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Stream Programming Model

 Many independent threads of execution

— All running the same program

 Threads operate in parallel on separate inputs

— Produce an output per input

Works well when outputs depend on small, bounded input



Stream Parallelism

 One-to-one Input-output dependence (e.g., scalar)

Thread Thread Thread Thread

Input

Output



Stream Parallelism

 Local neighborhood input-output dependence (e.g., stencil)
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Beyond streaming

 GPUs are obviously really good at local and 1:1 dependences

— But many applications have more complex dependencies

— … and variable output

 Global, dynamic input-output dependences are common

— Sorting, building data structures



GPU 
Territory!

 Use efficient 
algorithm 

primitives for 
common patterns



Parallel Patterns

 Many parallel threads need to generate a single result value

— ―Reduce‖

 Many parallel threads need to partition data

— ―Split‖

 Many parallel threads, variable output per thread

— ―Compact‖ / ―Allocate‖



Reduce

 Global data dependence?
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Parallel Reduction: Easy

 Repeated local neighborhood access: O(log n) reps

— Static data dependences, uniform output
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Parallel Patterns

 Many parallel threads need to generate a single result value

— ―Reduce‖

 Many parallel threads need to partition data

— ―Split‖

 Many parallel threads, variable output per thread

— ―Compact‖ / ―Allocate‖



Split

 Example: radix sort, building trees

Input
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Parallel Patterns

 Many parallel threads need to generate a single result value

— ―Reduce‖

 Many parallel threads need to partition data

— ―Split‖

 Many parallel threads, variable output per thread

— ―Compact‖ / ―Allocate‖



 Remove unneeded or invalid elements (blue)

 Example: collision detection
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Variable Output Per Thread: General Case

 Allocate Variable Storage Per Thread

 Example: marching cubes
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“Where do I write my output?”

 Split, compact and allocate require all threads to answer

 The answer is:

―That depends on how much the other threads output!‖

 ―Scan‖ is an efficient, parallel way to answer this question



Parallel Prefix Sums (Scan)

 Given array A = [a0, a1, …, an-1]

and a binary associative operator with identity I, 

scan(A) = [I, a0, (a0 a1), …, (a0 a1 … an-2)]

 Example:  if is +, then

Scan([3 1 7 0 4 1 6 3]) = [0 3 4 11 11 15 16 22] (exclusive)

Scan([3 1 7 0 4 1 6 3]) = [3 4 11 11 15 16 22 25] (inclusive)



Segmented Scan

 Segmented scan provides nested parallelism

— Arrays can be dynamically subdivided and processed in parallel

 Enables algorithms such as parallel quicksort, sparse matrix-
vector multiply, etc.

S. Sengupta, M. Harris, Y. Zhang, and J.D. Owens. 
―Scan Primitives for GPU Computing‖. Graphics Hardware 2007

Segment Head Flags

Input Data Array

Segmented scan

[  0   0   1 0   0   1 0   0  ]

[  3   1 7   0   4 1   6   3 ]

[  0   3 0   7   7 0   1   7 ]



How fast?

 Bandwidth bound primitives

— 1 add per element read/write

— Scan and reduce at memory saturated rates

 Geforce GTX 280

— Scan 11.8B elements/second (32-bit elements)

— Bandwidth: Scan 138 GB/s; Reduce 152 GB/s

D. Merrill & A. Grimshaw ―Parallel Scan for Stream Architectures‖. Tech. Report CS2009-

14, Department of Computer Science, University of Virginia. 



Scan Applications



Applications of Scan

 A simple and useful building block for many parallel apps:

 (Interestingly, scan is unnecessary in sequential computing)

Compaction

Radix sort

Quicksort (segmented scan)

String comparison

Lexical analysis

Stream compaction

Run-length encoding

Allocation

Polynomial evaluation

Solving recurrences

Tree operations

Histograms

Summed area tables

And many more!



 Flag unneeded elements with zero:

 Threads with flag == 1 use scan result as address for output:

Compact using Scan

Input

0 1 2 3 4 5 6Output

1 1 00 1 0 1 0 1 1 1 0

210 75Scan 0 5 62 3 41

Recent efficient approach:

M. Billeter, O. Olson, U. Assarson. “Efficient stream compaction on wide 

SIMD many-core architectures”.  HPG 2009.



2 1 7 3 5 3 0 6

Radix Sort / Split using Scan

110f = scan(d) 1 1 1 21

b = current bit 010 001 111 011 101 011 000 110

001d = invert b 0 0 1 10

Current Digit: 0

420 1 5 6 73i = index

643t = numZeros + i – f 3 7 8 85

640out = b ? t : f 3 7 1 25

010 000 110 001 111 011 101 011

numZeros=3



2 1 7 3 5 3 0 6

Radix Sort / Split using Scan

210f = scan(d) 0 2 2 31

b = current bit

000d = invert b 1 0 1 01

Current Digit: 1

420 1 5 6 73i = index

543t = numZeros + i – f 4 6 7 75

543d = b ? t : f 0 6 2 71

000 001 101 010 110 111 011 011

numZeros=3

010 000 110 001 111 011 101 011



000 001 101 010 110 111 011 011

Radix Sort / Split using Scan

320f = scan(d) 1 3 3 42

b = current bit

001d = invert b 1 0 1 11

Current Digit: 2

420 1 5 6 73i = index

655t = numZeros + i – f 5 7 8 86

650d = b ? t : f 1 7 3 42

000 001 010 011 011 101 110 111

numZeros=5

0 1 2 3 3 5 6 7



CUDA Radix Sort

 Sort blocks in shared mem

— 4-bit radix digits, so 4

split operations per digit

 Compute offsets for each
block using prefix sum

 Scatter results to offset
location

N. Satish, M. Harris, M. Garland. 

“Designing Efficient Sorting Algorithms 

for Manycore GPUs”. IPDPS 2009



Faster Radix Sort Via Rigorous Analysis

 Meta-strategy leads to ultra-efficient bandwidth use and 
computation

— Optimized data access saturates bandwidth

— Combine multiple related compact ops into a single scan

— Reduce-then-scan strategy

 Radix sort 1B keys/s on Fermi! (Up to 3.8x vs. Satish et al.)

 See Duane Merrill’s GTC talk

―Optimization for Ninjas: A Case Study in High-Performance Sorting”

D. Merrill and A. Grimshaw, "Revisiting Sorting for GPGPU Stream Architectures,"  

University of Virginia CS Tech. Report CS2010-03

Open Source: http://code.google.com/p/back40computing

http://code.google.com/p/back40computing


Designing Sorting Algorithms for GPUs

 Algorithms should expose regular fine-grained parallelism

— scan used to regularize

— In merging, use divide-and-conquer to increase parallelism close to 

tree root (Satish et al. 2007)

— Optimize memory access granularity first – max bandwidth is key

 Comparison vs. Key-manipulation

— Comparison sort = O(n log n), works for any criterion

— Radix sort = O(n), but requires numeric key manipulation

 Important to handle key-value pairs

— Pointer-as-value enables sorting big objects



Comparison Sorting Algorithms

 Use comparison sorting when key manipulation not possible

— Variations on parallel divide-and-conquer approach

 Sample Sort  (Fastest current comparison-based sort)

— Leischner, Osipov, Sanders. IPDPS 2010

 Merge Sort

— Satish, Harris, Garland. IPDPS 2009

 Parallel Quicksort

— Cederman & Tsigas, Chalmers U. of Tech. TR#2008-01

— Sengupta, Harris, Zhang, Owens, Graphics Hardware 2007



Building Trees

 The split primitive can be applied to any Boolean criterion…

 Hierarchies built by splitting on successive spatial partitions

— E.g. splitting planes

 Trees: special case of sorting!



Bounding Volume Hierarchies

 Bounding Volume Hierarchies: 

— Breadth-first search order construction

— Use space-filling ―Morton curve‖ to reduce 

BVH construction to sorting

— Requires 2 O(n) radix sorts

C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, 

D. Manocha. ―Fast BVH Construction on GPUs‖. 

Eurographics 2009

“LBVH” – Linear Bounding Volume Hierarchies



HLBVH

 Improvement over LBVH

— 2-3x lower computation, 10-20x lower bandwidth

— 2-4x more compact tree memory layout

 J. Pantaleoni, D. Luebke. "HLBVH: Hierarchical LBVH Construction for Real-

Time Ray Tracing‖, High Performance Graphics 2010.



k-d Trees

 Spatial partition for organizing points in k-dimensional space

— Commonly used in ray tracing, photon mapping, particle simulation

 Breadth-first search order

— Parallelizes on nodes at lower tree levels (many nodes)

— Parallelizes on geometric primitives at upper tree levels (few nodes)

K. Zhou, Q. Hou, R. Wang, B. Guo. 

―Real-Time KD-Tree Construction on 

Graphics Hardware‖. SIGGRAPH Asia 2008



Breadth-First Search Order

 BFS order construction maximizes parallelism

 Breadth First:

 Depth First:



Memory-Scalable Hierarchies

 Breadth-first search order has high storage cost

— Must maintain and process lots of data simultaneously

 Solution: partial breadth-first 
search order

— Limit number of parallel splits

— Allows scalable, out-of-core 

construction

— Works for kD-trees and BVH

Q. Hou, X. Sun, K. Zhou, C. Lauterbach, D. Manocha. 

“Memory-Scalable GPU Spatial Hierarchy Construction” IEEE TVCG, 2010.



Parallel Hashing

 Dense data structure for storing sparse items

— With fast construction and fast random access

 Hybrid multi-level, multiple-choice (―cuckoo‖) hash algorithm

— Divide into blocks, cuckoo hash within each block in shared memory

 D. A. Alcantara, A. Sharf, F. Abbasinejad, S. Sengupta, M. Mitzenmacher, J. D. Owens, N. Amenta. 

―Real-Time Parallel Hashing on the GPU‖. SIGGRAPH Asia 2009 (ACM TOG 28(5)).



A

A

Cuckoo Hashing

 Sequential insertion:

1. Try empty slots first

2. Evict if none available

3. Evicted key checks its other 

locations

4. Recursively evict

 Assume impossible after O(lg n) 

iterations

— Rebuild using new hash functions

Pagh and Rodler [2001]
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Cuckoo Hashing

 Sequential insertion:

1. Try empty slots first

2. Evict if none available

3. Evicted key checks its other 

locations
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 Assume impossible after O(lg n) 
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Cuckoo Hashing

 Sequential insertion:

1. Try empty slots first

2. Evict if none available

3. Evicted key checks its other 

locations

4. Recursively evict

 Assume impossible after O(lg n) 

iterations

— Rebuild using new hash functions

Pagh and Rodler [2001]

h1(k) h2(k)
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h1(k)* h2(k)*



GPU Parallel Hash Performance

D. A. Alcantara, A. Sharf, F. Abbasinejad, S. Sengupta, M. Mitzenmacher, J. D. Owens, N. Amenta. 

“Real-Time Parallel Hashing on the GPU”. SIGGRAPH Asia 2009 (ACM TOG 28(5)).



List Ranking

 Traverse a linked list and assign rank to each node

— Rank = order in list

 Difficult for random lists due to irregular memory access

— Pointer chasing

 Recursive list subdivision

— Helman-JáJá algorithm

M. S. Rehman, K. Kothapalli, P. J. Narayanan. 

―Fast and Scalable List Ranking on the GPU‖. ICS 2009.



Implementing Scan: Strategies



Scan is recursive

 Build large scans from small ones

— In CUDA, build array scans from thread block scans

— Build thread block scans from warp scans

 One approach: ―Scan-Scan-Add‖

— Harris et al. 2007, Sengupta et al. 2007, Sengupta et al. 2008/2011)



3 3

1. Scan All Sub-blocks

3 3

3 5 8 10 12

2. Scan  Block Sums

+ + + + + +

3 3 3 4 5 6 7 7 8 8 9 10 10 11 11 11 12 13 13 13

3. Add Block Offsets



Improvement: Reduce-then-Scan

 Scan-Scan-Add requires 2 reads/writes of every element

 Instead, compute block sums first, use as prefix for block scans

 25% lower bandwidth

 Dotsenko et al. 2008,

Billeter et al. 2009,

Merrill & Grimshaw 2009



3 5 8 10 12

2. Scan  Block Sums

3 3 3 4 5 6 7 7 8 8 9 10 10 11 11 11 12 13 13 13

3. Scan Blocks, using block sums as prefixes

3 3

+ + + + + +
1. Reduce All Sub-Blocks



Limit recursive steps

 Can use these techniques to build scans of arbitrary length

— In CUDA, each recursive level is another kernel call

 Better: iterative scans of consecutive chunks

— Each thread block scans many chunks

— Prefix each chunk with sum from of all previous chunks

 Limiting to 2-level scan in this way is much more efficient

— Merrill and Grimshaw, 2009



Implementing Scan In CUDA



Scan Implementation in CUDA

 In the following examples:

— all pointers assumed to point to CUDA __shared__ memory

— The following variable definitions are assumed (for brevity):

int i = threadIdx.x; 

int lane = I & (warpSize - 1);

int warp = i / warpSize ;

int n = blockDim.x;



Sequential Inclusive Scan Code

 Parallel scan needs to parallelize the loop

— Relies on associativity of the operator

int scan(int *p, int n) {

for (int i=1; i<n; ++i) {

p[i] = p[i-1]+p[i];

}

}



Simple Parallel Inclusive Scan Code

__device__ int scan(int *p) {

for (int offset=1; offset<n; offset*=2) {

int t; 

if (i>=offset) t = p[i-offset];

__syncthreads();

if(i>=offset) p[i]= t + p[i];

__syncthreads();

}

}



Warp Speed

Warp is physical unit of CUDA parallelism

— 32 threads that execute instructions synchronously

 Synchronicity of warps can be leveraged for performance

— When sharing data within a warp, don’t need __syncthreads()

 ―Warp-Synchronous Programming‖

— (Powerful, but take care to avoid race conditions!)

Sengupta, Harris, Garland, Owens. Efficient parallel scan algorithms for many-core GPUs. 

Scientic Computing with Multicore and Accelerators, chapter 19. 2011 (to appear)



Intra-warp Exclusive Scan Code

__device__ int scan_warp(volatile int *p) {

if (lane>= 1) p[i]= p[i- 1] + p[i];

if (lane>= 2) p[i]= p[i- 2] + p[i];

if (lane>= 4) p[i]= p[i- 4] + p[i];

if (lane>= 8) p[i]= p[i- 8] + p[i];

if (lane>=16) p[i]= p[i-16] + p[i];

return (lane>0) ? p[i-1] : 0;

}



Intra-block Scan using Intra-warp Scan

__device__ int block_scan(int* p) {

int prefix = scan_warp(p);

__syncthreads();

if (lane == warpSize - 1) p[warp] = prefix + x;

__syncthreads();

if (warp == 0) p[i] = scan_warp(p);

__syncthreads();

return prefix + p[warp];

}



Binary Scan

 Often need to scan 1-bit values

— Stream compact: scan true/false flags

— Split / Radix Sort: scan 1-bit flags

 Fermi GPU architecture provides efficient 1-bit warp scan

— int __ballot(int p): 32-bit ―ballot‖ of t/f p from whole warp

— int __popc(int x): count number of 1 bits in x

 Combine with a per-thread mask to get 1-bit warp scan

— Or with no mask for 1-bit warp count



Binary Warp Scan Code

__device__ unsigned int lanemask_lt () {

int lane = threadIdx.x & (warpSize-1);

return (1 << lane) - 1;

}

__device__ int warp_binary_scan(bool p) {

unsigned int b = __ballot(p);

return __popc(b & lanemask_lt() );

}



Block Binary Scan Performance

 Substitute binary warp-scan in block_scan

Harris and Garland. ―Optimizing parallel prefix operations for the Fermi 

Architecture‖. GPU Computing Gems, vol 2. (to appear)



Binary Reduction

 Count the number of true predicates for all threads in block

— int __syncthreads_count(int p);

— Also __syncthreads_and() and __syncthreads_or()

Works like __syncthreads(), but counts non-zero p

 2x faster than 
32-bit reduction



Parallel Primitive Libraries



No need to re-implement

 Open source libraries under active development

 CUDPP: CUDA Data-Parallel Primitives library

— http://code.google.com/p/cudpp (BSD License)

 Thrust

— http://code.google.com/p/thrust (Apache License)

http://code.google.com/p/cudpp
http://code.google.com/p/thrust


CUDPP

 C library of high-performance parallel primitives for CUDA

— M. Harris (NVIDIA), J. Owens (UCD), S. Sengupta (UCD), A. Davidson 

(UCD), S. Tzeng (UCD), Y. Zhang (UCD)

 Algorithms

— cudppScan, cudppSegmentedScan, cudppReduce

— cudppSort, cudppRand, cudppSparseMatrixVectorMultiply

 Additional algorithms in progress

— Graphs, more sorting, trees, hashing, autotuning



CUDPP Example

CUDPPConfiguration config = { CUDPP_SCAN,   

CUDPP_ADD, CUDPP_FLOAT, CUDPP_OPTION_FORWARD };

CUDPPHandle plan; 

CUDPPResult result = cudppPlan(&plan, 

config, 

numElements, 

1, 0); 

cudppScan(plan, d_odata, d_idata, numElements);



Thrust

 C++ template library for CUDA

— Mimics Standard Template Library (STL) 

 Containers

— thrust::host_vector<T>

— thrust::device_vector<T>

 Algorithms

— thrust::sort()

— thrust::reduce()

— thrust::inclusive_scan()

— Etc. 63



// generate 16M random numbers on the host

thrust::host_vector<int> h_vec(1 << 24); 

thrust::generate(h_vec.begin(), h_vec.end(), rand);

// transfer data to the device

thrust::device_vector<int> d_vec = h_vec;

// sort data on the device

thrust::sort(d_vec.begin(), d_vec.end());

// transfer data back to host

thrust::copy(d_vec.begin(), d_vec.end(), h_vec.begin());

Thrust Example



Conclusion: so much to be done!



“In general, the problem of defining parallel-friendly data 
structures that can be efficiently created, updated, and 

accessed is a significant research challenge… The toolbox of 
efficient data structures and their associated algorithms on 

scalar architectures like the CPU remains significantly 

larger than on parallel architectures like the GPU.”

-- Alcantara et al. “Real-Time Parallel Hashing on the GPU”



See These Talks!

 Duane Merrill: 

— Optimization for Ninjas: A Case Study in High-Performance Sorting

— Wednesday, 3pm (Room D)

 Nathan Bell:

— High-Productivity CUDA Development with the Thrust Template 

Library

— Thursday, 11am (Marriott Ballroom)

 Jared Hoberock:

— Thrust by Example: Advanced Features and Techniques

— Thursday, 2pm (Room B)



Thank You!

 Duane Merrill, David Luebke, John Owens, CUDPP-dev team, 
Nathan Bell, Jared Hoberock, Michael Garland

 Questions/Feedback: mharris@nvidia.com



Scan Literature (1)
Pre-GPU

 First proposed in APL by Iverson (1962)

 Used as a data parallel primitive in the Connection Machine (1990)

— Feature of C* and CM-Lisp

 Guy Blelloch popularized scan as a primitive for various parallel algorithms

— Blelloch, 1990, “Prefix Sums and Their Applications”

Post-GPU

 O(n log n) work GPU implementation by Daniel Horn (GPU Gems 2)

— Applied to Summed Area Tables by Hensley et al. (EG05)

 O(n) work GPU scan by Sengupta et al. (EDGE06) and Greß et al. (EG06)

 O(n) work & space GPU implementation by Harris et al. (2007)



Scan Literature (2)

 Sengupta et al. segmented scan, radix sort, quicksort
(Graphics Hardware 2007)

 Sengupta et al. warp scan (NV Tech report 2008)

— Extended in Scientic Computing with Multicore and Accelerators, Ch. 19. 2011

 Dotsenko et al. reduce-then-scan (ICS 2008)

 Billeter et al. efficient compact (HPG 2009)

 Satish et al. radix sort (IPDPS 2009)

 Merrill & Grimshaw, efficient GPU scan (UVA Tech Rep. 2009)

 Merrill & Grimshaw, efficient radix sort (UVA Tech Rep. 2010)

 Harris & Garland, binary scan (GPU Computing Gems 2, 2011)


