(n)

v

©2010 ACUSTICA AUDIO

> L
OO 4 [e
== Solution for dynamic processing (preamps,reverbs)
O
Z W = h
ILZL é 0dB Length: 2ms to 200ms
8 o % Refresh: 2ms to 50ms
-0 Q
0
= B
2 |-2dB
O E
: Length: 200ms to 10
hers -4 dB Ree?rgesh:up::lgOm:

Envelope
detector/follower

©2010 ACUSTICA AUDIO

Solution for dynamic processing (comp/limiters)

—_—

f (input, output) 0dB

-2dB

> L
OO
oz
i
o
=L
05
—O
=
o
(O

N
7

Envelope Transfer curve -4 dB
S detector/follower

-

i Length: 2ms to 200ms
i Refresh: 2ms to 50ms

©2010 ACUSTICA AUDIO

Solution for equalizers/filters

Length: 10ms to 500ms

> L
OO
oz
i
o
=
05
O
=
o
(O

leafs

.
LY ©2010 ACUSTICA AUDIO
-

Solution for time-varying fx (chorus, flanger, ...)

A

Length: 2ms to 200ms
Refresh: 2ms to 50ms

interpolation ! leafs

> L
OO
oz
i
o
=
05
O
=
o
(O

.
el ©2010 ACUSTICA AUDIO
-

Block diagram of the engine (1)

x(n)

Kernel engine

Realtime

y(n) Advantages:

7

GPU correrence

* low costs required for achieving
accurate algorithms (sampling approach)

* easy CUDA implementation for Kernel
engine

Vectorial engine
Refresh: 2ms to 180ms

.
LY ©2010 ACUSTICA AUDIO
-

Block diagram of the engine (2)

X iVIdim N Kernel engine
N2

0| iVextendedbufferbytes 0

GPU correrence

circular accumulator

.
LY ©2010 ACUSTICA AUDIO
-

Basic engine solution

GPU conrerence

2 L]
= e ©2010 ACUSTICA AUDIO
-

Inner block (1)

Input y Vidim

memset (cVtemp, 0, cOp32->iVextendedbufferbytes);

for (iv = 0; iV < cOp32->ivldim; iV++) cVtemp [iV].x = (float) dX [iV];

cudaMemcpyAsync (cVtemp , cVtemp, cOp32->iVextendedbufferbytes, cudaMemcpyHostToDevice, /
cOp32->iVstream) ; O

FFT (input and kernel)

if (!bUpdate) acfftExecC2C (cOp32->cVacplanx, cVtemp , cVtemp , CUFFT FORWARD, cOp32->iVstream);
else {

GPU correrence

cudaMemcpyAsync (cOp32->fVirfftpartition [iIrchannel], cOp32->fVirfftpartition
[iIrchannel], cOp32->iVcircularbufferbytes, cudaMemcpyHostToDevice,
cOp32->iVstream) ;
acfftExecC2C (cOp32->cVacplany [iIrchannel], fil
(cufftComplex*) cOp32->fVcoalescedirfftpartition [iIrchannel], 1

(cufftComplex*) cOp32->fVcoalescedirfftpartition [iIrchannel],
CUFFT_FORWARD, cOp32->iVstream);

Multiply and add

muacp<<<iCpar0, iCparl, 0, cOp32->iVstream>>> (
cVtemppointera , (tCcomplex*) fVtemppointerb , (tCcomplex*) fVtemppointerc ,
cOp32->iVbins, cOp32->iVpartitions, cOp32->iVcircularpointer);

©2010 ACUSTICA AUDIO

Inner block (2)

Output

switch (cOp32->iVchainedposition) {
case iCchainedfirst :
cudaMemcpyAsync (&cOp32->fVchainedbuffer [iVtemp2],
fVtemppointerc , cOp32->iVextendedbufferbytes,
cudaMemcpyDeviceToDevice, cOp32->iVstream);

break;
case iCchainedmiddle:
addfl<<<iCpar0, iCparl, 0, cOp32->iVstream>>> (fVtemppointerc ,
&cOp32->fVchainedbuffer [iVtemp2],
cOp32->iVextendedsection);

GPU correrence

break;
case iCchainedlast_ :
addfl<<<iCpar0, iCparl, 0, cOp32->iVstream>>> (&cOp32->fVchainedbuffer [iVtemp2], y
fVtemppointerc ,
cOp32->iVextendedsection);

case iCchainednone :
acfftExecC2C (cOp32->cVacplanxinv, (cufftComplex*) fVtemppointerc , cVtemp ,
CUFFT_INVERSE, cOp32->iVstream);

cudaMemcpyAsync (cOp32->fVextendedbuffer, cVtemp , cOp32->iVextendedbufferbytes,
cudaMemcpyDeviceToHost, cOp32->iVstream) ;

©2010 ACUSTICA AUDIO

Inner block (3)

In-depth analysis: multiply and add

muacp<<<..>>> (..);

static _ global void muacp (tCcomplex* cA, tCcomplex* cB, tCcomplex* cC, int iSize,
int iPartitions, int iCircularpointer) {
const int iCnumthreads = blockDim.x * gridDim.x;
const int iCthreadid = blockIdx.x * blockDim.x + threadIdx.x;

int iVctemp; _ _iCnumthreads
N 7

> L
OO
oz
i
o
=L
05
—O
-
o
(O

for (int iV = iCthreadid; iV < iSize; iV += iCnumthreads)

for (int iVinner = 0; iVinner < iPartitions; iVinner++) {
iVctemp = iSize * ((iCircularpointer + iVinner) % iPartitions) + iV; ~ii— o — - TIIT I
: cC [iVctemp] = masce (cA [iV], cB [iSize * iVinner + iV], cC [iVctemp]); ":::'-..___
- - — .
P~ } Do - Grid
<) ~ >

static _ device _ host inline tCcomplex masce (tCcomplex cA, tCcomplex cB, tCcomplex cC) { ' N
tCcomplex cVreturn;

cVreturn.x = cC.x + CA.x*cB.x - cA.y*cB.y;
cVreturn.y = cC.y + cA.x*cB.y + cA.y*cB.x;
return cVreturn;

©2010 ACUSTICA AUDIO

Inner block (4)

In-depth analysis: FFT

acfftExecC2C (..)

void acfftExecC2C (ACFFTLOCHANDLE cPlan, float2* cInput, float2* cOutput,
int iDirection, int iStream = 0) {

((ACFFTLOC*) cPlan)->cVexecutefun [iDirection <= 0 ? 0 : 1] (cInput, cOutput, cPlan,

GPU correrence

(*cPlan) ->cVexecutefun [0] = cVacfftfunfw [..];

int ivVacfftsize [] = {8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384};
ACFFTFUN cVacfftfunfw [] =
{acfnv, acfnv, acfnv, acfnv, acfnv, acfnv, acf0l, acf02, acf03, acf04, acf05, acf06};

void acf06 (float2* cInput, float2* cOutput, ACFFTLOCHANDLE cAcfft,int iStream = 0)
ACFFTLOC* cVloc = (ACFFTLOC*) cAcfft;

v2_ 16<<< grid2D(cVloc->iVbatches* (16384/16)/64), 64, 0, iStream >>>(cInput, cOutput);
v1024<<< grid2D(cVloc->iVbatches*16), 64, 0, iStream >>>(cOutput, cOutput);
}

iStream) ;

{

custom FFT:
acfnv = basic c2c radix2

Vasily Volkov inner blocks:
1024 = 16*4*16
16384 = 16*1024

.
el ©2010 ACUSTICA AUDIO

Buffer tuning and latency (1)

FFT buffer (ivextendedbuffersize)

16000

14000 CUDA accelleration

> L
OO
oz
i
o
=
05
O
=
o
(O

300 400 500

ms

rooms ; reverbs ———- >

.
LY ©2010 ACUSTICA AUDIO
-

Buffer tuning and latency (2)

25 1 % load

20 -+

> L
OO
oz
i
o
=L
05
—O
=
o
(O

15 |
= GPU
10 e CPU
: 5 |
m' - X 0 T T T T
5 700 2700 4700 6700 8700 10700 ms

CPU: Core2 Duo T5800 2.0 Ghz ResTltt.S: doubled addi
. ¢ real-time resources are doubled a ng
GPU: GeForce 9600M GT GPU-powered instances

©2010 ACUSTICA AUDIO

> L
OO
oz
i
o
=L
05
O
=
o
(O

Buffer tuning and latency (3)

CPU: Core2 Duo T5800 2.0 Ghz
GPU: GeForce 9600M GT

IPP (Intel Performance Primitives):
FFTW:

CUDA — cufft library:

3instances, 1 kernel, 5.5 seconds, FFT buf = 16384, 30 partitions

CPU 40%
CPU 44%

CPU 5%, GPU 90%

! /
N
234396 291227 297558 303389

CUDA — custom fft implementation: CPU 5%, GPU 36%

3 212!&64 21210709 21214555

= SP_c2cf_copy_2d_kernel
[5P_c2ch_copy_2d_kernel
mm SP_c?r_copy_2d_kernel
mm 5P _r2c_copy_2d_kernel
= memcpyDioHasync

m rmemcpyHioD

3 memcpyHtoDasync

I memzr

BN MUacp

= spRadix0168_kernel-0
= spRadix0 168_kernel-1
mm spRadix0326_kernel-0
mm spRadix032B_kernel-1
= spRadix032E_kernel2-0
mm spRadixd32B_kernel2-1

N

—il024
0i2_16
B memcpyDioHasync

IFFT

= memcpyHtoD

= memcpyHtoDasync
B Memzr

= muacp

= vi024

m vZ_15

FFT

.
LY ©2010 ACUSTICA AUDIO
-

Audio processing buffers (1)

GPU correrence

| | >

i i
i realtime;peadroom

processed | | S
S T T — e y -
! ' ST =

output ! | S
|
!
|

Vv

©2010 ACUSTICA AUDIO

Audio processing buffers (2)

<= = FFT buffer

refresh period (kernel swap)

! .
i
FFT output : = _

> L
OO
=L
=1e)
o
Z Wl
o
wo
—O
—
0.
(O

i >
| : - :
!
! i . . .
> : . example: linear interpolation R
e] I >
vi& - : | :
SRR & ! i !
o -A’>‘ I i i
! | - result: per-sample smoothing
processed | : S

el ©2010 ACUSTICA AUDIO

Audio processing buffers (3)

T TTITT

o (o= -96,26d8 |
b

Example: premplifier featuring 50 ms kernels ey

Magnitude [dB]

I
il
il
il

Without interpolation

50 100 200 _ 500 1k 2k sk 10k 20k
Frequency [Hz]

> LU
OO
(@ Jo
-l
O
=
fe
O
-
(o
o

1 1
o8 99
05 I
o THD: -107,1d8 |
07 &
-299 \ THD+N: -46,92 dB
05 SN Klirr: 0,2101 %
05 ~N \)
os ~_ dB 5
—>
F
02 -699 \ §_ 1
- Log interpolation

50 100 200 _ 500 1k 2k Sk 10k 20k
Frequency [Hz]

A

o |nm. “141de
THD+N: -56,5 dB
Klirr: 0,02003 % |

v

Custom
I | interpolation

S0 100 200 _ 500 1k 2k Sk 10k 20k
Frequency [Hz]

Magnitude [dB]

©2010 ACUSTICA AUDIO

GPU correrence

Threading model

bypass sending old data new data
SEESTEC I, :_.
[(R A I |
Host/DSPthread 1 =1 1 1 -1 I I I I I I H H >
I
loading command ' | latency '
GUI thread | é) I -
i | |
|| allocHy | alloc H, | chaining | 5| ProcHy | procH, _'
CUDA thread -

I critical section

| critical section |

.
LY

©2010 ACUSTICA AUDIO

Block diagram of a plug-in implementation

GPU correrence

T
DSP <> EDITOR | DSP <> EDITOR ; | DSP > EDITOR |
— P e e = — P e — =
M N
..... Y. .. R VA
ENGINE | ENGINE ! | ENGINE !
/\ g :;.\A_..__ g :;.\A_..__
KERNEL VECTORIAL | KERNEL ! | VECT | | KERNEL ! | VECT |
u__,__l L ; u__,.__l L ;
A L
:"!/ :_:’/
..... V... N
| BRIDGE | | BRIDGE |
N/ N
CUDA RUNTIME

©2010 ACUSTICA AUDIO

Network implementation

> L
OO
oz
— i
o
Z U]
52
w o
—O
—
0.
(O

Network implementation

GPU correrence

DSP <> EDITOR i DSP |<> EDITOR | | DSP |< EDITOR |
— _l. s — _l. —_ I_
..... Y. _. e— Y
ENGINE | ENGINE ! | ENGINE !
//\\ e - . e\ —
KERNEL VECTORIAL | KERNEL | | VECT | | KERNEL ! | VECT |

= ._.._\.‘_..

©2010 ACUSTICA AUDIO

Inter-process communication (1)

Custom socket implementation

GPU correrence

cVsocket = new CoreSckt (type); accept
i
listen
send
Socket UDP Named pipes/
domain socket
* Reliable * Not reliable * Reliable
S ~ *Slower (only for media data) * Fast (10x)
% =S8 * Remote host * Remote host * Local host

e .
== ."- ©2010 ACUSTICA AUDIO
-

GPU correrence

Example: set a 2 state variable bean

cVprocess->setbb (CorePrcs: :iCbeanbypass, true);

i_ class is wrapped
Client v

cVtransportopcode->setvl (0, iCopcodesetbb) ;
cVtransportopcode->send (cVlocalsocket);
cVbeanstructb->setvl (0, iObject);
cVbeanstructb->setvl (1, bValue);
cVbeanstructb->send (cVlocalsocket);
cVlocalsocket->1flsh ();
cVtransportack->recve (cVlocalsocket);

I
Server v
case iCopcodesetbb:
cVbeanstructb->recve (cVlocalsocket);
cVbeanstructb->getvl (0, iVsubopcode) ;
cVbeanstructb->getvl (1, bVtemp);

cVbeanstructb->getvl (2, cVbeanstruct.iVobject);

cVbeanstructb->getvl (3, cVbeanstruct.iVsubobject);

cVprocess->setbb

(iVsubopcode, bVtemp, &cVbeanstruct);

cVtransportack->send (cVlocalsocket);

Inter-process communication (2)

message

iCopcodesetbb opcode

L iCbeanbypass subopcode/bean item

L Value

Different threads on server side:

€ -—-- —_

* Audio processing
* Editor: low priority beans

©2010 ACUSTICA AUDIO

32 bits legacy hosts in 64 bits OS

32 bits:
HOST * x64 version is not available
* plug-in is a dynamic library

PLUG-IN
I

IpC !
v
SERVER * extended address space
* easy CUDA installation (driver, toolkit)
* very low overhead using named
BRIDGE pipes/domain sockets

* lacking of memory fragmentation effect
and fault tolerance

CUDA runtime/drivers

> LU
©O
o=z
i
o
=
05
—O
—
o
(O

64 bits:

‘‘‘‘‘

.
LY ©2010 ACUSTICA AUDIO
-

Multi-servers/Multi-clients block diagram

> LU
OO
2
1]
(e }0
=
=
(BT
) HOST
O

vV vV
: PLUG-IN PLUG-IN PLUG-IN

[[[
m HOST 1 | : I Achievements:
a IPC IPC ! IPC__

m \I/ « single control point, shared
i SERVER SERVER\ SERVER resources, easy mantainance

* more OS are available at the same time
(example: MAC OSX host connected
to cheap windows servers)

y
BRIDGE

V2 V2
BRIDGE BRIDGE

S

CUDA runtime/drivers

.....

y

CUDA
runtime

.
el ©2010 ACUSTICA AUDIO
-

Results

GPU conrerence

L]
el ©2010 ACUSTICA AUDIO

The library

* MAC OSX Tiger..Snow Leopard, Windows XP... 7

* Support for Microsoft, Borland/CodeGear, Apple compilers

* Support for IPP library

* Optional support for FFTW library

* Direct convolution implemented in ASM ia32 and x64

* Automatic application aimed to vintage gear sampling

* Huge number of emulations available and used daily in professional audio productions

GPU correrence

©2010 ACUSTICA AUDIO

On the road

sampling

> L
OO
oz
i
o
=
05
O
-
0.
o

oy

* Big recording facility
* Client/Server as replacement
of missing outboard

e e S— ©2010 ACUSTICA AUDIO

Next steps

* CUDA implementation of the vectorial engine
* Resource optimization (clients connected to the same server instance could share resources)
* New features based on client-to-client communication (ie cross-talk modeling)

GPU conrerence

©2010 ACUSTICA AUDIO

