

GPU TECHNOLOGY CONFERENCE

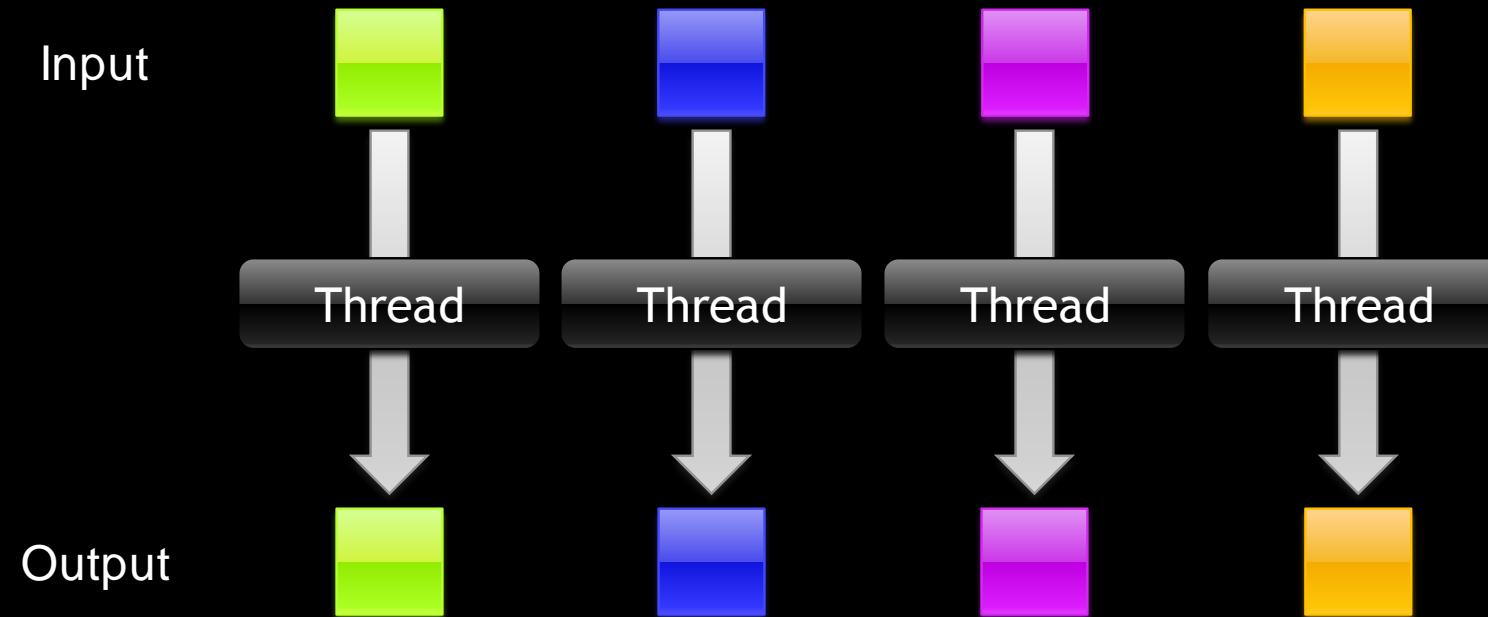
State of the Art in GPU Data-Parallel Algorithm Primitives

Mark Harris
NVIDIA

Stream Programming Model

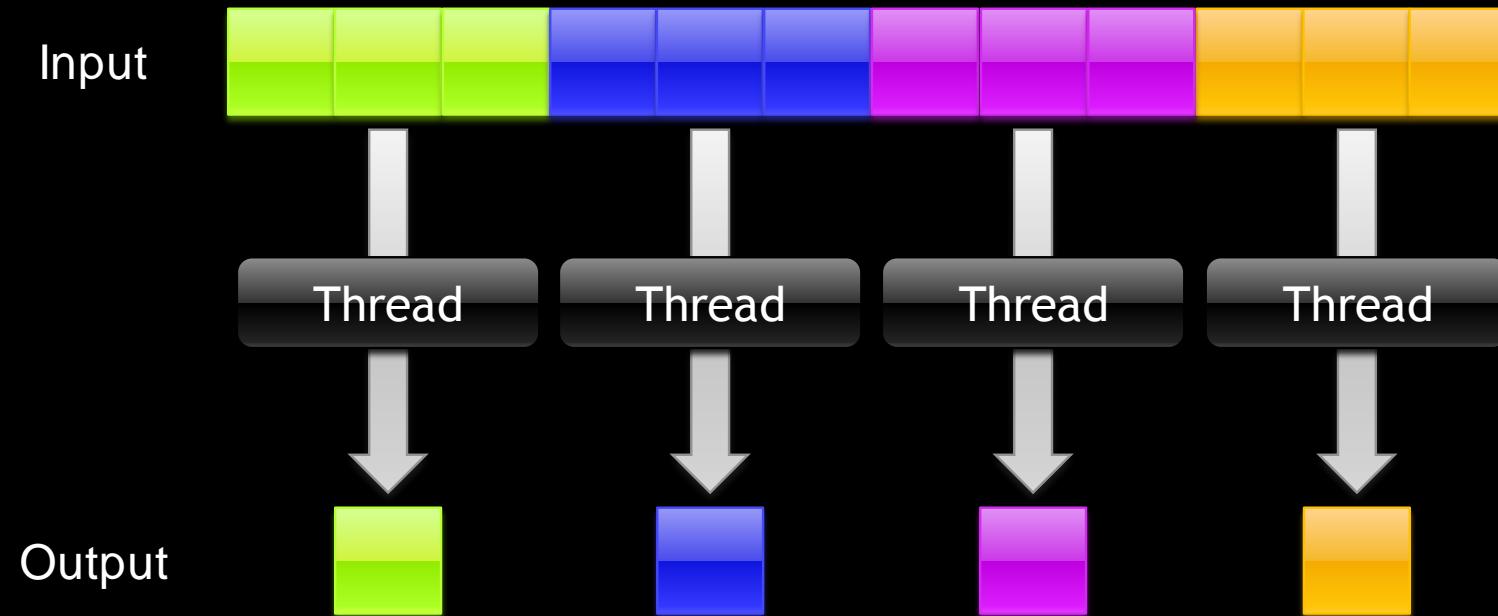
- Many independent threads of execution
 - All running the same program
- Threads operate in parallel on separate inputs
 - Produce an output per input
- Works well when outputs depend on small, bounded input

Stream Parallelism



- One-to-one Input-output dependence (e.g., scalar)

Stream Parallelism



- Local neighborhood input-output dependence (e.g., stencil)

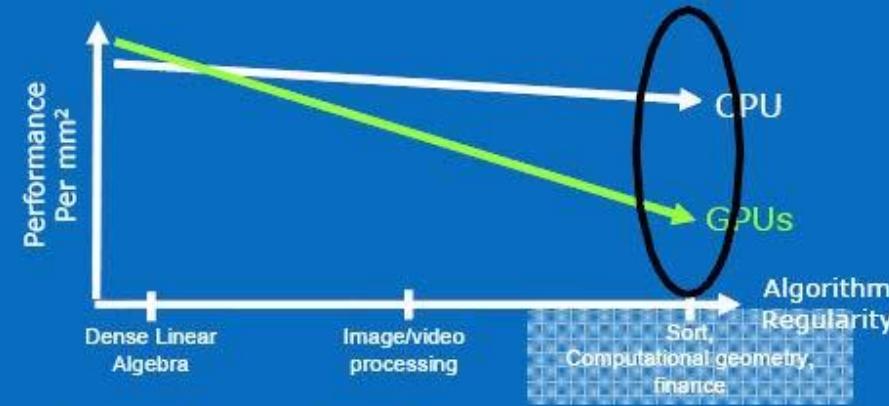
Beyond streaming

- GPUs are obviously really good at local and 1:1 dependences
 - But many applications have more complex dependencies
 - ... and variable output
- Global, dynamic input-output dependences are common
 - Sorting, building data structures

GPU Territory!

- Use efficient algorithm primitives for common patterns

Algorithm Examples



- Sort, computational geometry, finance
 - Modest control flow
 - Sparse/Irregular data structures
 - Irregular communication between elements

CPU Territory
General purpose features vital for software efficiency

- Latency sensitive applications

All dates, figures and product plans are preliminary and are subject to change without notice. Copyright © Intel Corporation 2006

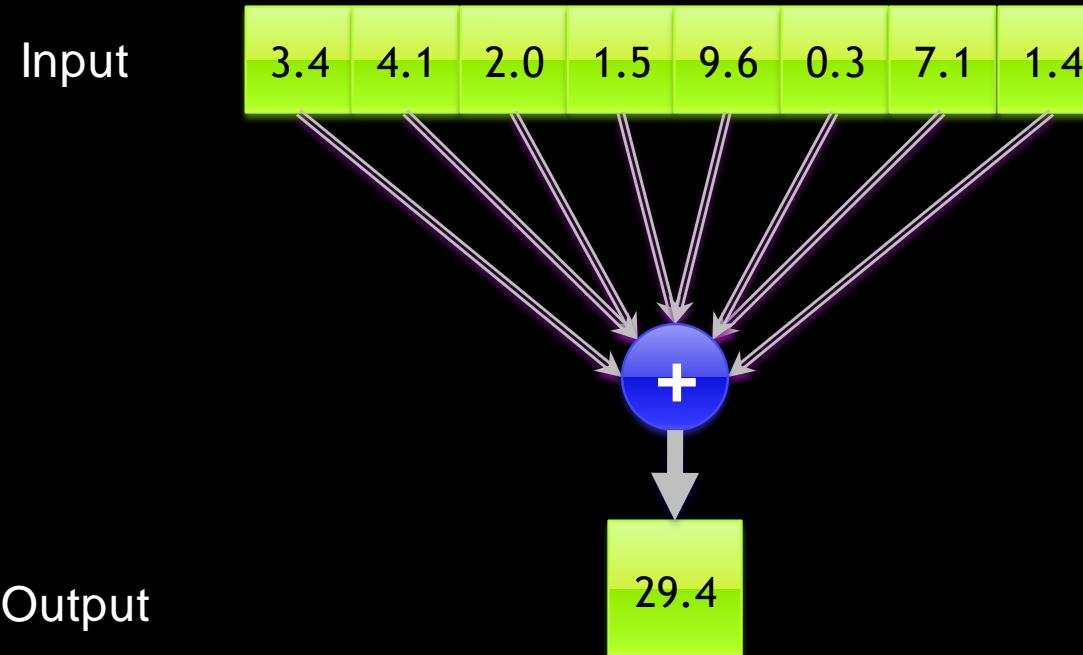
PRESENTED BY

NVIDIA.

Parallel Patterns

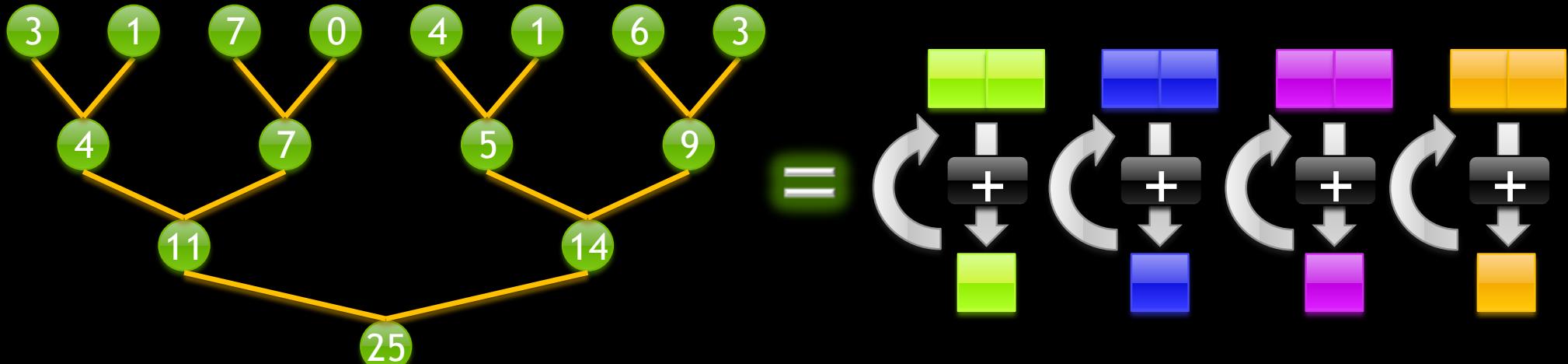
- Many parallel threads need to generate a single result value
 - “Reduce”
- Many parallel threads need to partition data
 - “Split”
- Many parallel threads, variable output per thread
 - “Compact” / “Allocate”

Reduce



- Global data dependence?

Parallel Reduction: Easy

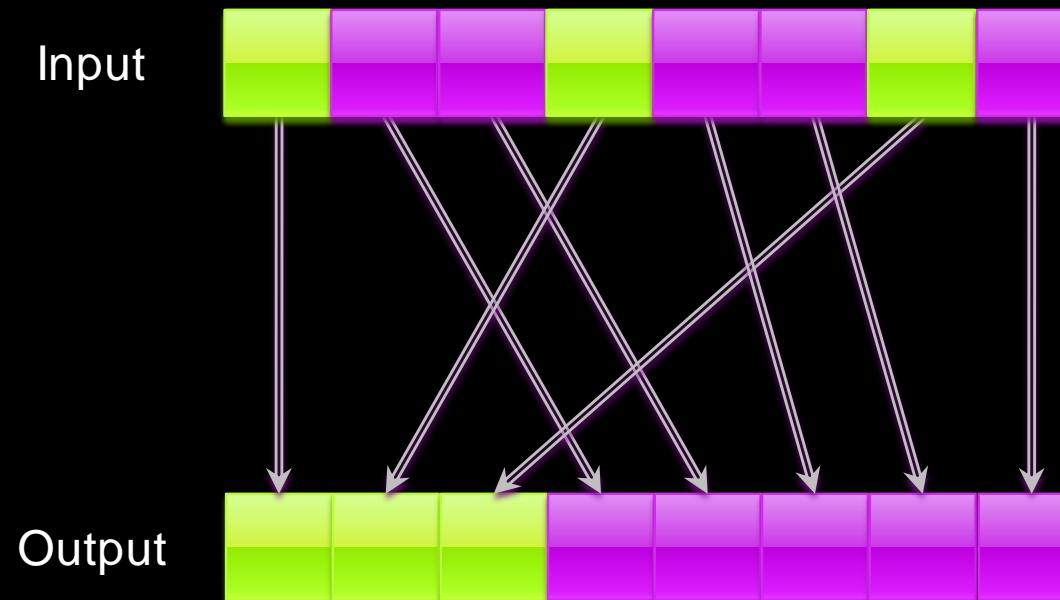


- Repeated local neighborhood access: $O(\log n)$ reps
 - Static data dependences, uniform output

Parallel Patterns

- Many parallel threads need to generate a single result value
 - “Reduce”
- Many parallel threads need to partition data
 - “Split”
- Many parallel threads, variable output per thread
 - “Compact” / “Allocate”

Split



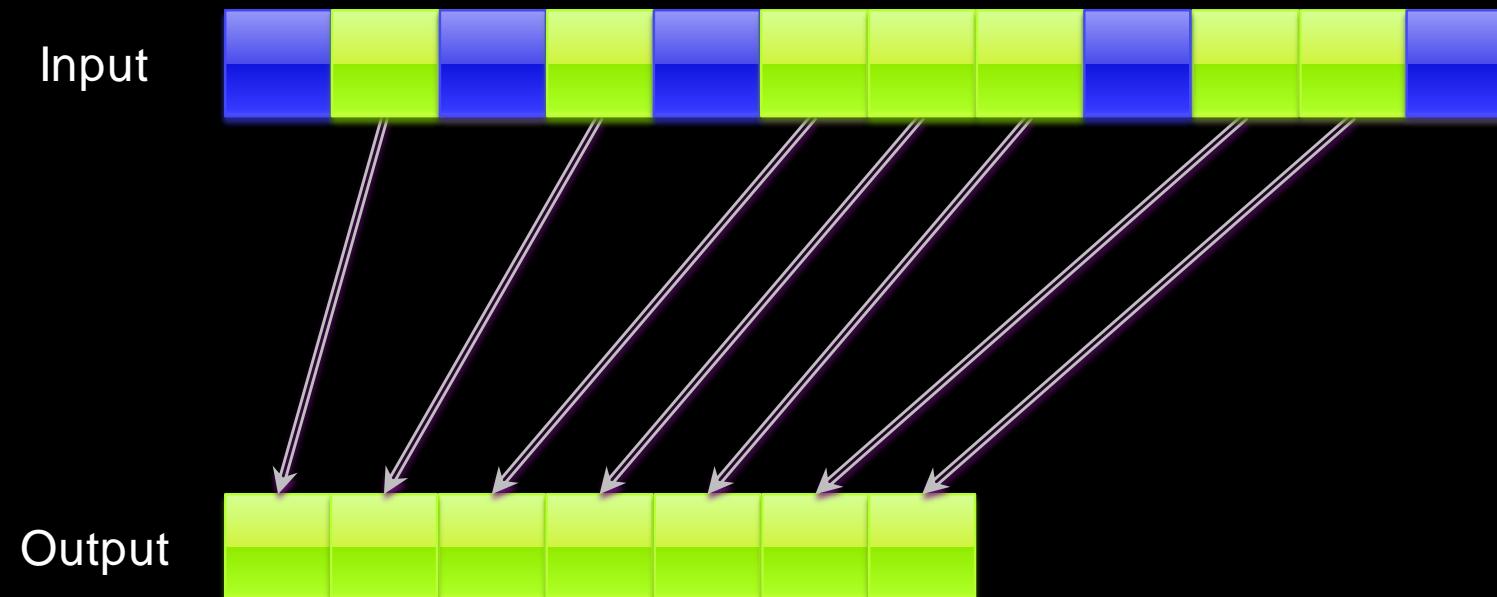
- Example: radix sort, building trees

Parallel Patterns

- Many parallel threads need to generate a single result value
 - “Reduce”
- Many parallel threads need to partition data
 - “Split”
- Many parallel threads, variable output per thread
 - “Compact” / “Allocate”

Compact

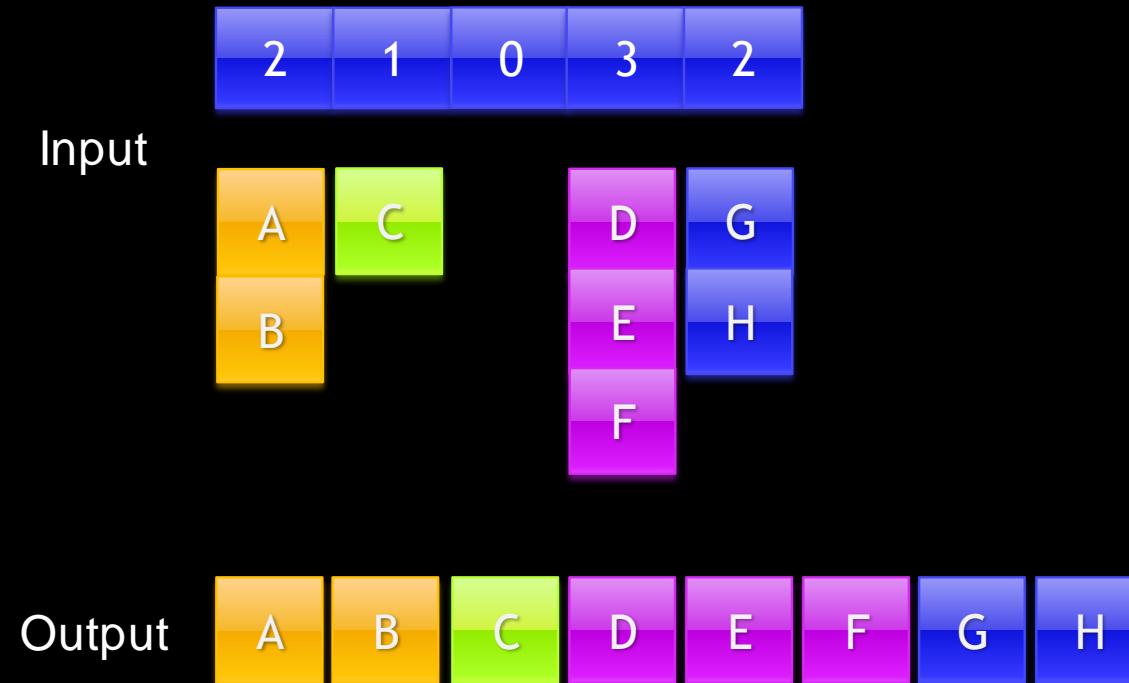
- Remove unneeded or invalid elements (blue)



- Example: collision detection

Variable Output Per Thread: General Case

- Allocate Variable Storage Per Thread



- Example: marching cubes

“Where do I write my output?”

- Split, compact and allocate require all threads to answer
- The answer is:
“That depends on how much the other threads output!”
- “Scan” is an efficient, parallel way to answer this question

Parallel Prefix Sums (Scan)

- Given array $A = [a_0, a_1, \dots, a_{n-1}]$ and a binary associative operator \oplus with identity I ,

$$\text{scan}(A) = [I, a_0, (a_0 \oplus a_1), \dots, (a_0 \oplus a_1 \oplus \dots \oplus a_{n-2})]$$

- Example: if \oplus is $+$, then

$$\text{Scan}([3 \ 1 \ 7 \ 0 \ 4 \ 1 \ 6 \ 3]) = [0 \ 3 \ 4 \ 11 \ 11 \ 15 \ 16 \ 22] \text{ (exclusive)}$$

$$\text{Scan}([3 \ 1 \ 7 \ 0 \ 4 \ 1 \ 6 \ 3]) = [3 \ 4 \ 11 \ 11 \ 15 \ 16 \ 22 \ 25] \text{ (inclusive)}$$

Segmented Scan

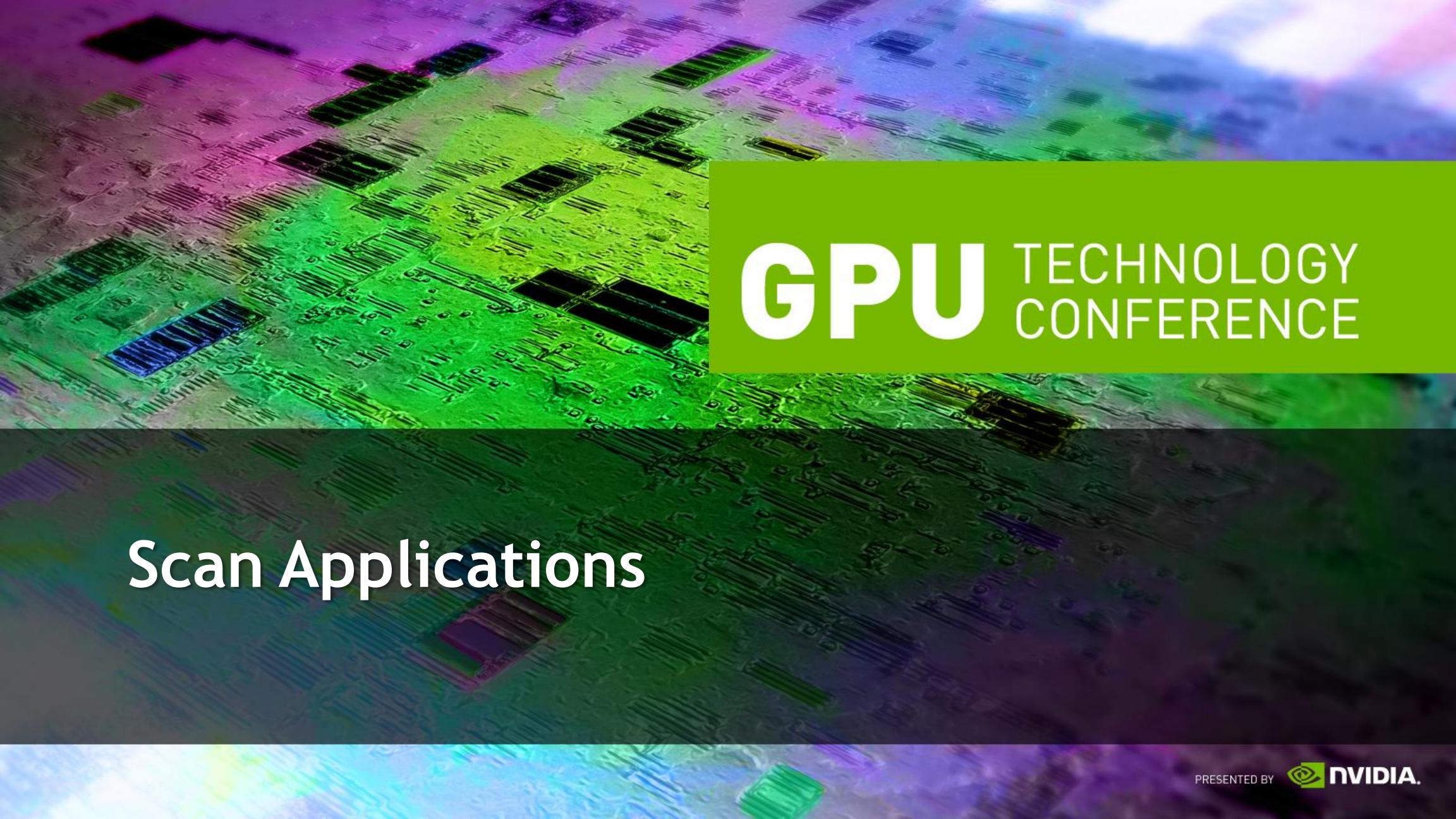
Segment Head Flags	[0	0	1	0	0	1	0	0]
Input Data Array	[3	1	7	0	4	1	6	3]
Segmented scan	[0	3	0	7	7	0	1	7]

- Segmented scan provides *nested parallelism*
 - Arrays can be dynamically subdivided and processed in parallel
- Enables algorithms such as parallel quicksort, sparse matrix-vector multiply, etc.

How fast?

- Bandwidth bound primitives
 - 1 add per element read/write
 - Scan and reduce at memory saturated rates
- Geforce GTX 280
 - Scan 11.8B elements/second (32-bit elements)
 - Bandwidth: Scan 138 GB/s; Reduce 152 GB/s

D. Merrill & A. Grimshaw “Parallel Scan for Stream Architectures”. Tech. Report CS2009-14, Department of Computer Science, University of Virginia.



GPU TECHNOLOGY CONFERENCE

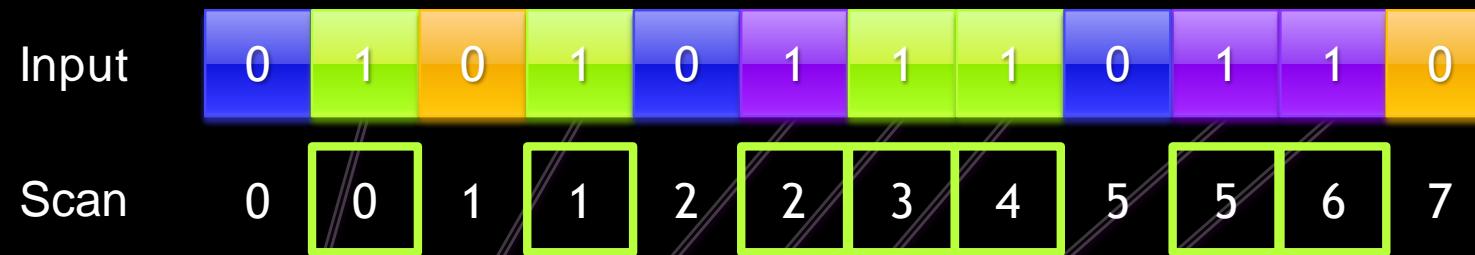
Scan Applications

Applications of Scan

- A simple and useful building block for many parallel apps:
 - Compaction
 - Radix sort
 - Quicksort (segmented scan)
 - String comparison
 - Lexical analysis
 - Stream compaction
 - Run-length encoding
 - Allocation
 - Polynomial evaluation
 - Solving recurrences
 - Tree operations
 - Histograms
 - Summed area tables
 - And many more!
- (Interestingly, scan is unnecessary in sequential computing)

Compact using Scan

- Flag unneeded elements with zero:

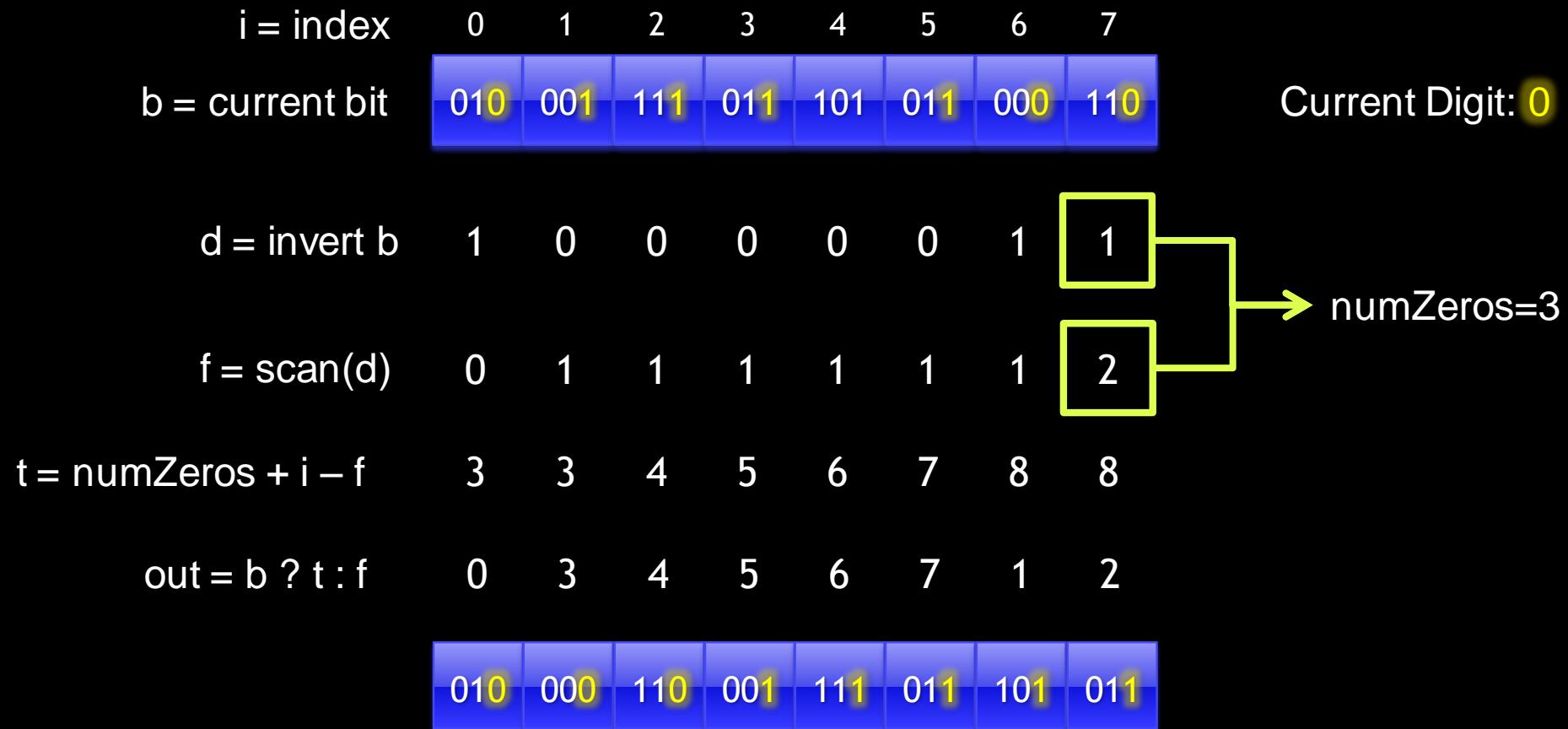


- Threads with $\text{flag} == 1$ use scan result as address for output:

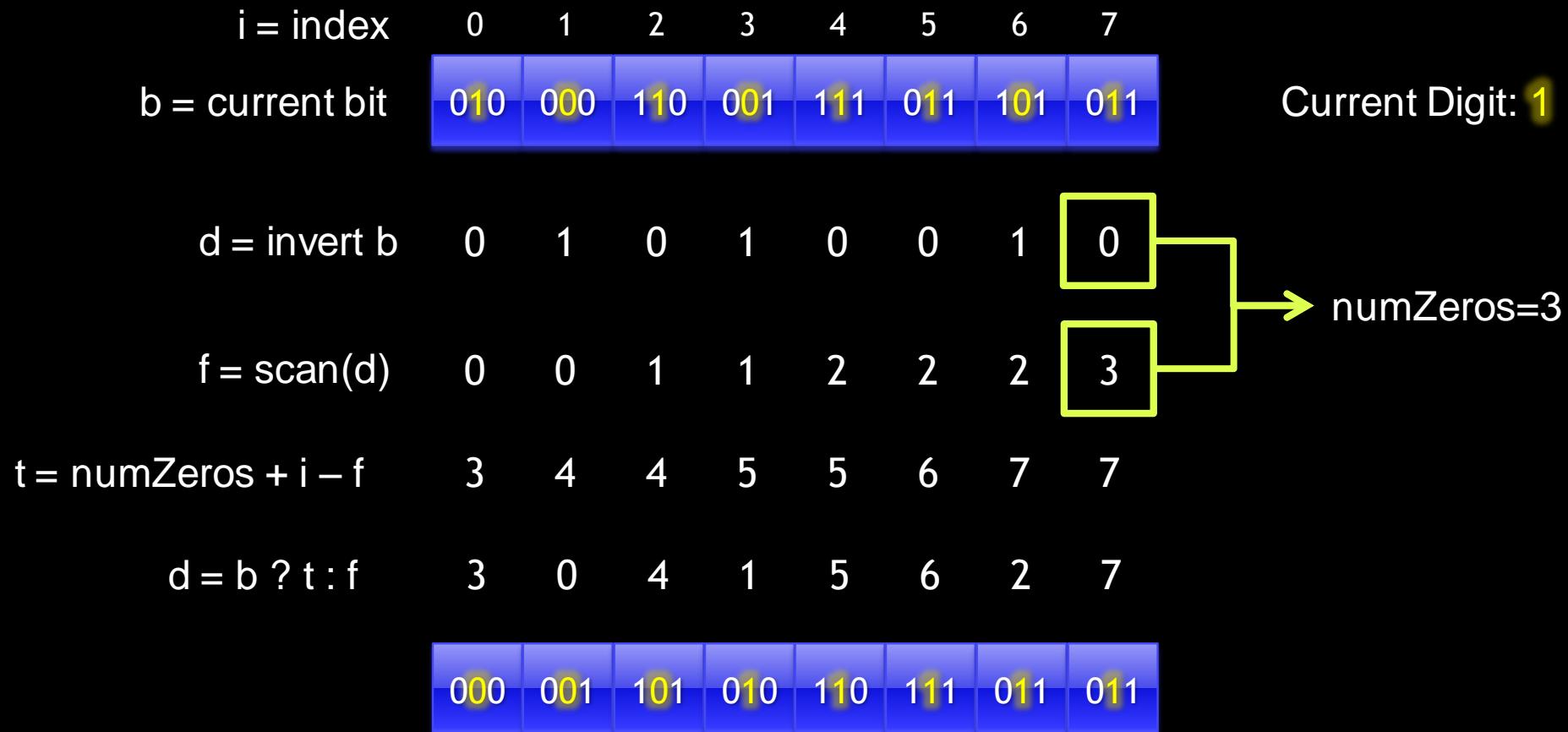
Recent efficient approach:

M. Billeter, O. Olson, U. Assarson. "Efficient stream compaction on wide SIMD many-core architectures". HPG 2009.

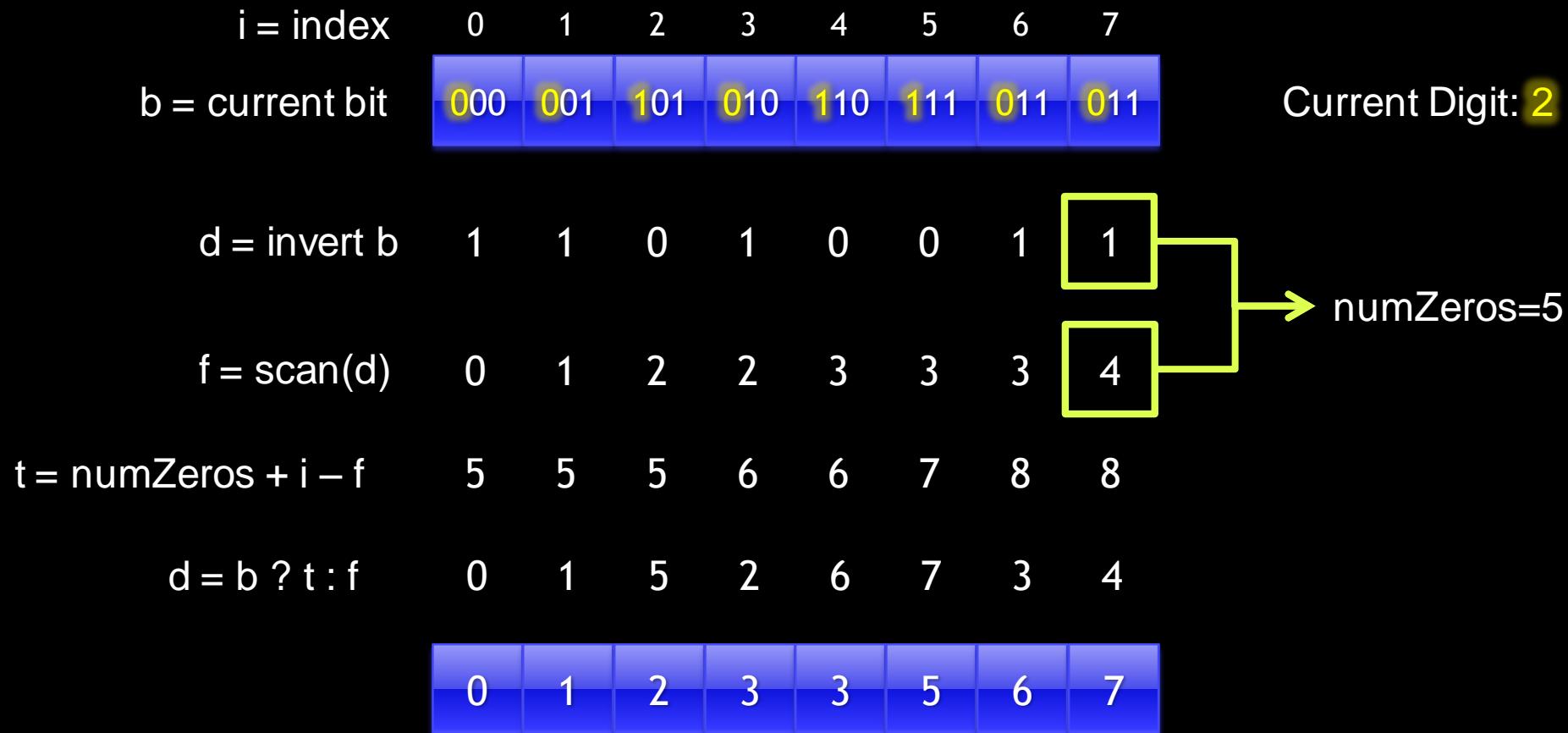
Radix Sort / Split using Scan



Radix Sort / Split using Scan



Radix Sort / Split using Scan



CUDA Radix Sort

- Sort blocks in shared mem
 - 4-bit radix digits, so 4 split operations per digit
- Compute offsets for each block using prefix sum
- Scatter results to offset location

*N. Satis, M. Harris, M. Garland.
“Designing Efficient Sorting Algorithms
for Manycore GPUs”. IPDPS 2009*

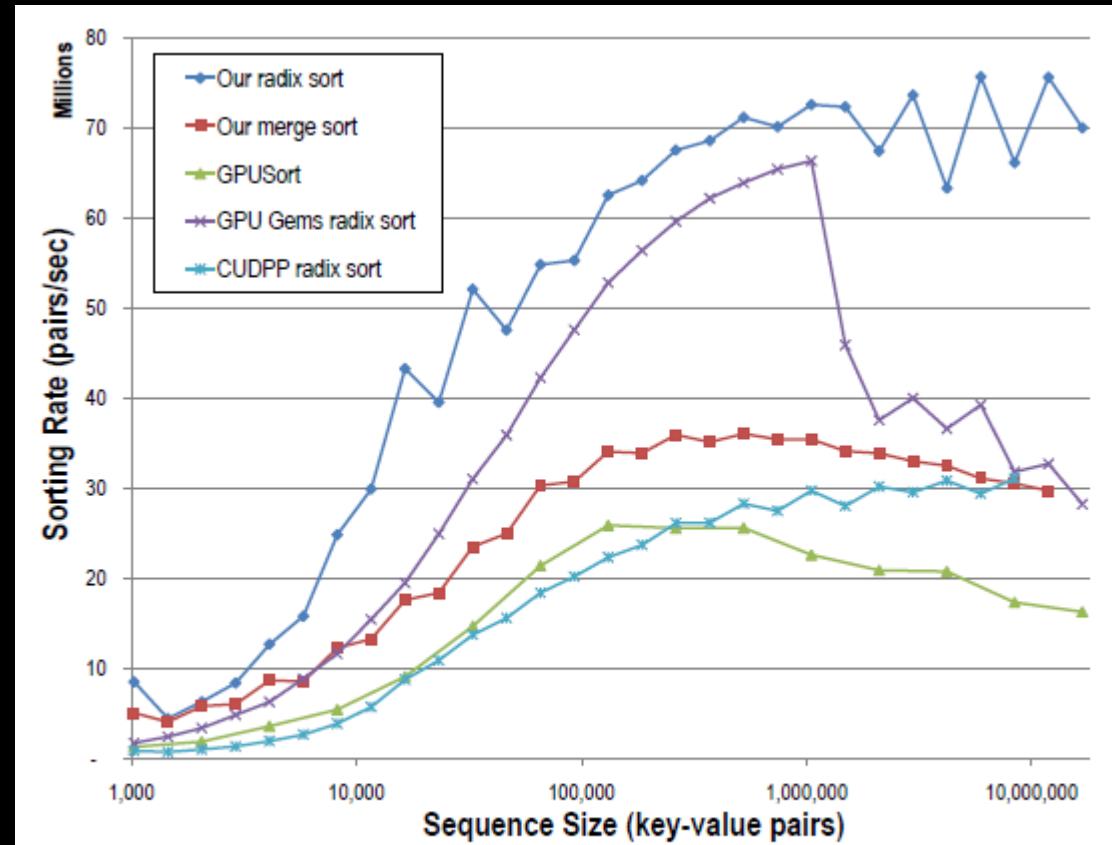


Fig. 7. Sorting rates for several GPU-based methods on an 8800 Ultra.

Faster Radix Sort Via Rigorous Analysis

- Meta-strategy leads to ultra-efficient bandwidth use and computation
 - Optimized data access saturates bandwidth
 - Combine multiple related compact ops into a single scan
 - Reduce-then-scan strategy
- Radix sort 1B keys/s on Fermi! (Up to 3.8x vs. Satish et al.)
- See Duane Merrill's GTC talk
 - “*Optimization for Ninjas: A Case Study in High-Performance Sorting*”

*D. Merrill and A. Grimshaw, "Revisiting Sorting for GPGPU Stream Architectures,"
University of Virginia CS Tech. Report CS2010-03*

Open Source: <http://code.google.com/p/back40computing>

Designing Sorting Algorithms for GPUs

- Algorithms should expose regular fine-grained parallelism
 - scan used to regularize
 - In merging, use divide-and-conquer to increase parallelism close to tree root (Satish et al. 2007)
 - Optimize memory access granularity first - max bandwidth is key
- Comparison vs. Key-manipulation
 - Comparison sort = $O(n \log n)$, works for any criterion
 - Radix sort = $O(n)$, but requires numeric key manipulation
- Important to handle key-value pairs
 - Pointer-as-value enables sorting big objects

Comparison Sorting Algorithms

- Use comparison sorting when key manipulation not possible
 - Variations on parallel divide-and-conquer approach
- Sample Sort (Fastest current comparison-based sort)
 - *Leischner, Osipov, Sanders. IPDPS 2010*
- Merge Sort
 - *Satish, Harris, Garland. IPDPS 2009*
- Parallel Quicksort
 - *Cederman & Tsigas, Chalmers U. of Tech. TR#2008-01*
 - *Sengupta, Harris, Zhang, Owens, Graphics Hardware 2007*

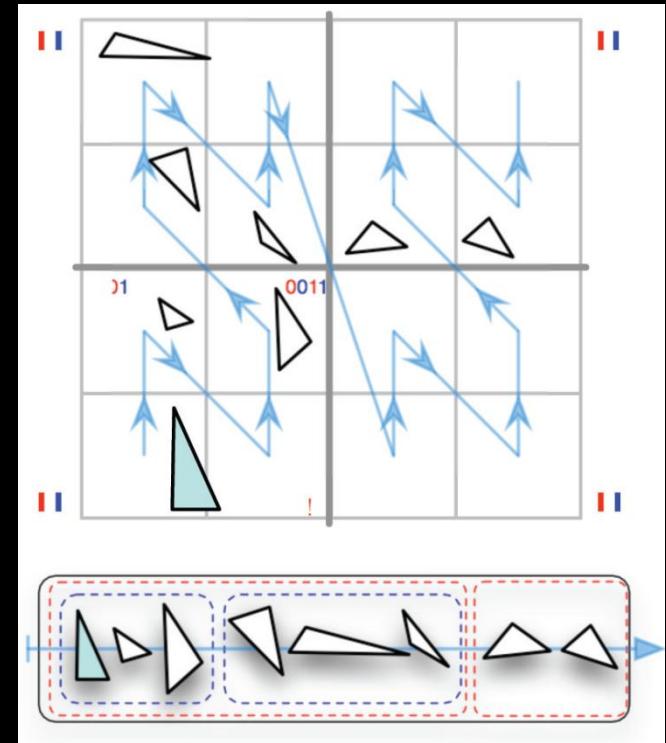
Building Trees

- The split primitive can be applied to any Boolean criterion...
- Hierarchies built by splitting on successive spatial partitions
 - E.g. splitting planes
- Trees: special case of sorting!

Bounding Volume Hierarchies

- Bounding Volume Hierarchies:
 - Breadth-first search order construction
 - Use space-filling “Morton curve” to reduce BVH construction to sorting
 - Requires 2 $O(n)$ radix sorts

C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, D. Manocha. “Fast BVH Construction on GPUs”. *Eurographics 2009*

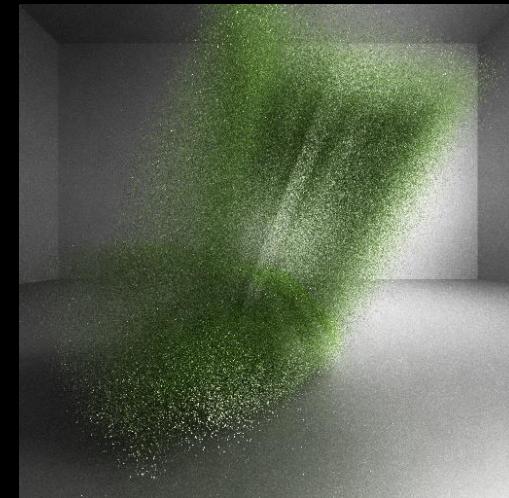


“LBVH” - *Linear Bounding Volume Hierarchies*

HLBVH

- Improvement over LBVH

- 2-3x lower computation, 10-20x lower bandwidth
- 2-4x more compact tree memory layout



- J. Pantaleoni, D. Luebke. "HLBVH: Hierarchical LBVH Construction for Real-Time Ray Tracing", *High Performance Graphics 2010*.

Scene	# of Triangles	LBVH	HLBVH		HLBVH + SAH	
			max	min	max	min
Armadillo	345k	61 ms	27 ms	18 ms	72 ms	65 ms
Stanford Dragon	871k	98 ms	36 ms	28 ms	111 ms	95 ms
Happy Buddha	1.08M	117 ms	43 ms	32 ms	150 ms	137 ms
Turbine Blade	1.76M	167 ms	54 ms	42 ms	162 ms	158 ms
Hair Ball	2.88M	241 ms	95 ms	83 ms	460 ms	456 ms

k-d Trees

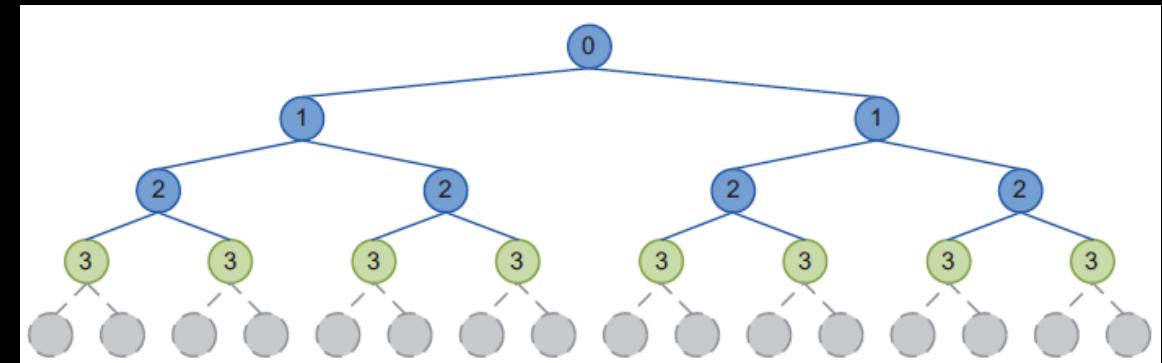
- Spatial partition for organizing points in k -dimensional space
 - Commonly used in ray tracing, photon mapping, particle simulation
- Breadth-first search order
 - Parallelizes on nodes at lower tree levels (many nodes)
 - Parallelizes on geometric primitives at upper tree levels (few nodes)

K. Zhou, Q. Hou, R. Wang, B. Guo.
“Real-Time KD-Tree Construction on
Graphics Hardware”. *SIGGRAPH Asia 2008*

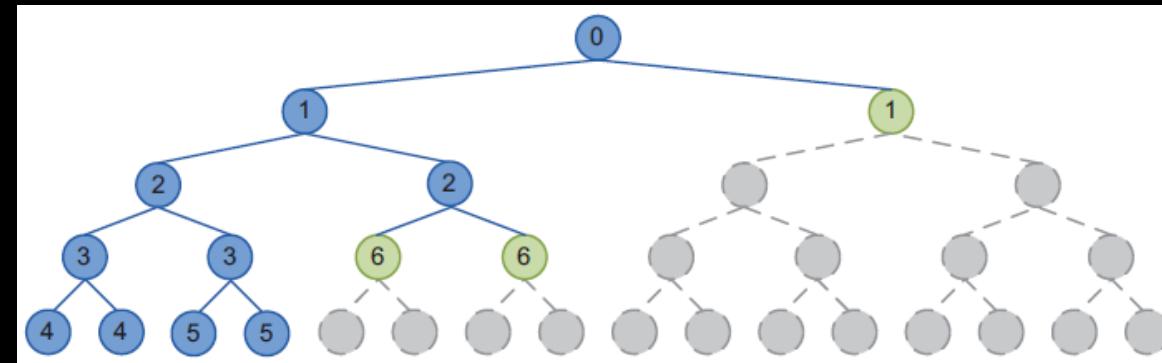
Breadth-First Search Order

- BFS order construction maximizes parallelism

- Breadth First:

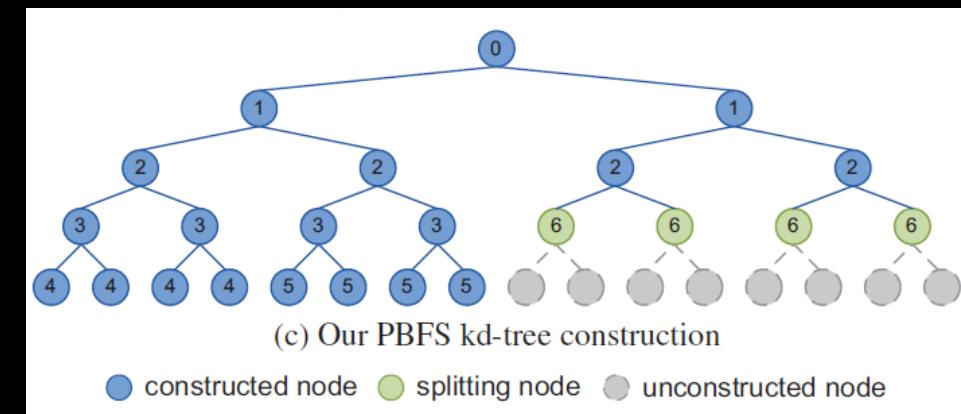


- Depth First:



Memory-Scalable Hierarchies

- Breadth-first search order has high storage cost
 - Must maintain and process lots of data simultaneously
- Solution: partial breadth-first search order
 - Limit number of parallel splits
 - Allows scalable, out-of-core construction
 - Works for kD-trees and BVH



Q. Hou, X. Sun, K. Zhou, C. Lauterbach, D. Manocha.

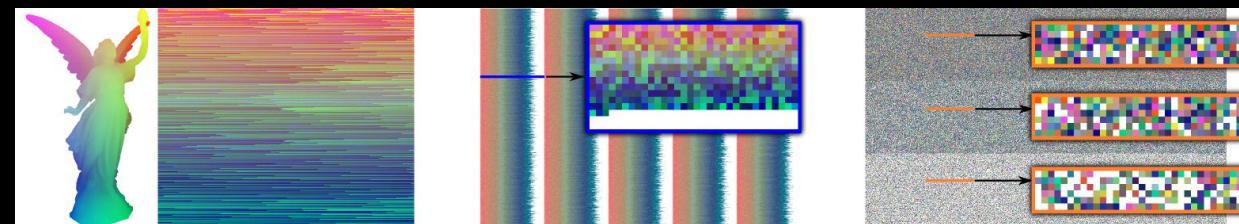
“Memory-Scalable GPU Spatial Hierarchy Construction” *IEEE TVCG*, 2010.

PRESENTED BY

NVIDIA.

Parallel Hashing

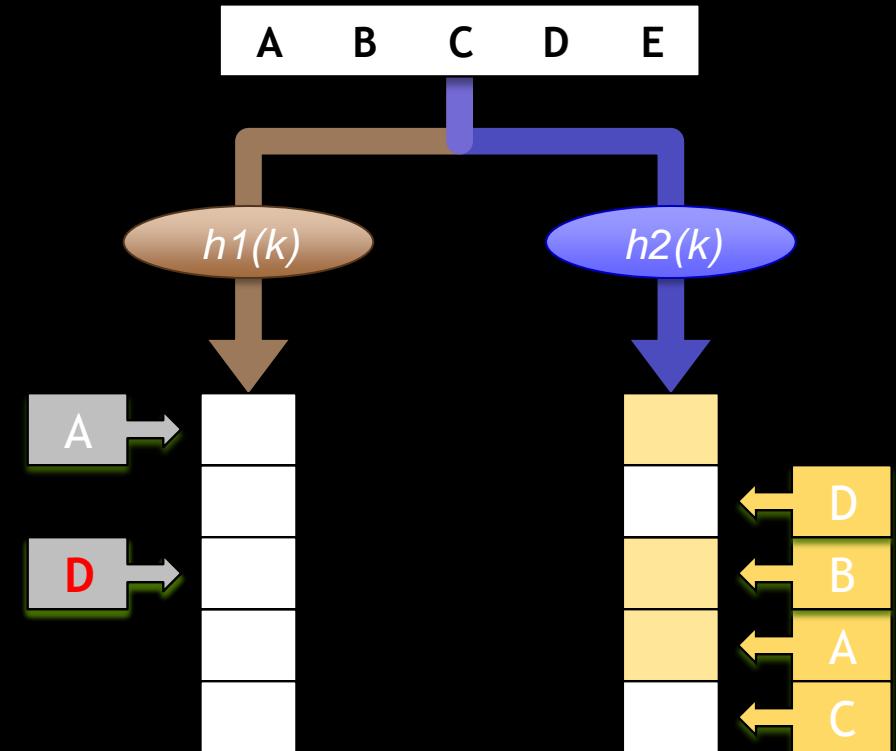
- Dense data structure for storing sparse items
 - With fast construction and fast random access
- Hybrid multi-level, multiple-choice (“cuckoo”) hash algorithm
 - Divide into blocks, cuckoo hash within each block in shared memory



- D. A. Alcantara, A. Sharf, F. Abbasinejad, S. Sengupta, M. Mitzenmacher, J. D. Owens, N. Amenta. “Real-Time Parallel Hashing on the GPU”. SIGGRAPH Asia 2009 (ACM TOG 28(5)).

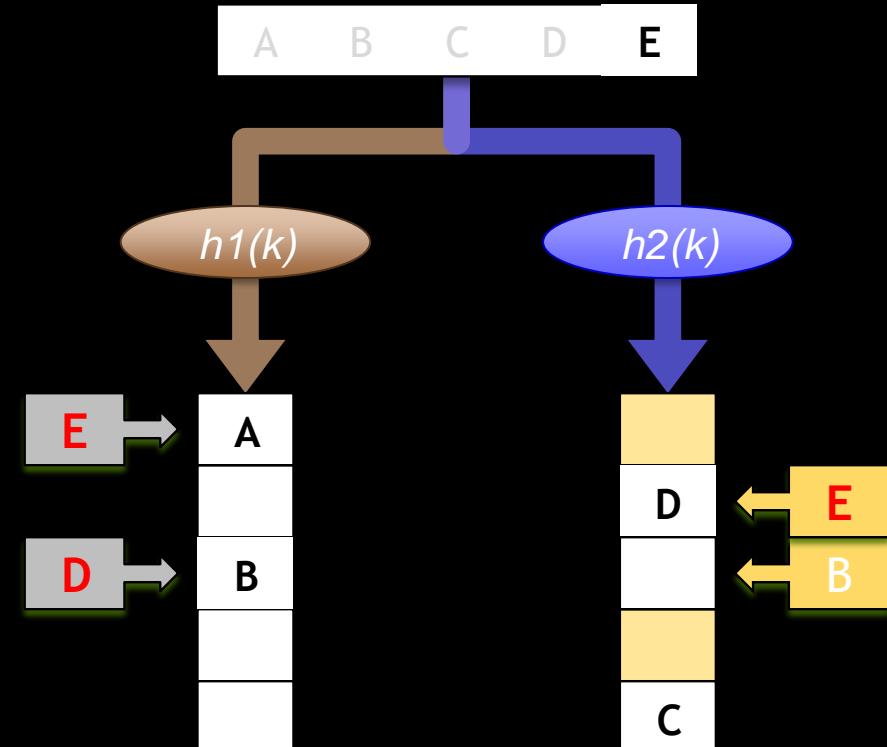
Cuckoo Hashing

- Sequential insertion:
 1. Try empty slots first
 2. Evict if none available
 3. Evicted key checks its other locations
 4. Recursively evict
- Assume impossible after $O(\lg n)$ iterations
 - Rebuild using new hash functions



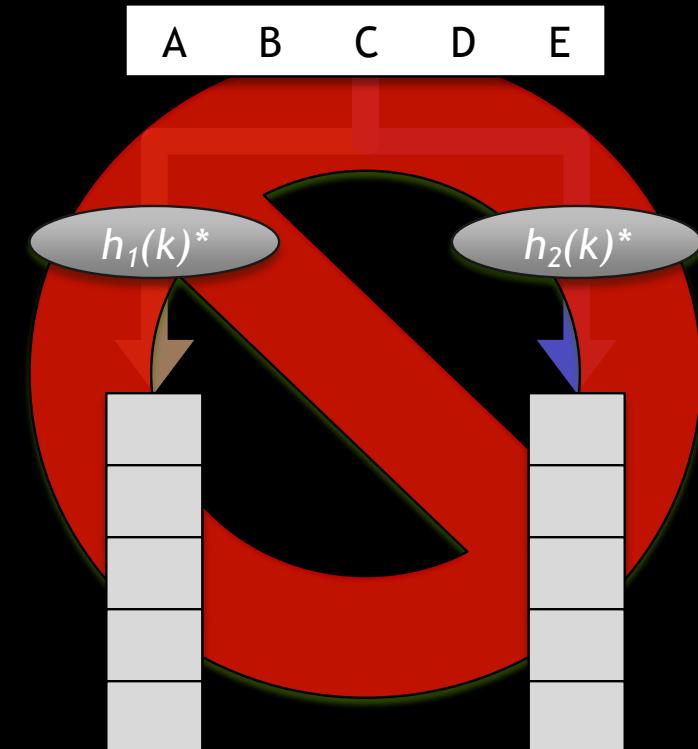
Cuckoo Hashing

- Sequential insertion:
 1. Try empty slots first
 2. Evict if none available
 3. Evicted key checks its other locations
 4. Recursively evict
- Assume impossible after $O(\lg n)$ iterations
 - Rebuild using new hash functions

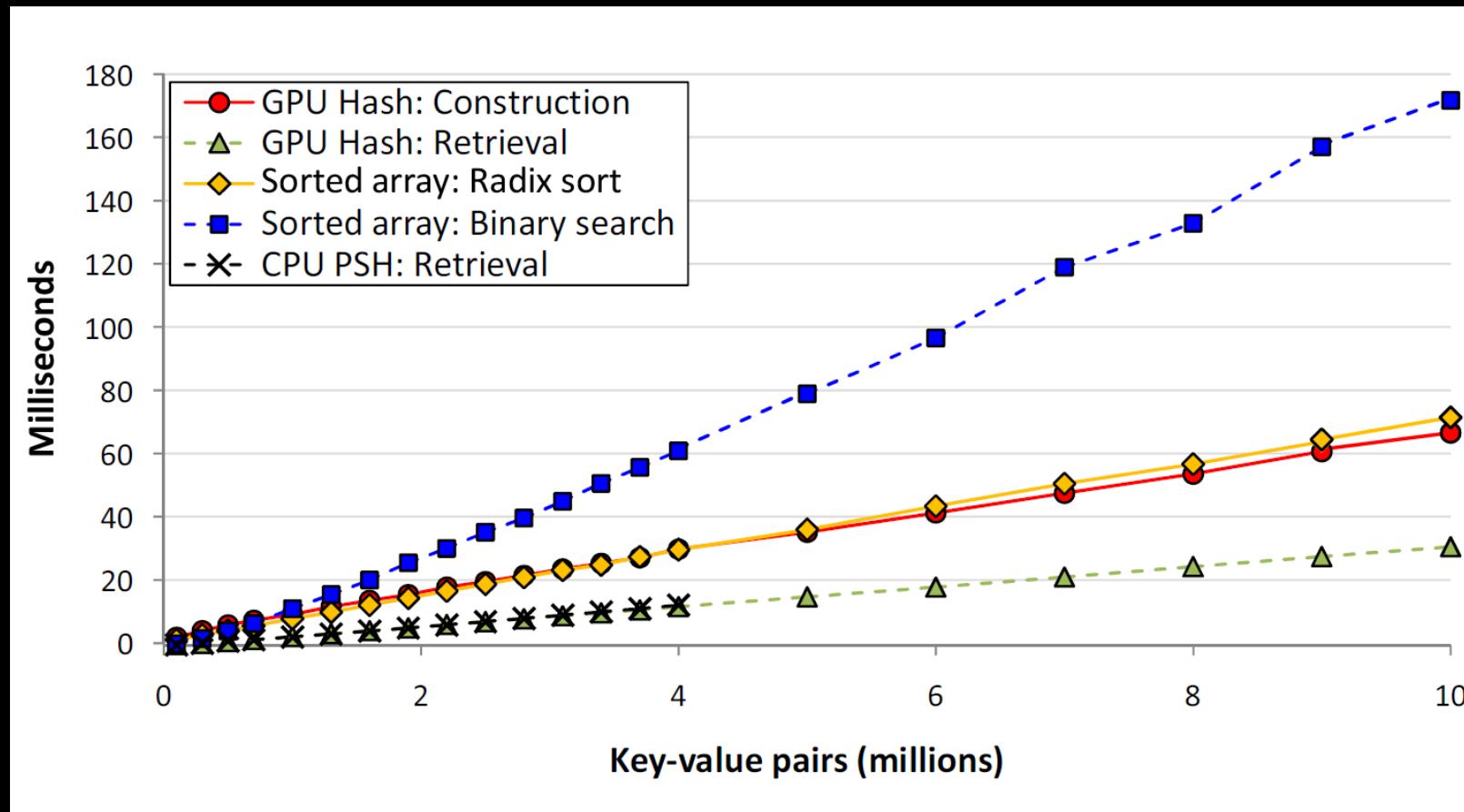


Cuckoo Hashing

- Sequential insertion:
 1. Try empty slots first
 2. Evict if none available
 3. Evicted key checks its other locations
 4. Recursively evict
- Assume impossible after $O(\lg n)$ iterations
 - Rebuild using new hash functions



GPU Parallel Hash Performance

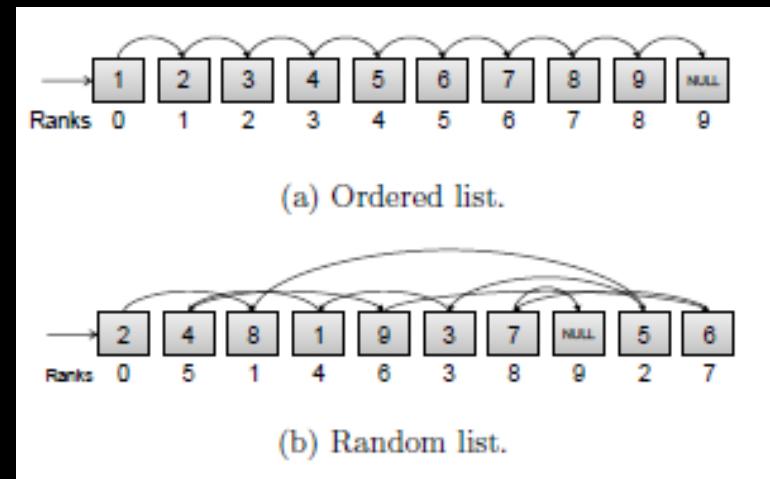


D. A. Alcantara, A. Sharf, F. Abbasinejad, S. Sengupta, M. Mitzenmacher, J. D. Owens, N. Amenta,
“Real-Time Parallel Hashing on the GPU”. SIGGRAPHAsia 2009 (ACM TOG 28(5)).

PRESENTED BY

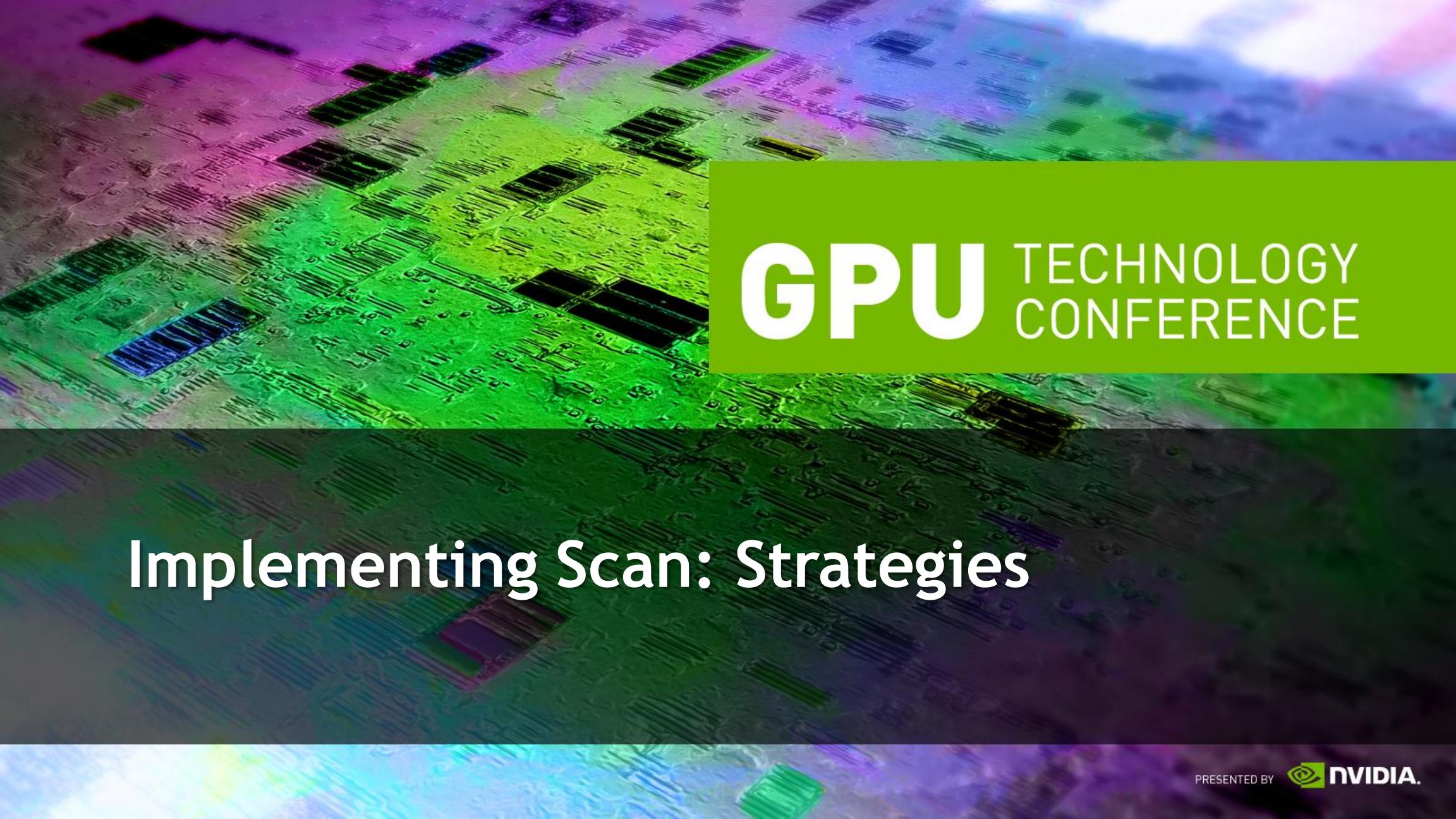
List Ranking

- Traverse a linked list and assign rank to each node
 - Rank = order in list
- Difficult for random lists due to irregular memory access
 - Pointer chasing
- Recursive list subdivision
 - Helman-JáJá algorithm



M. S. Rehman, K. Kothapalli, P. J. Narayanan.

“Fast and Scalable List Ranking on the GPU”. ICS 2009.

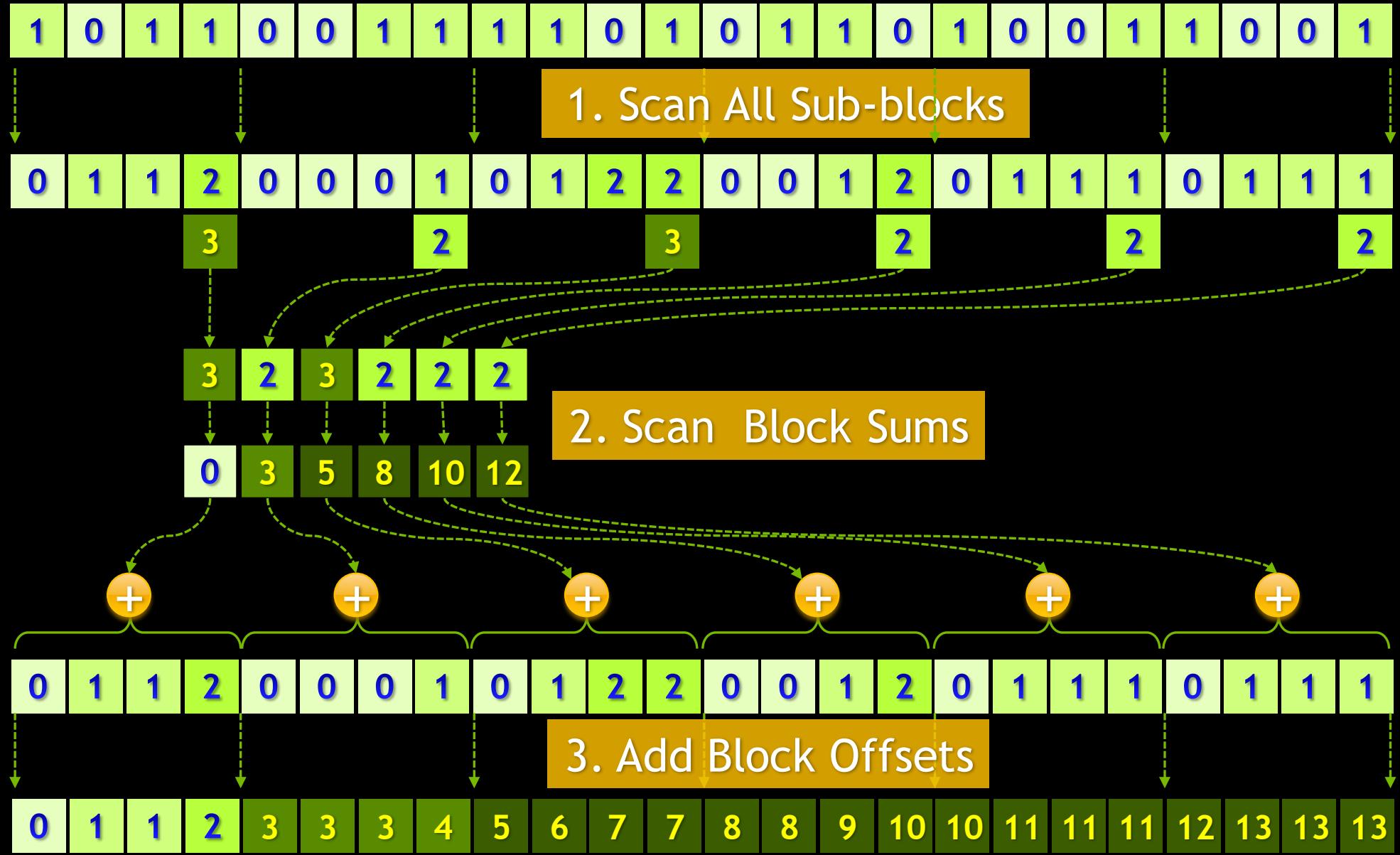


GPU TECHNOLOGY
CONFERENCE

Implementing Scan: Strategies

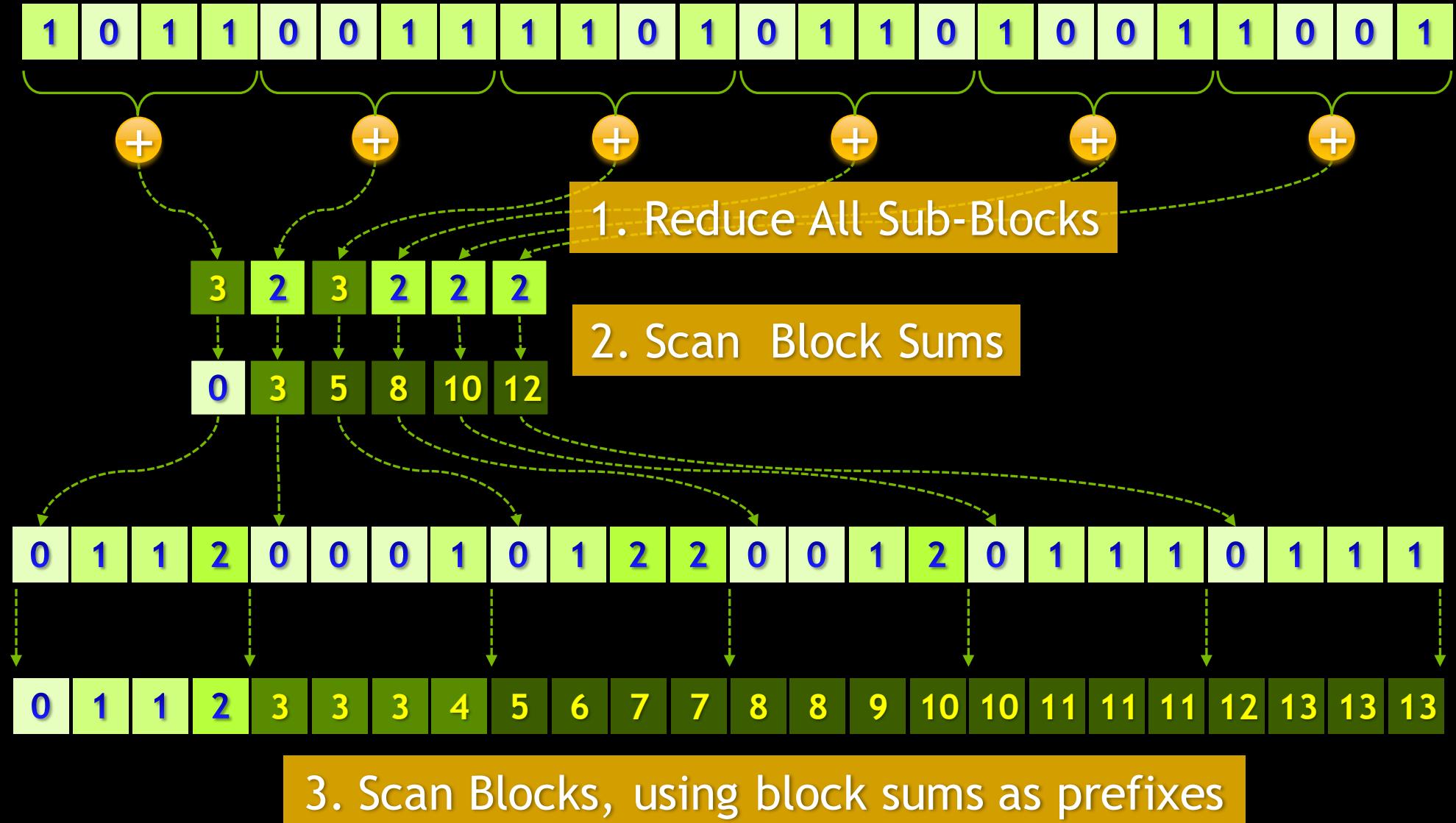
Scan is recursive

- Build large scans from small ones
 - In CUDA, build array scans from thread block scans
 - Build thread block scans from warp scans
- One approach: “Scan-Scan-Add”
 - Harris et al. 2007, Sengupta et al. 2007, Sengupta et al. 2008/2011)



Improvement: Reduce-then-Scan

- Scan-Scan-Add requires 2 reads/writes of every element
- Instead, compute block sums first, use as prefix for block scans
- 25% lower bandwidth
- Dotsenko et al. 2008,
Billeter et al. 2009,
Merrill & Grimshaw 2009



Limit recursive steps

- Can use these techniques to build scans of arbitrary length
 - In CUDA, each recursive level is another kernel call
- Better: iterative scans of consecutive chunks
 - Each thread block scans many chunks
 - Prefix each chunk with sum from of all previous chunks
- Limiting to 2-level scan in this way is much more efficient
 - Merrill and Grimshaw, 2009



GPU TECHNOLOGY
CONFERENCE

Implementing Scan In CUDA

Scan Implementation in CUDA

- In the following examples:
 - all pointers assumed to point to CUDA `__shared__` memory
 - The following variable definitions are assumed (for brevity):

```
int i = threadIdx.x;  
  
int lane = I & (warpSize - 1);  
  
int warp = i / warpSize ;  
  
int n = blockDim.x;
```

Sequential Inclusive Scan Code

```
int scan(int *p, int n) {  
    for (int i=1; i<n; ++i) {  
        p[i] = p[i-1]+p[i];  
    }  
}
```

- Parallel scan needs to parallelize the loop
 - Relies on associativity of the operator

Simple Parallel Inclusive Scan Code

```
__device__ int scan(int *p) {  
    for (int offset=1; offset<n; offset*=2) {  
        int t;  
        if (i>=offset) t = p[i-offset];  
        __syncthreads();  
        if (i>=offset) p[i] = t + p[i];  
        __syncthreads();  
    }  
}
```

Warp Speed

- *Warp* is physical unit of CUDA parallelism
 - 32 threads that execute instructions synchronously
- Synchronicity of warps can be leveraged for performance
 - When sharing data within a warp, don't need `__syncthreads()`
- “Warp-Synchronous Programming”
 - (Powerful, but take care to avoid race conditions!)

Sengupta, Harris, Garland, Owens. Efficient parallel scan algorithms for many-core GPUs.
Scientific Computing with Multicore and Accelerators, chapter 19. 2011 (to appear)

Intra-warp Exclusive Scan Code

```
__device__ int scan_warp(volatile int *p) {  
    if (lane>= 1) p[i] = p[i- 1] + p[i];  
    if (lane>= 2) p[i] = p[i- 2] + p[i];  
    if (lane>= 4) p[i] = p[i- 4] + p[i];  
    if (lane>= 8) p[i] = p[i- 8] + p[i];  
    if (lane>=16) p[i] = p[i-16] + p[i];  
    return (lane>0) ? p[i-1] : 0;  
}
```

Intra-block Scan using Intra-warp Scan

```
__device__ int block_scan(int* p) {  
    int prefix = scan_warp(p);  
    __syncthreads();  
    if (lane == warpSize - 1) p[warp] = prefix + x;  
    __syncthreads();  
    if (warp == 0) p[i] = scan_warp(p);  
    __syncthreads();  
    return prefix + p[warp];  
}
```

Binary Scan

- Often need to scan 1-bit values
 - Stream compact: scan true/false flags
 - Split / Radix Sort: scan 1-bit flags
- Fermi GPU architecture provides efficient 1-bit warp scan
 - `int __ballot(int p)`: 32-bit “ballot” of t/f p from whole warp
 - `int __popc(int x)`: count number of 1 bits in x
- Combine with a per-thread mask to get 1-bit warp scan
 - Or with no mask for 1-bit warp count

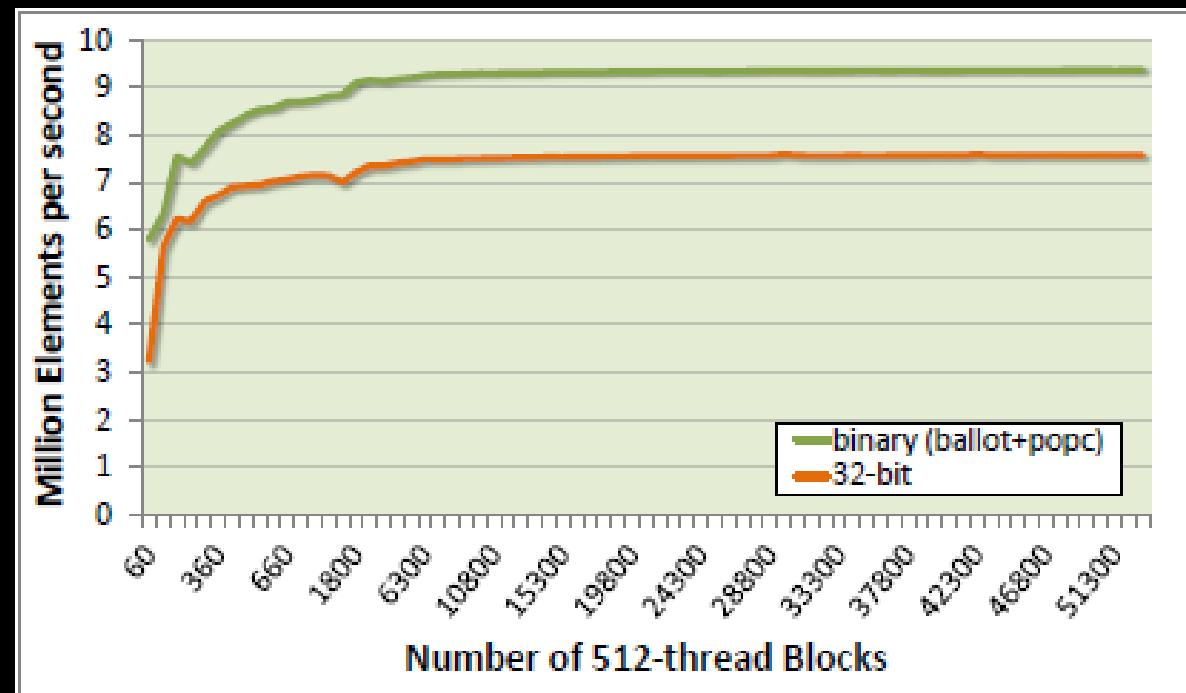
Binary Warp Scan Code

```
__device__ unsigned int lanemask_lt () {
    int lane = threadIdx.x & (warpSize-1);
    return (1 << lane) - 1;
}

__device__ int warp_binary_scan(bool p) {
    unsigned int b = __ballot(p);
    return __popc(b & lanemask_lt());
}
```

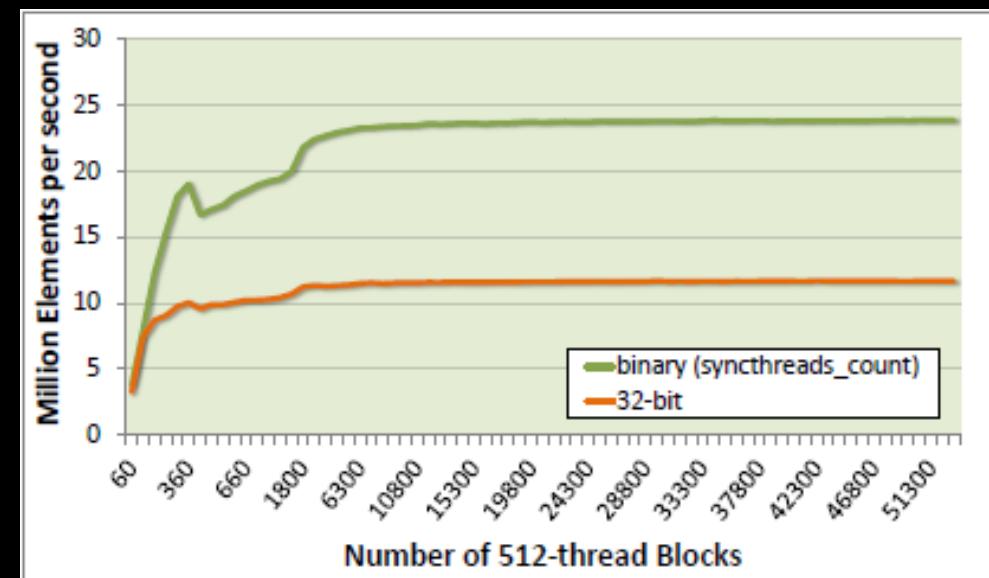
Block Binary Scan Performance

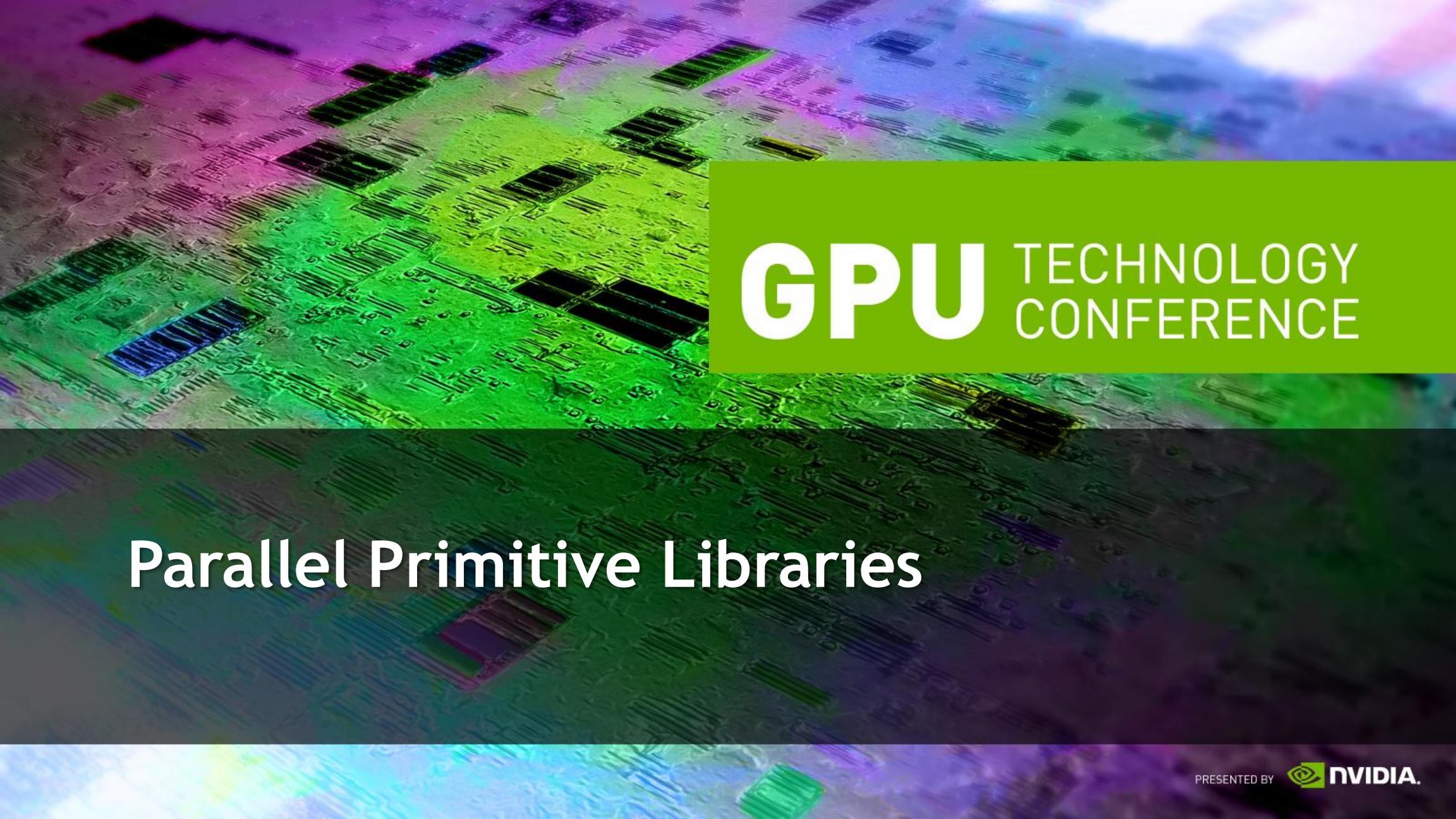
- Substitute binary warp-scan in block_scan



Binary Reduction

- Count the number of true predicates for all threads in block
 - `int __syncthreads_count(int p);`
 - Also `__syncthreads_and()` and `__syncthreads_or()`
- Works like `__syncthreads()`, but counts non-zero p
- 2x faster than 32-bit reduction





GPU TECHNOLOGY
CONFERENCE

Parallel Primitive Libraries

No need to re-implement

- Open source libraries under active development
- CUDPP: CUDA Data-Parallel Primitives library
 - <http://code.google.com/p/cudpp> (BSD License)
- Thrust
 - <http://code.google.com/p/thrust> (Apache License)

CUDPP

- C library of high-performance parallel primitives for CUDA
 - M. Harris (NVIDIA), J. Owens (UCD), S. Sengupta (UCD), A. Davidson (UCD), S. Tzeng (UCD), Y. Zhang (UCD)
- Algorithms
 - `cudppScan`, `cudppSegmentedScan`, `cudppReduce`
 - `cudppSort`, `cudppRand`, `cudppSparseMatrixVectorMultiply`
- Additional algorithms in progress
 - Graphs, more sorting, trees, hashing, autotuning

CUDPP Example

```
CUDPPConfiguration config = { CUDPP_SCAN,  
    CUDPP_ADD, CUDPP_FLOAT, CUDPP_OPTION_FORWARD };  
  
CUDPPHandle plan;  
CUDPPResult result = cudppPlan(&plan,  
    config,  
    numElements,  
    1, 0);  
cudppScan(plan, d_odata, d_idata, numElements);
```

Thrust

- C++ template library for CUDA
 - Mimics Standard Template Library (STL)
- Containers
 - `thrust::host_vector<T>`
 - `thrust::device_vector<T>`
- Algorithms
 - `thrust::sort()`
 - `thrust::reduce()`
 - `thrust::inclusive_scan()`
 - Etc.

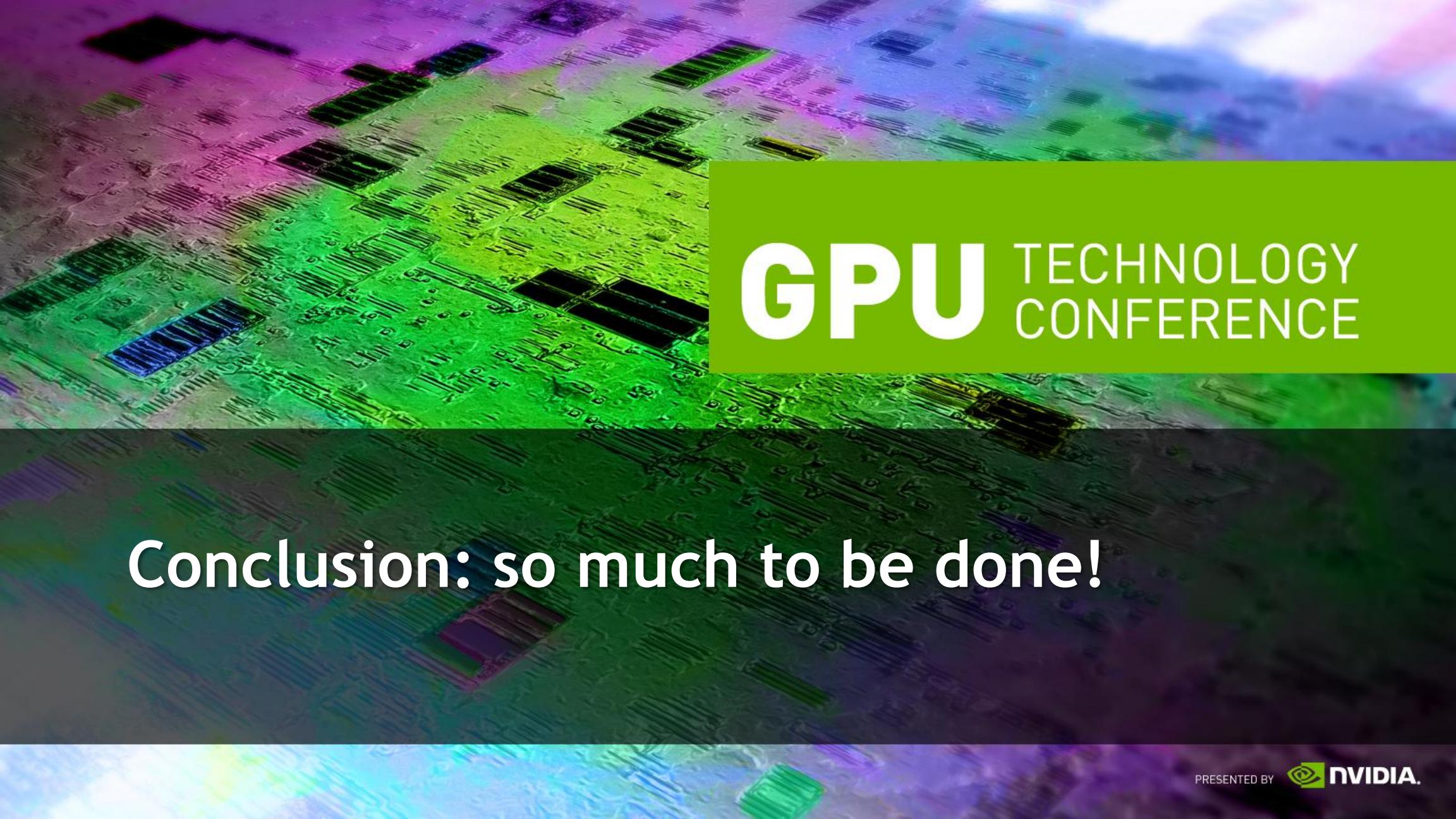
Thrust Example

```
// generate 16M random numbers on the host
thrust::host_vector<int> h_vec(1 << 24);
thrust::generate(h_vec.begin(), h_vec.end(), rand);

// transfer data to the device
thrust::device_vector<int> d_vec = h_vec;

// sort data on the device
thrust::sort(d_vec.begin(), d_vec.end());

// transfer data back to host
thrust::copy(d_vec.begin(), d_vec.end(), h_vec.begin());
```



GPU TECHNOLOGY CONFERENCE

Conclusion: so much to be done!

“In general, the problem of defining parallel-friendly data structures that can be efficiently created, updated, and accessed is a significant research challenge... The toolbox of efficient data structures and their associated algorithms on scalar architectures like the CPU remains significantly larger than on parallel architectures like the GPU.”

-- Alcantara *et al.* “Real-Time Parallel Hashing on the GPU”

See These Talks!

- Duane Merrill:

- Optimization for Ninjas: A Case Study in High-Performance Sorting
 - Wednesday, 3pm (Room D)

- Nathan Bell:

- High-Productivity CUDA Development with the Thrust Template Library
 - Thursday, 11am (Marriott Ballroom)

- Jared Hoberock:

- Thrust by Example: Advanced Features and Techniques
 - Thursday, 2pm (Room B)

Thank You!

- Duane Merrill, David Luebke, John Owens, CUDPP-dev team, Nathan Bell, Jared Hoberock, Michael Garland
- Questions/Feedback: mharris@nvidia.com

Scan Literature (1)

Pre-GPU

- First proposed in APL by Iverson (1962)
- Used as a data parallel primitive in the Connection Machine (1990)
 - Feature of C* and CM-Lisp
- Guy Blelloch popularized scan as a primitive for various parallel algorithms
 - *Blelloch, 1990, “Prefix Sums and Their Applications”*

Post-GPU

- $O(n \log n)$ work GPU implementation by Daniel Horn (GPU Gems 2)
 - Applied to Summed Area Tables by Hensley et al. (EG05)
- $O(n)$ work GPU scan by Sengupta et al. (EDGE06) and Greß et al. (EG06)
- $O(n)$ work & space GPU implementation by Harris et al. (2007)

Scan Literature (2)

- Sengupta et al. segmented scan, radix sort, quicksort (Graphics Hardware 2007)
- Sengupta et al. warp scan (NV Tech report 2008)
 - Extended in *Scientic Computing with Multicore and Accelerators*, Ch. 19. 2011
- Dotsenko et al. reduce-then-scan (ICS 2008)
- Billeter et al. efficient compact (HPG 2009)
- Satis et al. radix sort (IPDPS 2009)
- Merrill & Grimshaw, efficient GPU scan (UVA Tech Rep. 2009)
- Merrill & Grimshaw, efficient radix sort (UVA Tech Rep. 2010)
- Harris & Garland, binary scan (GPU Computing Gems 2, 2011)