PRESENTED BY @ NVIDIA.

1IVvesS

1m

Data-Parallel Algorithm Pr

Mark Harris

State of the Art in GPU

NVIDIA

Stream Programming Model

= Many independent threads of execution
— All running the same program

» Threads operate in parallel on separate inputs
— Produce an output per input

= Works well when outputs depend on small, bounded input

PRESENTED BY @ NVIDIA.

Stream Parallelism

- [l B B B

rea rea rea réa

Output

= One-to-one Input-output dependence (e.g., scalar)

PRESENTED BY @ NVIDIA.

Stream Parallelism

1 1 1 1
HE = E B

= | ocal neighborhood input-output dependence (e.g., stencil)

Output

PRESENTED BY @ NVIDIA.

Beyond streaming

= GPUs are obviously really good at local and 1:1 dependences
— But many applications have more complex dependencies
— ... and variable output

» Global, dynamic input-output dependences are common

— Sorting, building data structures

PRESENTED BY @ NVIDIA.

GPU
Territory!

= Use efficient
algorithm
primitives for
common patterns

eresenteney @24 MVIDIA.

Parallel Patterns

= Many parallel threads need to generate a single result value

— “Reduce”

= Many parallel threads need to partition data
_ “Spl.it”

= Many parallel threads, variable output per thread

— “Compact” / “Allocate”

PRESENTED BY @ NVIDIA.

Reduce

Input 34 41 2.0 1.5 9.6 0.3 7.1

Output

= Global data dependence?

PRESENTED BY @ NVIDIA.

Parallel Reduction: Easy

HE = =F N

-CECECECE

= Repeated local neighborhood access: O(log n) reps

— Static data dependences, uniform output

EEEEEEEEEEE <ANVIDIA.

Parallel Patterns

= Many parallel threads need to generate a single result value
— “Reduce”

= Many parallel threads need to partition data
e “Spl.it”

= Many parallel threads, variable output per thread

— “Compact” / “Allocate”

PRESENTED BY @ NVIDIA.

Split

Input

Output

= Example: radix sort, building trees

eresenenay. 8 MVIDIA.

Parallel Patterns

= Many parallel threads need to generate a single result value
— “Reduce”

= Many parallel threads need to partition data
_ “Spl.it”

= Many parallel threads, variable output per thread

— “Compact” / “Allocate”

PRESENTED BY @ NVIDIA.

Compact

= Remove unneeded or invalid elements (blue)

Input

Output

= Example: collision detection esnrios SANVIDIA.

Variable Output Per Thread: General Case

= Allocate Variable Storage Per Thread

T
ll

oo [AEEERTT

= Example: marching cubes esnrios SANVIDIA.

Input

“Where do | write my output?”

= Split, compact and allocate require all threads to answer

* The answer is:
“That depends on how much the other threads output!”

= “Scan” is an efficient, parallel way to answer this question

PRESENTED BY @ NVIDIA.

Parallel Prefix Sums (Scan)

= Given array A= [ay, ay, ..., a,.q]
and a binary associative operator @ with identity I,

scan(A) = [l,a, (a,@ a,), ..., (@ a,;,® ... ® a,,)]

= Example: if @ is +, then

Scan([31704163])=[03411 111516 22] (exclusive)
Scan([31704163])=1[341111 1516 22 25] (inclusive)

sssssssssss <A NVIDIA.

Segmented Scan

SegmentHeadFlags [0 O 1 0 0 1 0 O]
InputDataAray [3 1 7 0 4 1 6 3]
Segmentedscan [O 3 0O 7 7 0 1 7]

» Segmented scan provides nested parallelism
— Arrays can be dynamically subdivided and processed in parallel

» Enables algorithms such as parallel quicksort, sparse matrix-
vector multiply, etc.

S. Sengupta, M. Harris, Y. Zhang, and J.D. Owens.
“Scan Primitives for GPU Computing”. Graphics Hardware 2007 esneoer S NVIDIA.

How fast?

= Bandwidth bound primitives
— 1 add per element read/write
— Scan and reduce at memory saturated rates

= Geforce GTX 280
— Scan 11.8B elements/second (32-bit elements)
— Bandwidth: Scan 138 GB/s; Reduce 152 GB/s

D. Merrill & A. Grimshaw “Parallel Scan for Stream Architectures”. Tech. Report C52009-
14, Department of Computer Science, University of Virginia.
PRESENTED BY @nV|DlA.

<
=
=
®

Scan Applications

Applications of Scan

= Asimple and useful building block for many parallel apps:

Allocation

Polynomial evaluation
Solving recurrences
Tree operations
Histograms

Summed area tables
And many more!

Compaction

Radix sort

Quicksort (segmented scan)
String comparison

Lexical analysis

Stream compaction
Run-length encoding

» (Interestingly, scan is unnecessary in sequential computing)

PRESENTED BY @ NVIDIA.

Compact using Scan

» Flag unneeded elements with zero:

oo (o] [1)» EDo 1] » 1)

» Threads with flag == 1 use scan result as address for output:

Output 2 J 6

Recent efficient approach:
M. Billeter, O. Olson, U. Assarson. “Efficient stream compaction on wide resewner SANVIDIA.,
SIMD many-core architectures”. HPG 2009.

Radix Sort / Split using Scan

| = iIndex 0 (2 3 4 5 6 7

—> NnumZzZeros=3

d=Invert b 1 0] 0] 0] 0] 0] 1
f = scan(d) 0 1 1 1 1 1 1
t=numZeros + i —f 3 3 4 5 6 7 8 8

out=b?t:f o 3 4 5 6 7 1 2

eresenenay. 8 MVIDIA.

Radix Sort / Split using Scan

| = iIndex

0

1

2

3

4

5) 7

d=invert b

f=scan(d)
t=numZeros +i—f

d=b?t:f

0

0

Current Digit: 1

—> NnumZzZeros=3

eresenenay. 8 MVIDIA.

Radix Sort / Split using Scan

| = iIndex 0 (2 3 4 5 6 7

b = current bit

d=invertb 1 1 0 1 0O O 1
f=scan(d) 0 1 2 2 3 3 3'7

t=numZeros + i —f 9) 5 5 6 6 7 8 8

Current Digit: 2

—> NnumZzZeros=5

d=b?t:f o 1 5 2 6 7 3 4

PRESENTED BY @ NVIDIA.

CUDA Radix Sort

== radix sort

= Sort blocks in shared mem

B 4-b]t rad]X d]gits’ SO 4 | GPUSort
split operations per digit ~-GPU Gems radix s

= Compute offsets for each
block using prefix sum

= Scatter results to offset
location

Millions

CUDPP radix sort

=
@
»
o
2
k]
el
[3~]
o
f 3]
£ .
t o
[=]
Lo]

Sequence Size (key-value pairs)

‘ 1,000 10,000
« & N. Satish, M. Harris, M. Garland.

- “Des ’gn i ng Ef f icient Sorti ng Algor ithms ig. 7. Sorting rates for several GPU-based methods on an 8800 Ultra.

for Manycore GPUs”. IPDPS 2009

Faster Radix Sort Via Rigorous Analysis

» Meta-strategy leads to ultra-efficient bandwidth use and
computation

— Optimized data access saturates bandwidth
— Combine multiple related compact ops into a single scan
— Reduce-then-scan strategy

= Radix sort 1B keys/s on Fermi! (Up to 3.8x vs. Satish et al.)
= See Duane Merrill’s GTC talk

“Optimization for Ninjas: A Case Study in High-Performance Sorting”

D. Merrill and A. Grimshaw, "Revisiting Sorting for GPGPU Stream Architectures,”
University of Virginia CS Tech. Report C52010-03

PRESENTED BY nV|DlA.
Open Source: http://code.google.com/p/back40computing <

http://code.google.com/p/back40computing

Designing Sorting Algorithms for GPUs

= Algorithms should expose regular fine-grained parallelism
— scan used to regularize

— In merging, use divide-and-conquer to increase parallelism close to
tree root (Satish et al. 2007)

— Optimize memory access granularity first - max bandwidth is key

= Comparison vs. Key-manipulation

— Comparison sort = O(n log n), works for any criterion

— Radix sort = O(n), but requires numeric key manipulation
» [mportant to handle key-value pairs

— Pointer-as-value enables sorting big objects eseneosr SANVIDIA,

Comparison Sorting Algorithms

= Use comparison sorting when key manipulation not possible
— Variations on parallel divide-and-conquer approach
= Sample Sort (Fastest current comparison-based sort)
— Leischner, Osipov, Sanders. IPDPS 2010
= Merge Sort
— Satish, Harris, Garland. IPDPS 2009
= Parallel Quicksort
— Cederman & Tsigas, Chalmers U. of Tech. TR#2008-01

— Sengupta, Harris, Zhang, Owens, Graphics Hardware 2007
PRESENTED BY @nVID'A.

Building Trees

» The split primitive can be applied to any Boolean criterion...

» Hierarchies built by splitting on successive spatial partitions
— E.g. splitting planes

» Trees: special case of sorting!

PRESENTED BY @ NVIDIA.

Bounding Volume Hierarchies

* Bounding Volume Hierarchies:

— Breadth-first search order construction

— Use space-filling “Morton curve” to reduce
BVH construction to sorting

— Requires 2 O(n) radix sorts

C. Lauterbach, M. Garland, S. Sengupta, D. Luebke,
D. Manocha. “Fast BVH Construction on GPUs”.
Eurographics 2009

“LBVH” - Linear Bounding Volume Hierarchies

eressnreney. 24 MVIDIAL,

HLBVH

* [mprovement over LBVH
— 2-3x lower computation, 10-20x lower bandwidth
— 2-4x more compact tree memory layout

= J. Pantaleoni, D. Luebke. "HLBVH: Hierarchical LBVH Construction for Real -
Time Ray Tracmg ngh Performance Graphlcs 2010.

241 ms 95 ms 23 ms 36 ms
_- e SINVIDIA.

k-d Trees

» Spatial partition for organizing points in k-dimensional space
— Commonly used in ray tracing, photon mapping, particle simulation

= Breadth-first search order

— Parallelizes on nodes at lower tree levels (many nodes)

few nodes

— Parallelizes on geometric primitives at upper tree levels

K. Zhou, Q. Hou, R. Wang, B. Guo.
“Real-Time KD-Tree Construction on
Graphics Hardware”. SIGGRAPH Asia 2008

Breadth-First Search Order

= BFS order construction maximizes parallelism

= Breadth First:

= Depth First:

Memory-Scalable Hierarchies

= Breadth-first search order has high storage cost

— Must maintain and process lots of data simultaneously

» Solution: partial breadth-first
search order

— Limit number of parallel splits

— Allows scalable, out-of-core
construction

— Works for kD-trees and BVH

S kd-tree construction

splitting node unconstructed node

I Q. Hou, X. Sun, K. Zhou, C. Lauterbach, D. Manocha.
“Memory-Scalable GPU Spatial Hierarchy Construction” IEEE TVCG, 2010. eseveosr SINVIDIA.

Parallel Hashing

» Dense data structure for storing sparse items
— With fast construction and fast random access

» Hybrid multi-level, multiple-choice (“cuckoo™) hash algorithm

— Divide into blocks, cuckoo hash within each block in shared memory

= D. A. Alcantara, A. Sharf, F. Abbasinejad, S. Sengupta, M. Mitzenmacher, J. D. Owens, N. Amenta.
“Real-Time Parallel Hashing on the GPU”. SIGGRAPH Asia 2009 (ACM TOG 28(5)).

PRESENTED BY @ NVIDIA.

Cuckoo Hashing

1. Try empty slots first

2. Evict if none available TR

3. Evicted key checks its other

locations A
D g

= Sequential insertion:

4. Recursively evict

» Assume impossible after O(lg n)
iterations

— Rebuild using new hash functions

4
-
—
—
-
—

NN : Pag h an d ROd I er [200 1] PRESENTED BY @ n‘"DlA.

Cuckoo Hashing

» Sequential insertion:
1. Try empty slots first
2. Evict if none available

3. Evicted key checks its other
locations

4. Recursively evict

» Assume impossible after O(lg n)
iterations

— Rebuild using new hash functions

Pagh and Rodler [2001] resenreoey 3 NVIDIA.

Cuckoo Hashing

» Sequential insertion:
1. Try empty slots first
2. Evict if none available

3. Evicted key checks its other
locations

4. Recursively evict

» Assume impossible after O(lg n)
iterations

— Rebuild using new hash functions

Pagh and Rodler [2001] PRESENTED BY @n‘"DIA

GPU Parallel Hash Performance

180

—@— GPU Hash: Construction _--2
160 A- GPU Hash: Retrieval ,l"
& Sorted array: Radix sort -
140 . s
- @ Sorted array: Binary search . -m
120 |- %~ CPU PSH: Retrieval =

Milliseconds

6

Key-value pairs (millions)

D.A. Alcantara, A. Sharf, F. Abbasinejad, S. Sengupta, M. Mitzenmacher, J. D. Owens, N. Amenta, SANVIDIA.

“Real-Time Parallel Hashing on the GPU". SIGGRAPHAsia2009 (ACMTOG 28(5)).

List Ranking

» Traverse a linked list and assign rank to each node

— Rank = order in list

= Difficult for random lists due to irregular memory access

— Pointer chasing

{1] L]
Fanks O 1 2 3 4 5 il []

= Recursive list subdivision .
— Helman-JaJa algorithm GEE EEE

M. S. Rehman, K. Kothapalli, P. J. Narayanan.
“Fast and Scalable List Ranking on the GPU”. ICS 2009. eseosy SANVIDIA.

Strategies

Implementing Scan

<
=
=
®

Scan is recursive

» Build large scans from small ones
— In CUDA, build array scans from thread block scans
— Build thread block scans from warp scans

* One approach: “Scan-Scan-Add”
— Harris et al. 2007, Senguptaet al. 2007, Sengupta et al. 2008/2011)

PRESENTED BY @ NVIDIA.

~ [.scan Allsub-blocks
oli[il2lololol [oliTalaloTol i TaoT [i [o[i L4]+
3 3 2 2

=

4 Y A4 hY4 hY4 N A
ol1l1]2/0lojol1]ol1[2[2]o0foft]2]ol1l1[1]olt]1]1
\/

BDIEIEIEY 2 (534 5 6 7 7 8 8 9 10 10 11 11 11 12 13 13 13

-
= —-———

Improvement: Reduce-then-Scan

» Scan-Scan-Add requires 2 reads/writes of every element
= Instead, compute block sums first, use as prefix for block scans

= 25% lower bandwidth

= Dotsenko et al. 2008,
Billeter et al. 2009,
Merrill & Grimshaw 2009

PRESENTED BY @ NVIDIA.

\ AN AN AN AN J\. J

A 4
1l1]2]0]0l0l1

v

,/

4

4
ﬂ

v

¢ —————

v v

BDIEIEIEY 2534 5 6 7 7 8 8 9 10 10 11 11 11 12 13 13 13

PRESENTED BY @ NVIDIA.

G —————
-

Limit recursive steps

= Can use these techniques to build scans of arbitrary length
— In CUDA, each recursive level is another kernel call

= Better: iterative scans of consecutive chunks
— Each thread block scans many chunks
— Prefix each chunk with sum from of all previous chunks

= Limiting to 2-level scan in this way is much more efficient
— Merrill and Grimshaw, 2009

PRESENTED BY @ NVIDIA.

Implementing Scan In CUDA

<
=
=
®

Scan Implementation in CUDA

= |n the following examples:
— all pointers assumed to point to CUDA __shared__ memory
— The following variable definitions are assumed (for brevity):

int 1 = threadldx.x;

int lane = I & (warpSize - 1);
int warp = i / warpSize ;
int n = blockDim.x;

PRESENTED BY @ NVIDIA.

Sequential Inclusive Scan Code

int scan(int *p, 1nt n) {
for (int 1=1; 1<n; ++1) {
pli] = pli-11+pl1];

= Parallel scan needs to parallelize the loop
— Relies on associativity of the operator

eresenenay. 8 MVIDIA.

Simple Parallel Inclusive Scan Code

~_device 1nt scan(int *p) {
for (int offset=1; offset<n; offset*=2) {
int t;

1f (1>=offset) t = pli-offset];

~_syncthreads () ;

if (i>=offset) pl[i]l=t + pl[i];
syncthreads () ;

} resereosr S NVIDIA.

Warp Speed

» Warp is physical unit of CUDA parallelism

— 32 threads that execute instructions synchronously

» Synchronicity of warps can be leveraged for performance
— When sharing data within a warp, don’t need __syncthreads()

= “Warp-Synchronous Programming”

— (Powerful, but take care to avoid race conditions!)

Sengupta, Harris, Garland, Owens. Efficient parallel scan algorithms for many-core GPUs.

Scientic Computing with Multicore and Accelerators, chapter 19. 2011 (to appear CVIDIA

Intra-warp Exclusive Scan Code

__device 1nt scan warp(volatile int *p) {
1f (lane>= 1) pli]= pli- 1] + pl1];
if (lane>= 2) pl[il= pli- 2] + pl[i]l;
if (lane>= 4) pl[i]l= pl[i- 4] + pl[il];
1f (lane>= 8) pl[i]l= pl[i- 8] + pli];
if (lane>=16) pl[il= pl[i-16] + pl[i];
return (lane>0) ? pl1-1] 0;

} EEEEEEEEEEE <SANVIDIA.

Intra-block Scan using Intra-warp Scan

__device 1int block scan(int* p) {
int prefix = scan warp(p);
__syncthreads () ;
1f (lane == warpSize - 1) plwarp] = prefix + x;

syncthreads () ;

1f (warp == 0) pl[i] = scan warp(p);
~_syncthreads () ;

return prefix + plwarp];

eresenenay. 8 MVIDIA.

Binary Scan

» Often need to scan 1-bit values
— Stream compact: scan true/false flags
— Split / Radix Sort: scan 1-bit flags

* Fermi GPU architecture provides efficient 1-bit warp scan
—int __ballot(int p): 32-bit “ballot” of t/f p from whole warp
—int __popc(int x): count number of 1 bits in x

= Combine with a per-thread mask to get 1-bit warp scan

— Or with no mask for 1-bit warp count
PRESENTED BY @nVID'A.

Binary Warp Scan Code

__device unsigned 1nt lanemask 1t () {
int lane = threadldx.x & (warpSize-1);
return (1 << lane) - 1;

J

~_device 1nt warp binary scan(bool p) {
unsigned 1int b = ballot(p);
return popc (b & lanemask 1t ());

eresenenay. 8 MVIDIA.

Block Binary Scan Performance

= Substitute binary warp-scan in block_scan

==

" :_l:l L |_'_'.|

binary (ballot+popc)
3.2-bit

=
, =
=
L=}
[
(Fi
2
i
Ln
e
=
]
=
4]
[T
=
2

e R - M MY, - L I\~ M R - B
Lo o | ") | o A Al Ak
" L [: iy Iy by "y

Number of 512-thread Blocks

Harris and Garland. “Optimizing parallel prefix operations for the Fermi
Architecture”. GPU Computing Gems, vol 2. (to appear) rresareoer 4 NVIDIA.

Binary Reduction

= Count the number of true predicates for all threads in block

— int __syncthreads_count(int p);
— Also __syncthreads_and() and __syncthreads_or()

= Works like __syncthreads(), but counts non-zero p

= 2x faster than
32-bit reduction

binary (syncthreads_count)
32-bit

3
- -
.=
=1
id 7
A
=
a -
=N
un
[
gk
E
=
hld
=
L=
=

g 4 xR gt . R -
0 mr AT A B
W K T T .

Number of 512-thread Blocks

rresenteney 4 MVIDIA.

<
=
=
®

[[SS

Librar

imitive

Parallel Pr

No need to re-implement

» Open source libraries under active development

= CUDPP: CUDA Data-Parallel Primitives library
— http://code.google.com/p/cudpp (BSD License)

* Thrust
— http://code.google.com/p/thrust (Apache License)

PRESENTED BY @ NVIDIA.

http://code.google.com/p/cudpp
http://code.google.com/p/thrust

CUDPP

= C library of high-performance parallel primitives for CUDA

— M. Harris (NVIDIA), J. Owens (UCD), S. Sengupta (UCD), A. Davidson
(UCD), S. Tzeng (UCD), Y. Zhang (UCD)

= Algorithms

— cudppScan, cudppSegmentedScan, cudppReduce
— cudppSort, cudppRand, cudppSparseMatrixVectorMultiply

= Additional algorithms in progress

— Graphs, more sorting, trees, hashing, autotuning mesewosr &4 NVIDIA.

CUDPP Example

CUDPPConfiguration config = { CUDPP SCAN,
CUubpP ADD, CUDPP FLOAT, CUDPP OPTION FORWARD };

CUDPPHandle plan;
CUDPPResult result = cudppPlan(&plan,

config,
numElements,

1, 0);

cudppScan (plan, d odata, d idata, numElements);

eresenenay. 8 MVIDIA.

Thrust

» C++ template library for CUDA

— Mimics Standard Template Library (STL)
» Containers

— thrust::host vector<T>

— thrust::device vector<T>

= Algorithms
— thrust::sort ()
— thrust::reduce ()

— thrust::inclusive scan()

— Etc.

PRESENTED BY @ NVIDIA.

Thrust Example

// generate 16M random numbers on the host
thrust::host vector<int> h vec(l << 24);

thrust::generate (h vec.begin(), h vec.end(), rand);

// transfer data to the device

thrust::device vector<int> d vec = h vec;

// sort data on the device

thrust::sort (d vec.begin(), d vec.end());

// transfer data back to host

thrust::copy(d vec.begin(), d vec.end(), h vec.begin());
presenteney €24 MVIDIA.

<
=
=
®

so much to be done!

Conclusion

“In general, the problem of defining parallel-friendly data
structures that can be efficiently created, updated, and
accessed is a significant research challenge... The toolbox of
efficient data structures and their associated algorithms on
scalar architectures like the CPU remains significantly
larger than on parallel architectures like the GPU.”

-- Alcantara et al. “Real-Time Parallel Hashing on the GPU”

PRESENTED BY @ NVIDIA.

See These Talks!

* Duane Merrill:
— Optimization for Ninjas: A Case Study in High-Performance Sorting
— Wednesday, 3pm (Room D)

= Nathan Bell:

— High-Productivity CUDA Development with the Thrust Template
Library

— Thursday, 11am (Marriott Ballroom)
» Jared Hoberock:
— Thrust by Example: Advanced Features and Techniques

— Thursday, 2pm (Room B) — L\ T

Thank You!

= Duane Merrill, David Luebke, John Owens, CUDPP-dev team,
Nathan Bell, Jared Hoberock, Michael Garland

= Questions/Feedback: mharris@nvidia.com

PRESENTED BY @ NVIDIA.

Scan Literature (1)
Pre-GPU
= First proposed in APL by lverson (1962)

» Used as a data parallel primitive in the Connection Machine (1990)
— Feature of C* and CM-Lisp

= Guy Blelloch popularized scan as a primitive for various parallel algorithms
— Blelloch, 1990, “Prefix Sums and Their Applications”

Post-GPU

= O(n log n) work GPU implementation by Daniel Horn (GPU Gems 2)
— Applied to Summed Area Tables by Hensley et al. (EG05)

*= O(n) work GPU scan by Sengupta et al. (EDGEO6) and GreB et al. (EG06)

= O(n) work & space GPU implementation by Harris et al. (2007)

PRESENTED BY @ NVIDIA.

Net-11

* Sengu
(Grap

* Sengu

Literature (2)

pta et al. segmented scan, radix sort, quicksort
nics Hardware 2007)

pta et al. warp scan (NV Tech report 2008)

— Extended in Scientic Computing with Multicore and Accelerators, Ch. 19. 2011

» Dotsenko et al. reduce-then-scan (ICS 2008)
= Billeter et al. efficient compact (HPG 2009)

= Satish

et al. radix sort (IPDPS 2009)

* Merrill & Grimshaw, efficient GPU scan (UVA Tech Rep. 2009)
* Merrill & Grimshaw, efficient radix sort (UVA Tech Rep. 2010)

EEEEEEEEE

