

GPU TECHNOLOGY CONFERENCE

Fast High-Quality Panorama Stitching

GTC 2010 , San Jose | James Fung & Timo Stich, NVIDIA

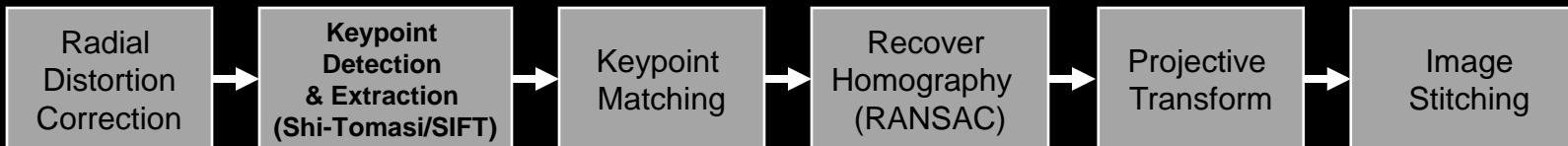
GPU Panorama Stitching

GPU Panorama Stitching

Image Pipeline: Panorama Stitching

Left
Image

Right
Image

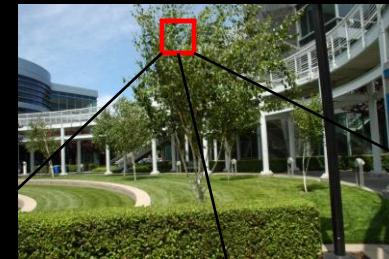


Radial Distortion Removal

$$\delta x = x(\kappa_1 r^2 + \kappa_2 r^4 + \dots)$$
$$\delta y = y(\kappa_1 r^2 + \kappa_2 r^4 + \dots)$$

Images taken with a Nikon D70 18-70mm NIKKOR Lens

Radial Distortion Removal



Point Samples

Bilinearly Interpolation (hw)

Bicubic Interpolation

Radial Distortion Removal

Interpolation Method	Time (ms)	
	Quadro 570m	Tesla C1060
4 SMs	4 SMs	30 SMs
Nearest Neighbor	70.99 ms	8.31 ms
Linear Interpolation	71.06 ms	8.39 ms
Bicubic (4 samples)	107.26 ms	11.77 ms

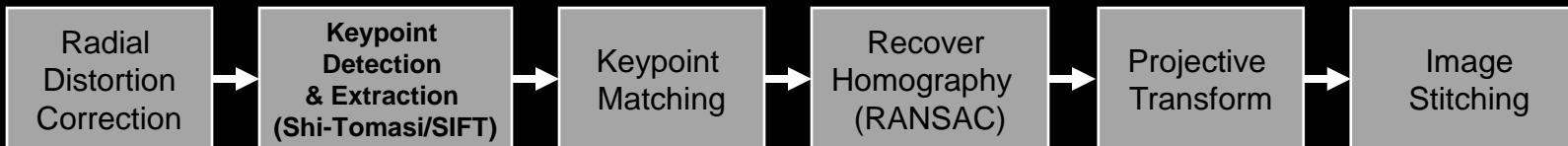
Input Image: 3008x2000 (6MP) RGB

- Linear Interpolation is “Free”!
- Apply hardware linear interpolation to approximate higher order interpolation (*see Simon Green’s “Bicubic” SDK example*)
- Excellent Texture Cache behaviour

Image Pipeline: Panorama Stitching

Left
Image

Right
Image



Corner Detection

$$A = \sum_u \sum_v w(u, v) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

Compute matrix A, in region (u,v) around a point (x,y), of Gaussian weighted (w(u,v)) image derivatives (I_x, I_y)

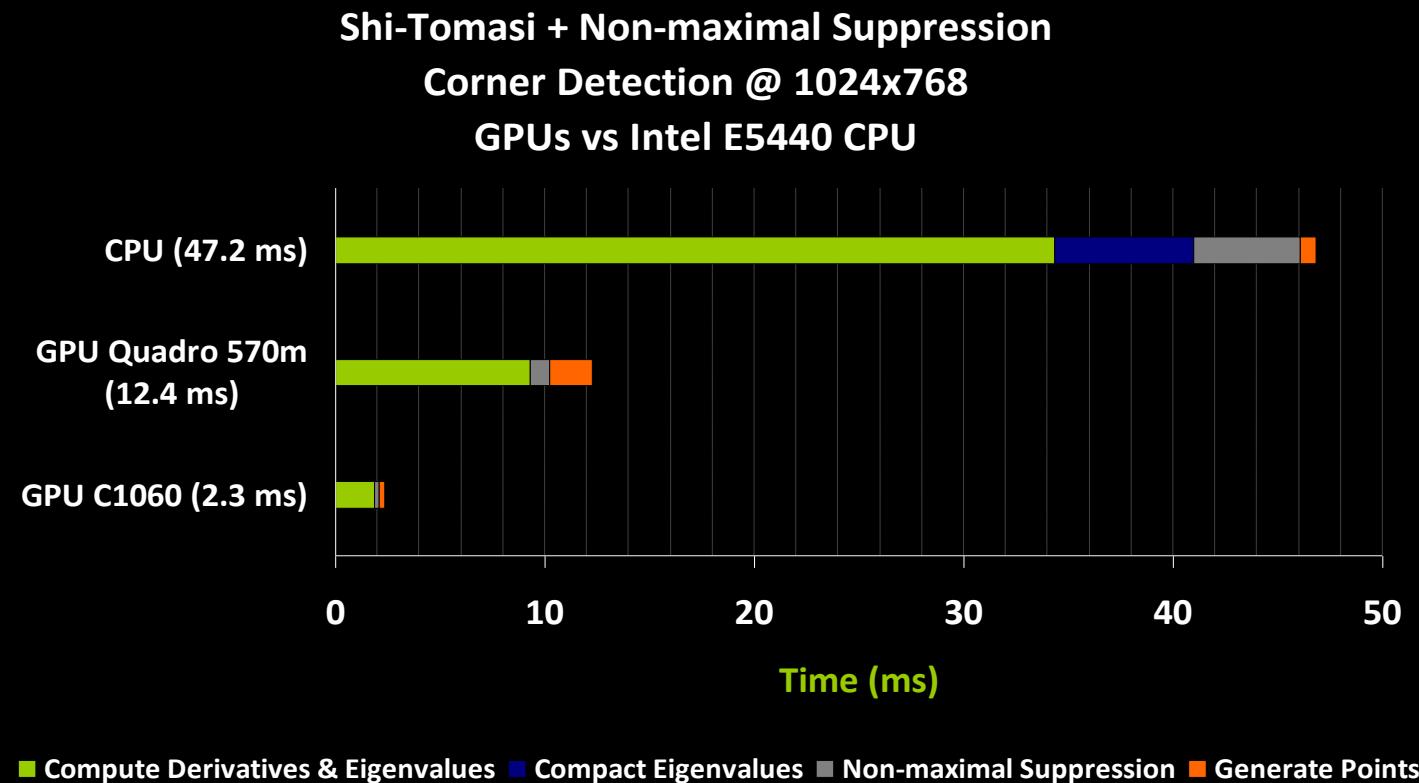
Harris: Compute Mc, (based on Eigenvalues of A, λ₁, and λ₂) by computing the determinant and trace of A

$$M_c = \lambda_1 \lambda_2 - \kappa (\lambda_1 + \lambda_2)^2 = \det(A) - \kappa \text{trace}^2(A)$$

Shi-Tomasi: Compute Eigenvalues, λ₁, and λ₂ and threshold on min(λ₁, λ₂)

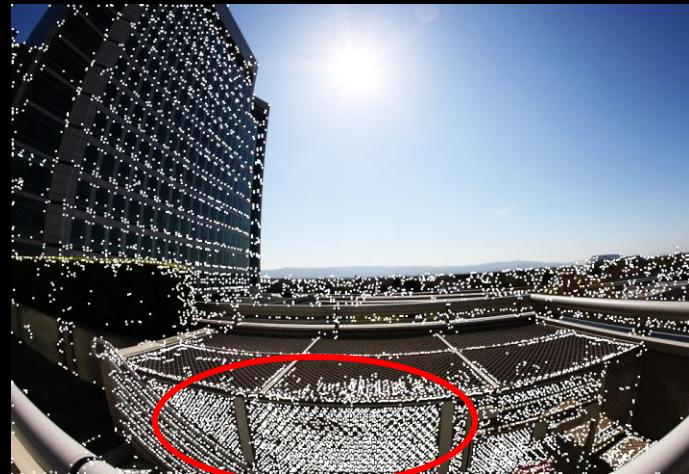
$$\lambda_1, \lambda_2 = \frac{\text{tr}(A) \pm \sqrt{\text{tr}(A)^2 - 4 \det(A)}}{2}$$

Feature Detection



Corner Detection

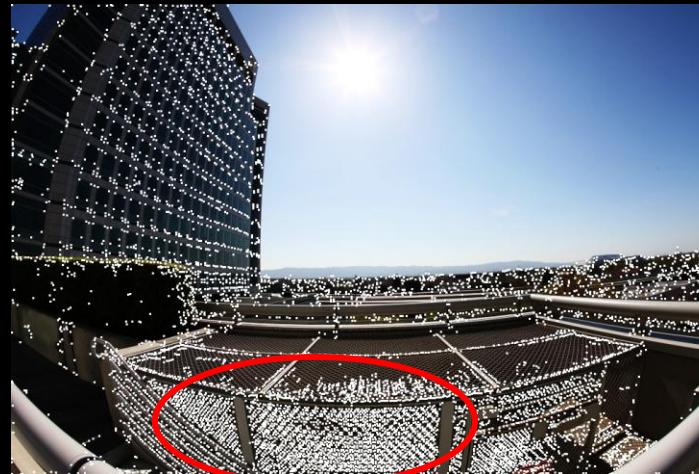
Corner Detection



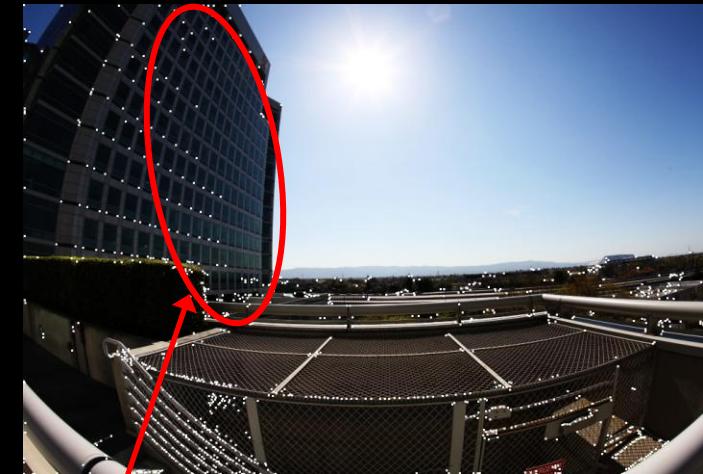
Indistinct

- No single threshold can eliminate clutter and maintain weaker features

Corner Detection



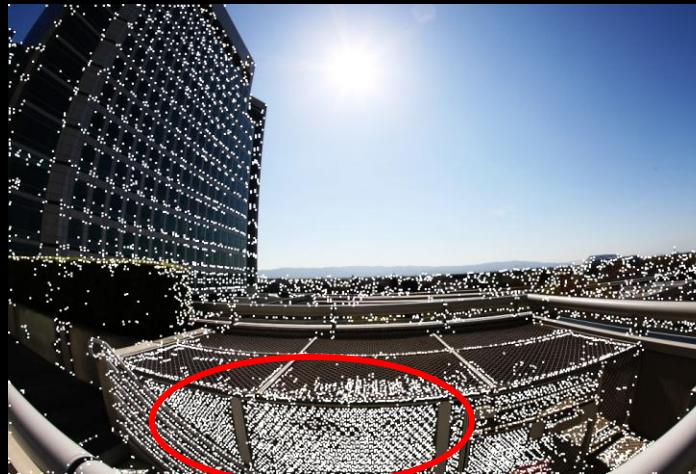
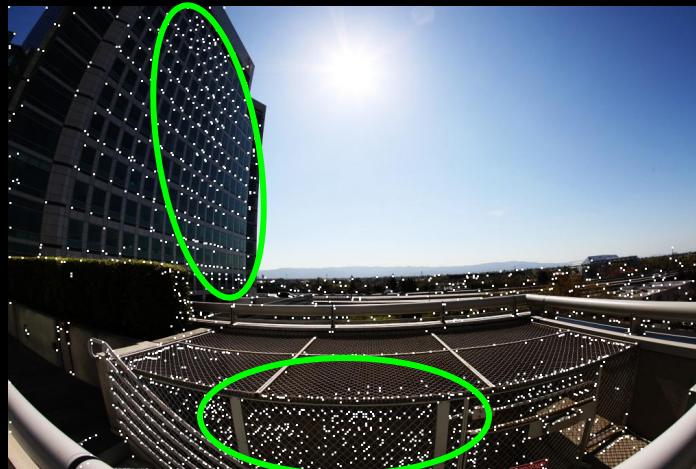
Indistinct cluttered features



Loss of salient points

- No single threshold can eliminate clutter and maintain weaker features

Modified Shi-Tomasi



- Take ratio of $\min(\lambda_1, \lambda_2)$ to its neighbourhood
- Reduces clutter, maintains distinctive (though weaker) features

Corner Detection: Dynamic Method

$$A = \sum_u \sum_v w(u, v) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

Compute matrix A, in region (u,v) around a point (x,y), of Gaussian weighted (w(u,v,)) image derivatives (I_x, I_y)

Dynamic Thresholding: Compute Eigenvalues

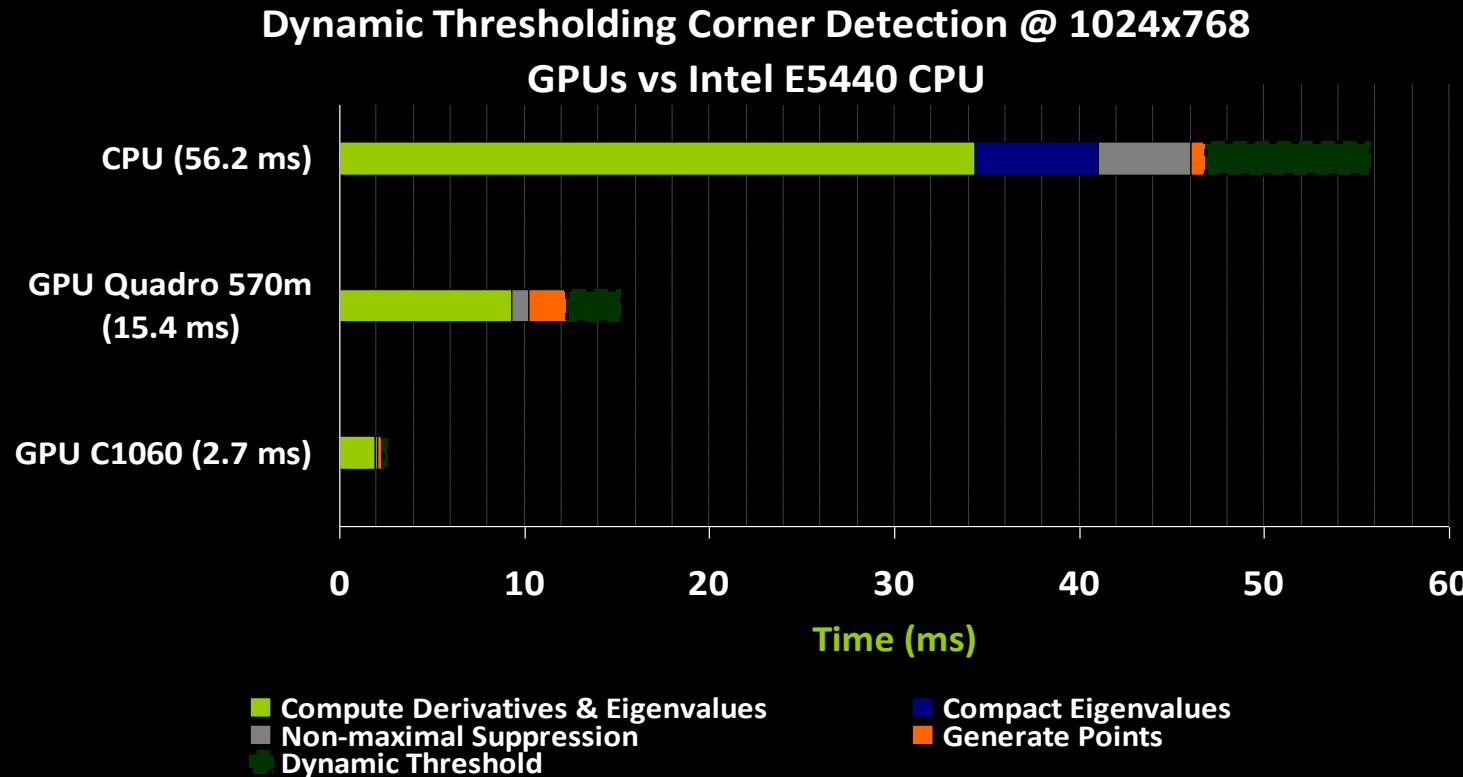
$$\lambda_1, \lambda_2 = \frac{\text{tr}(A) \pm \sqrt{\text{tr}(A)^2 - 4 \det(A)}}{2}$$

Dynamic Threshold: Compare min(λ₁, λ₂) to regional (u,v) minimum

$$M_r = \frac{\min(\lambda_1, \lambda_2)}{\sum_u \sum_v \min(\lambda_1, \lambda_2)}$$

Additional Computational Cost: One 2D convolution and a division/comparison

Dynamic Feature Detection



Pixels to Points: *HistoPyramids*

(0,0)
(24,20)
(48,20)
(124,30)
(148, 44)
(24,45)
(56, 48)
(347,569)
(271,756)
(273,881)
...

- How to go from pixels to (x,y) point coordinates, *on the GPU*?

GPU HistoPyramids

- Based on papers by Ziegler et al. (NVIDIA)
- Able to generate a list of feature coordinates completely on the GPU
- Determines:
 - What is the location of each point?
 - How many points are found?
- Applicable for quadtree data structures

www.mpii.de/~gziegler

HistoPyramids

- How do we generate a list of points on the GPU from an image buffer containing 1's (points) and 0's (non-points)

1	0	1	0	1	0	1	0
0	1	0	0	0	1	0	0
0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	1
0	1	0	0	0	0	1	1
0	0	0	1	0	0	1	1
0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	1

- Do a reduction: each level is the sum of 2x2 region “below” it
- The top level is the number of points total

HistoPyramids

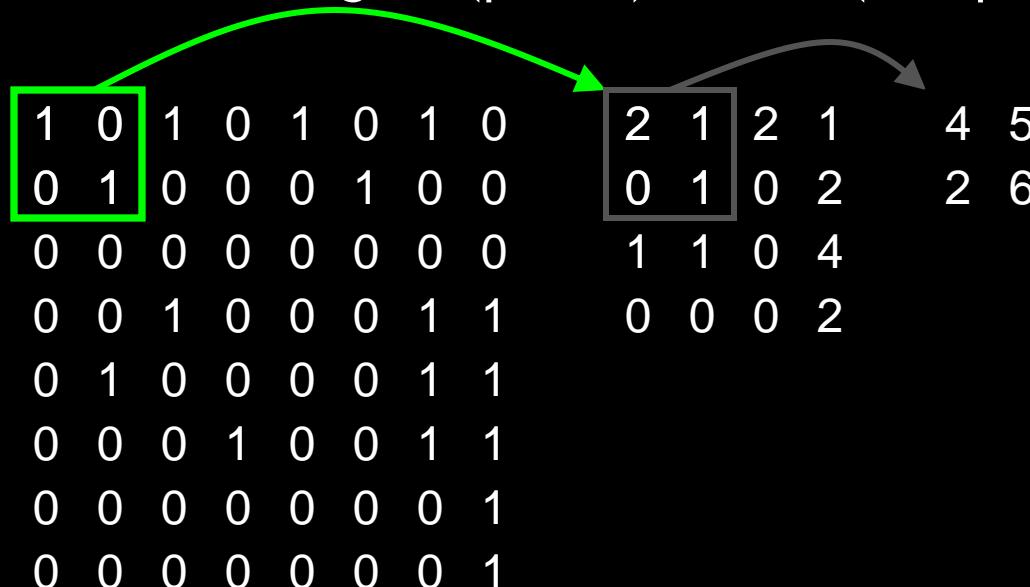
- How do we generate a list of points on the GPU from an image buffer containing 1's (points) and 0's (non-points)

1	0	1	0	1	0	1	0	2	1	2	1
0	1	0	0	0	1	0	0	0	1	0	2
0	0	0	0	0	0	0	0	1	1	0	4
0	0	1	0	0	0	1	1	0	0	0	2
0	1	0	0	0	0	1	1				
0	0	0	1	0	0	1	1				
0	0	0	0	0	0	0	1				
0	0	0	0	0	0	0	1				

- Do a reduction: each level is the sum of 2x2 region “below” it
- The top level is the number of points total

HistoPyramids

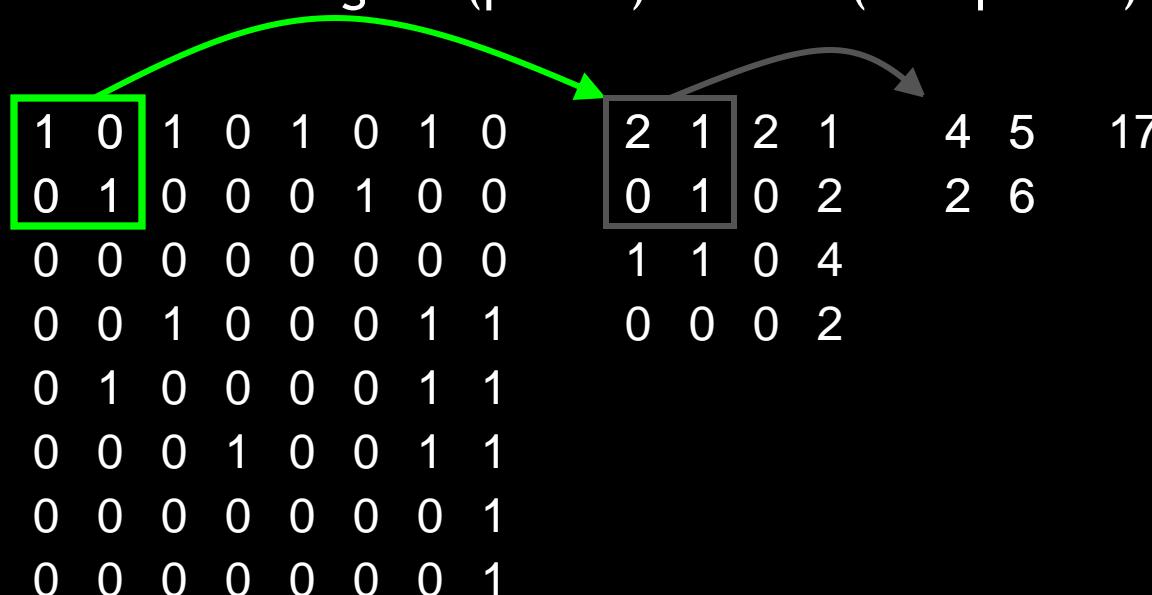
- How do we generate a list of points on the GPU from an image buffer containing 1's (points) and 0's (non-points)



- Do a reduction: each level is the sum of 2x2 region “below” it
- The top level is the number of points total

HistoPyramids

- How do we generate a list of points on the GPU from an image buffer containing 1's (points) and 0's (non-points)



HistoPyramid

- The pyramid is now a *map* to where the point locations are
- Traverse down the pyramid, counting past points, and populate the list
- Example: at what coordinates is the 5th point in the list

1	0	1	0	1	0	0	1	0	0	1	0	0	0	1	1	0	2	1	1	0	4	2	6	0	0	0	2
0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	1	1	0	4	2	6	0	0	0	2	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	4	2	6	0	0	0	2	0	0	0
0	0	1	0	0	0	1	1	1	1	0	0	0	0	0	1	1	0	4	2	6	0	0	0	2	0	0	0
0	1	0	0	0	0	1	1	1	1	0	0	0	0	0	1	1	0	4	2	6	0	0	0	2	0	0	0
0	0	0	1	0	0	1	1	1	1	0	0	0	0	0	1	1	0	4	2	6	0	0	0	2	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	4	2	6	0	0	0	2	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	4	2	6	0	0	0	2	0	0	0

This must be point 5

Holds points 1..4

Holds points 5..9:
Point 5 must be inside
(below) this quadrant

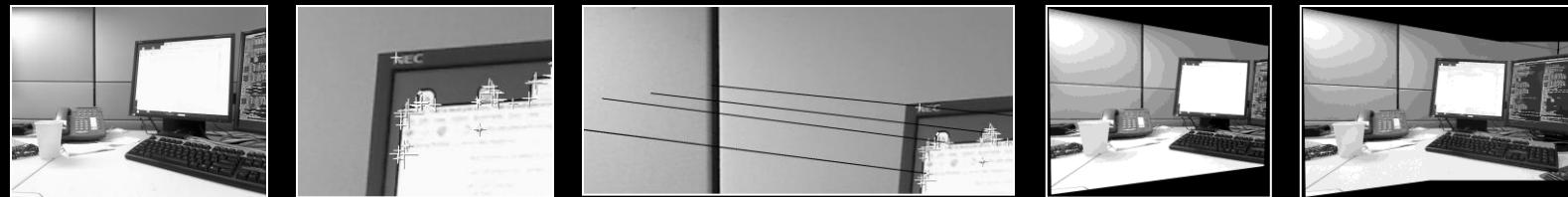
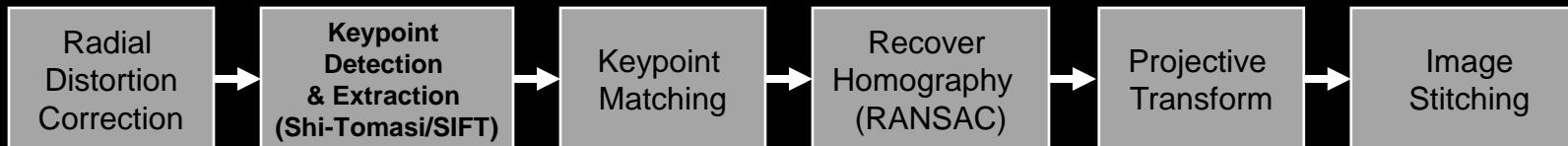
Holds Points 5,6: point 5 must
be inside this quadrant

Time: (C1060 GPU)
1024x1024: 0.27 ms
4096x4096: 2.1 ms
8192x8192: 7.7 ms

Image Pipeline: Panorama Stitching

Left
Image

Right
Image



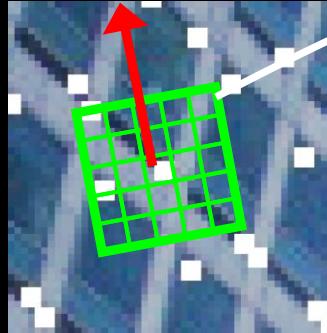
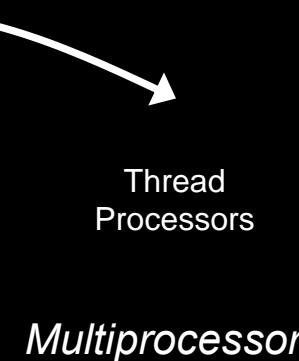
Generating Descriptors

- What's a Feature Descriptor?
 - Distinct numerical representation of an image point for matching
- Our example: SIFT
 - “Scale Invariant Feature Transform”
 - 128 element floating point vector (“key”)
 - Nearest Euclidean distance between keys is the best match

Generating Descriptors

- Sparse point processing
- HistoPyramid tree organization gives good spatial locality!
- Parallel processing of single descriptor with thread cooperation
 - Shared Memory
 - Thread Synchronization

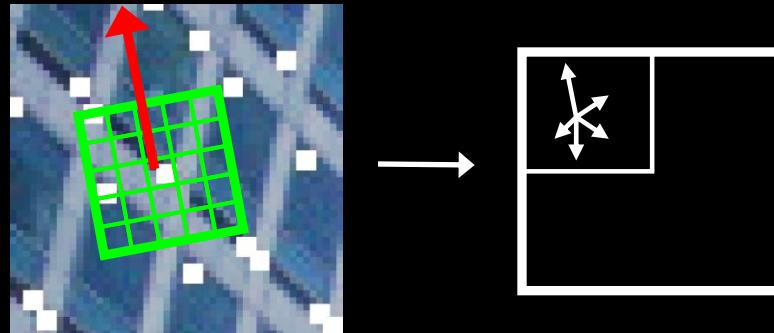
Feature Descriptor Computation



1. Calculate feature orientation (*shared memory reduction*)
2. Lookup rotated samples (texture cache)

- Made possible by Thread Cooperation and data dependent array indexing in compute shaders
- Good texture cache usage, constant cache (Gaussian weights)

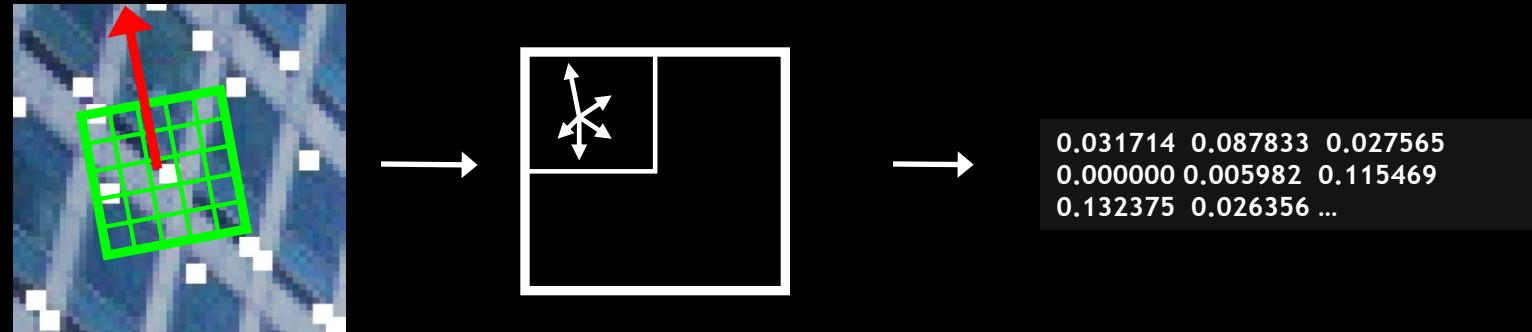
Feature Descriptor Computation



1. Calculate feature orientation (*shared memory reduction*)
2. Lookup rotated samples (texture cache)
3. Generate local orientation histograms (one thread per histogram, shared memory, pointer indexing)

- Made possible by Thread Cooperation and data dependent array indexing in compute shaders
- Good texture cache usage, constant cache (Gaussian weights)

Feature Descriptor Computation



1. Calculate feature orientation (*shared memory reduction*)
2. Lookup rotated samples (texture cache)
3. Generate local orientation histograms (one thread per histogram, shared memory, pointer indexing)
4. Normalize Histogram (*shared memory reduction*)
5. Threshold
6. Re-normalize Histogram (*shared memory reduction*)

- Made possible by Thread Cooperation and data dependent array indexing in compute shaders
- Good texture cache usage, constant cache (Gaussian weights)

Matching Results

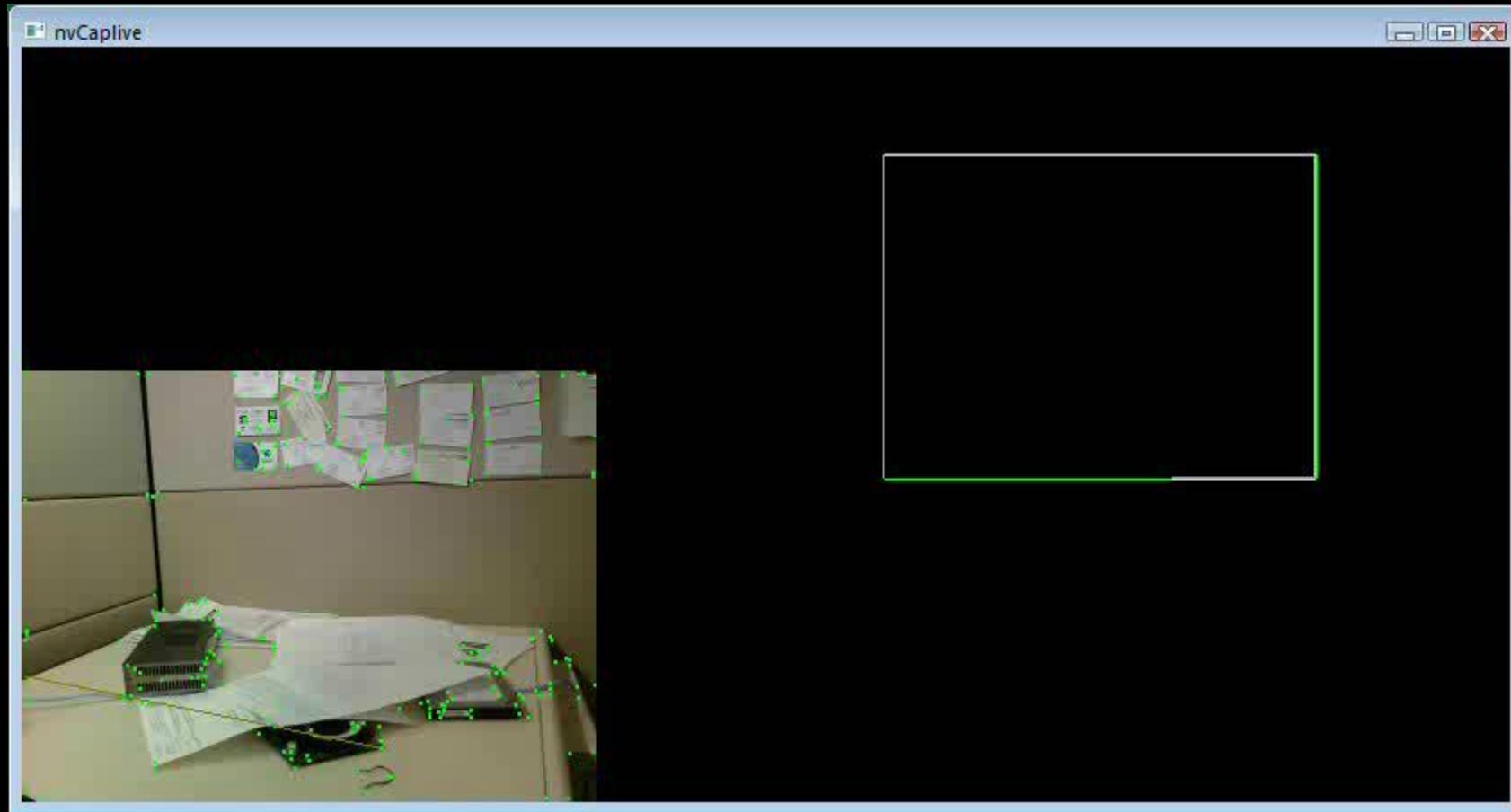
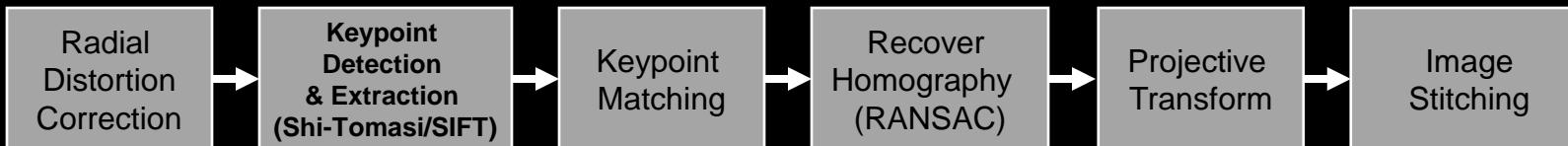


Image Pipeline: Panorama Stitching

Left
Image

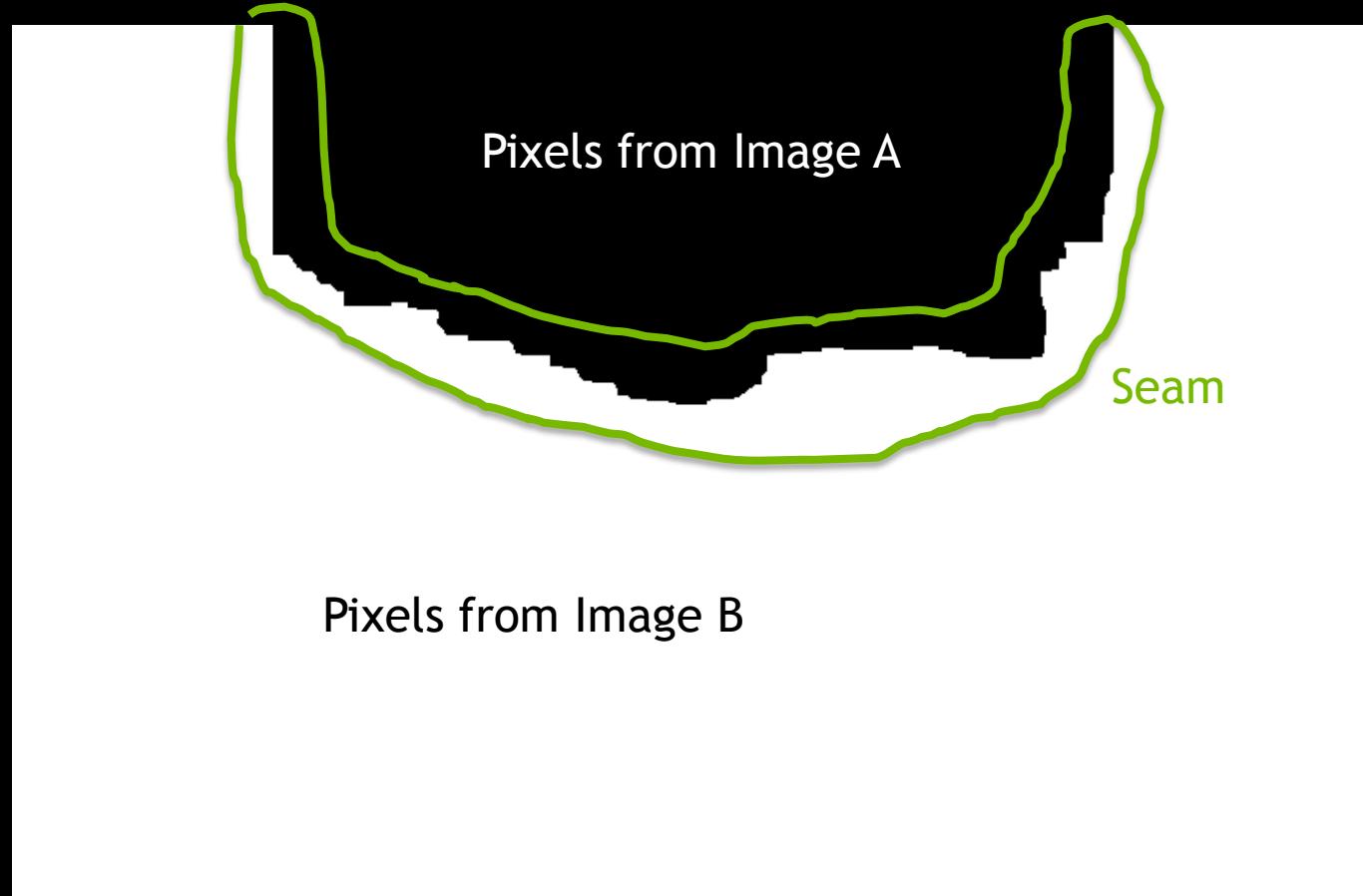
Right
Image



Blending can cause artifacts

Better: Image Stitching

Binary Labeling



What defines a good seam?

- Intuition: Must not be noticeable
 - Avoid introducing new gradients
- Breaking it down on the pixel level:
 - Color differences between pixels of images should be minimal at seam pixels

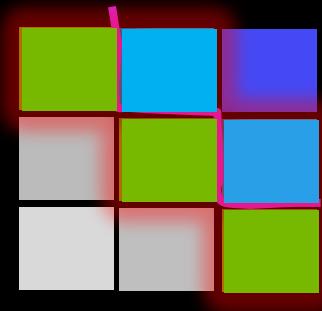


Image A

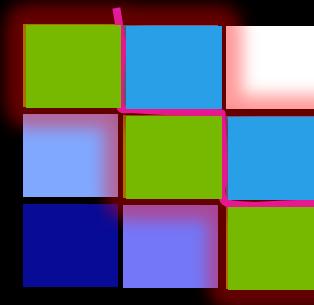


Image B

Computing good seams

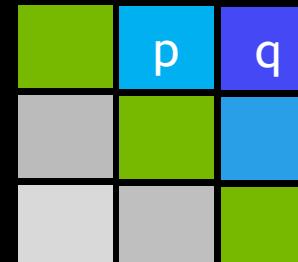


Image A

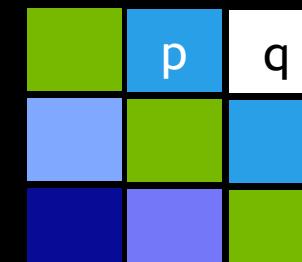
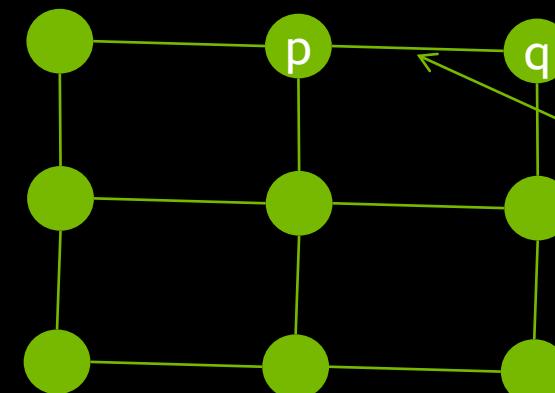


Image B

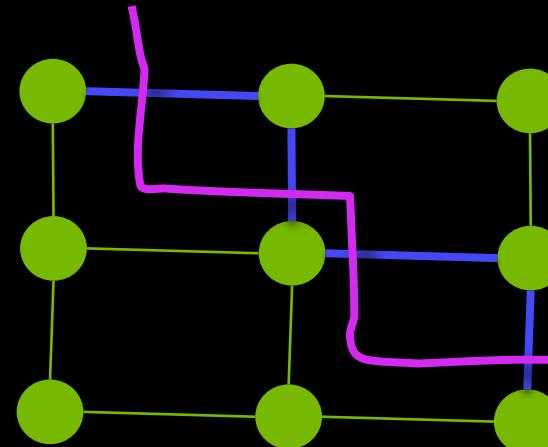


Markov Random Field

$$C = |I_A(p) - I_B(p)|^2 + |I_A(q) - I_B(q)|^2$$

Computing good seams

- Graph Cut to compute the minimal cost seam
 - Very fast, global optimal solver for binary label problems
 - NPP primitive (upcoming 3.2 release)



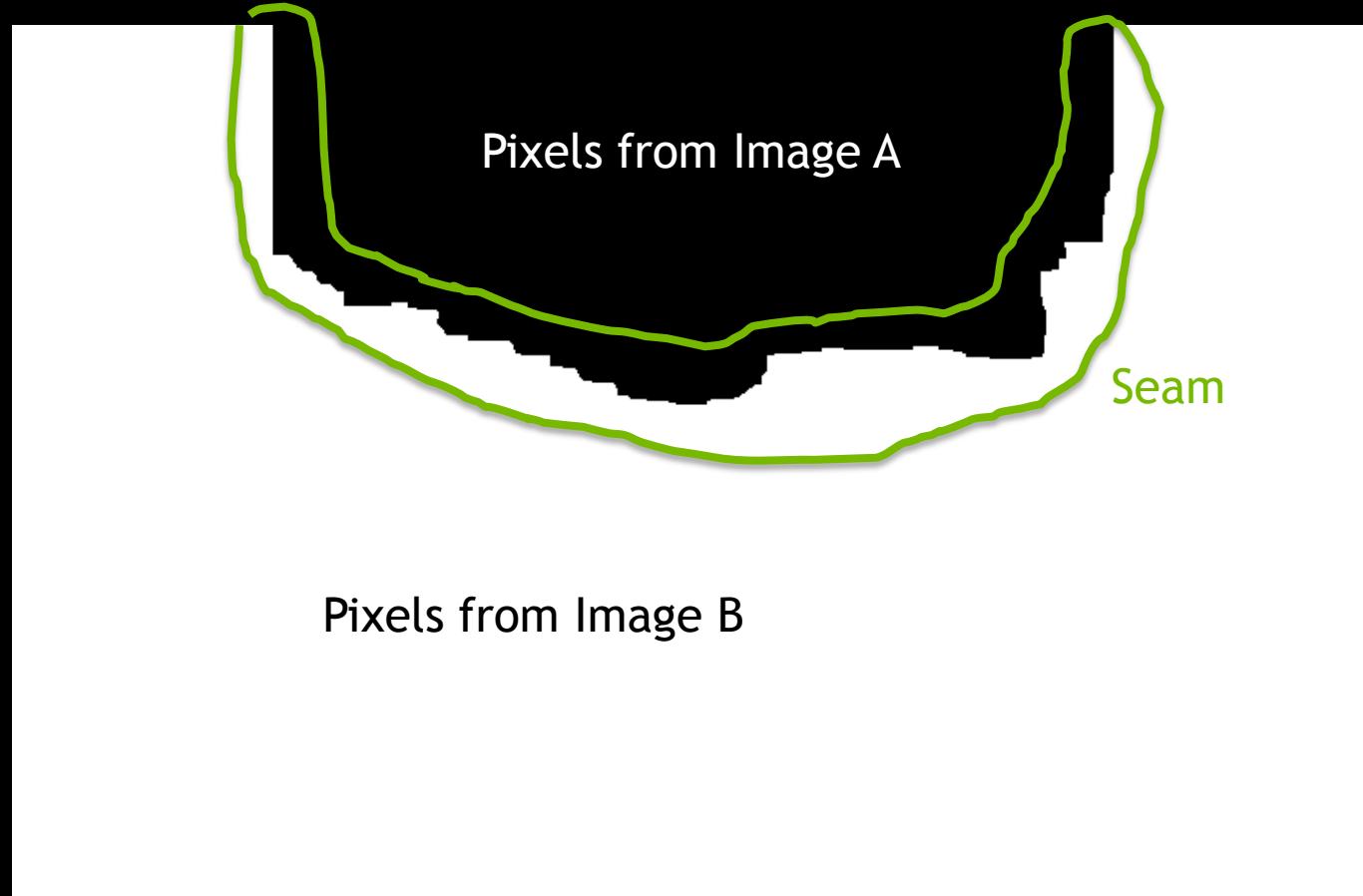
Best seam is the Minimum Cut

NPP Graphcut

- Graph is stored in Arrays
 - Weights to terminals in one array
 - Weights to neighbors in four arrays, horizontal edges are transposed

```
■ nppiGraphcut_32s8u(d_terminals, d_left_transposed, d_right_transposed,  
d_top, d_bottom, step, transposed_step, size,  
d_labels, label_step, pBuffer);
```

Binary Labeling



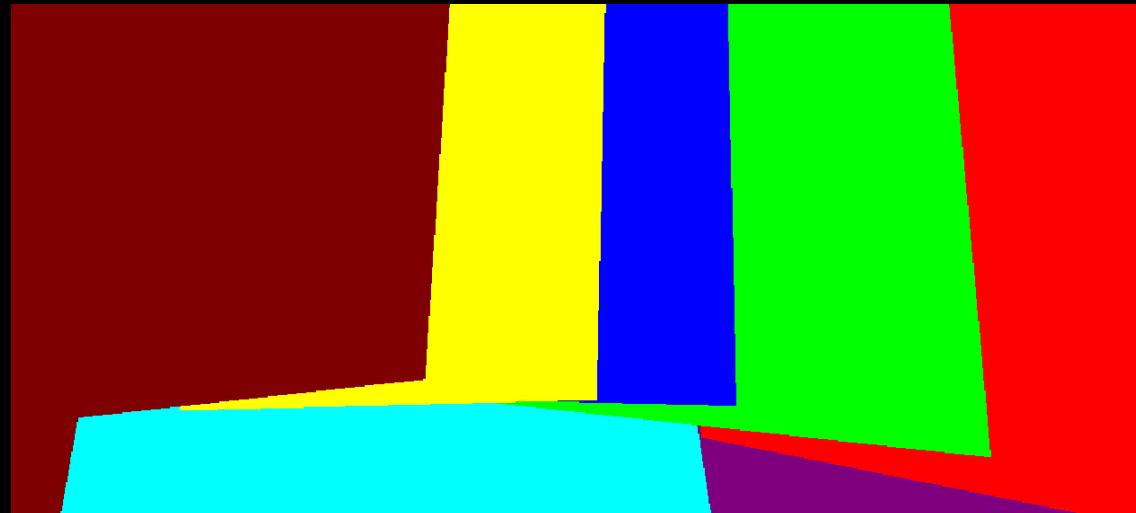
From two images to many

- One label for each image in the set: N labels
 - Assign each pixel in the panorama one label
 - Unfortunately this is NP hard problem ☹
- Alpha-Expansion algorithm to the rescue
 - Intuition: “Keep current label or change to alpha”
 - Again binary problem solvable with Graph Cut
 - Repeat for all labels until the optimal solution is found

Alpha-Expansion

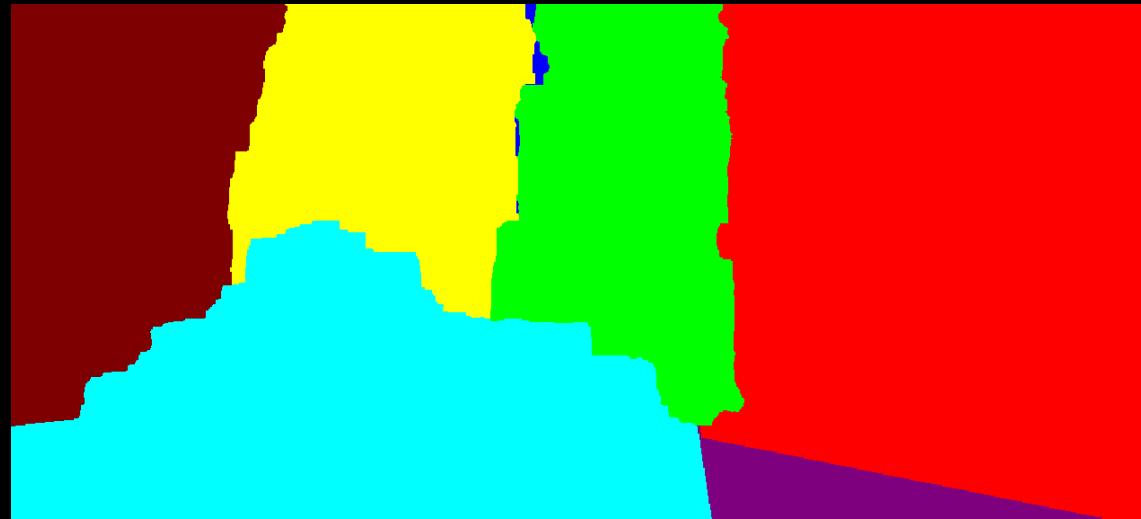
- Iteration for each label alpha:
 - Compute data term for alpha
 - Compute neighborhood terms for alpha
 - Solve binary Graph Cut
 - Use binary solution to get expanded multi-label solution
 - Compute total energy of expanded solution
 - If energy has decreased make this the current solution, otherwise discard

Alpha-Expansion



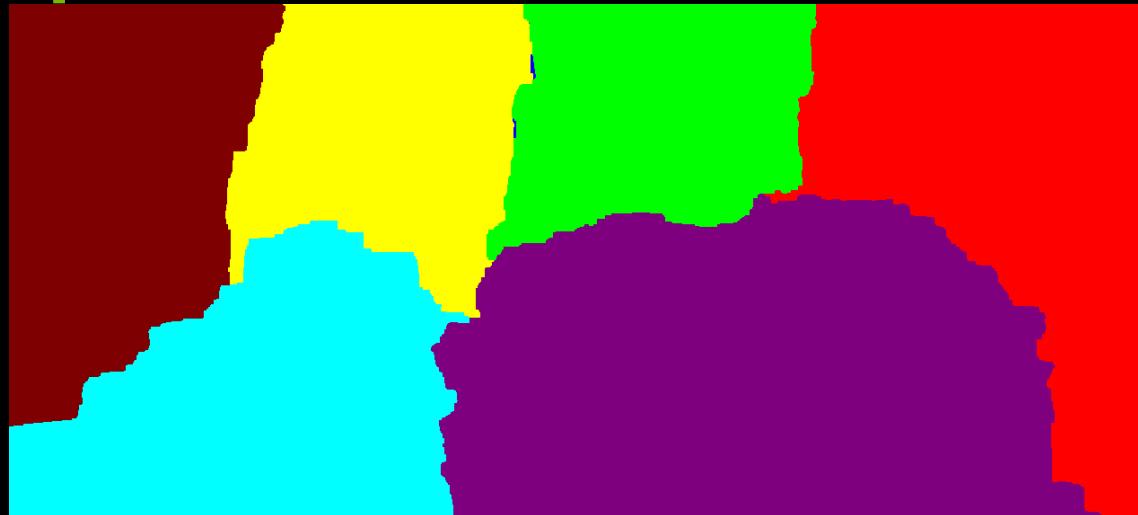
Initial
Solution

Alpha-Expansion



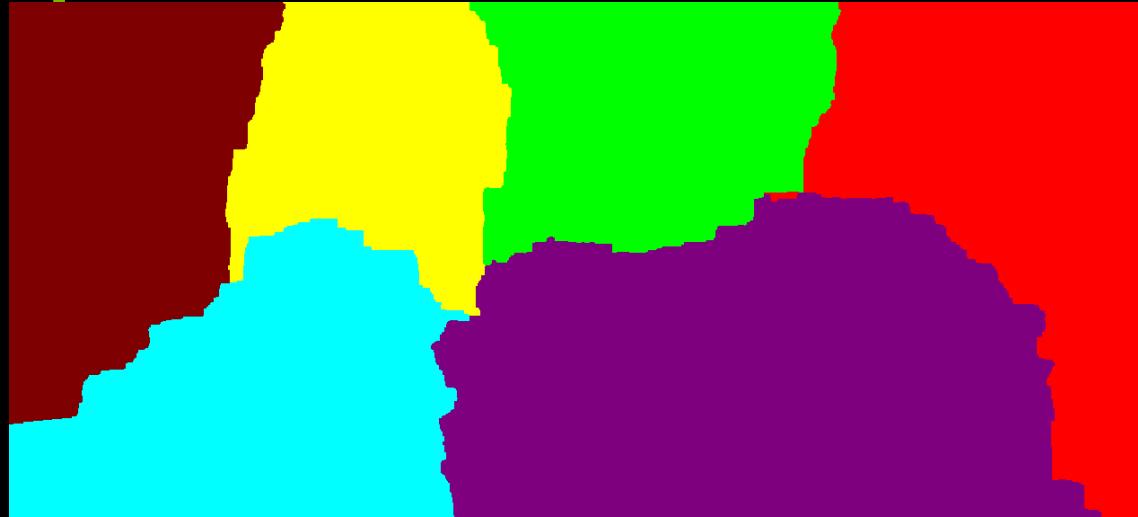
After 6
Expansion
Steps

Alpha-Expansion



After 12
Expansion
Steps

Alpha-Expansion



After 18
Expansion
Steps

Final Result

Image Stitching Notes

- In this example only 6 out of the 7 input images contribute to the final result
 - Image Stitching reduces the image set
- Quality improves with each iteration
 - The current result is a preview that converges to the final result

Performance

Test data set

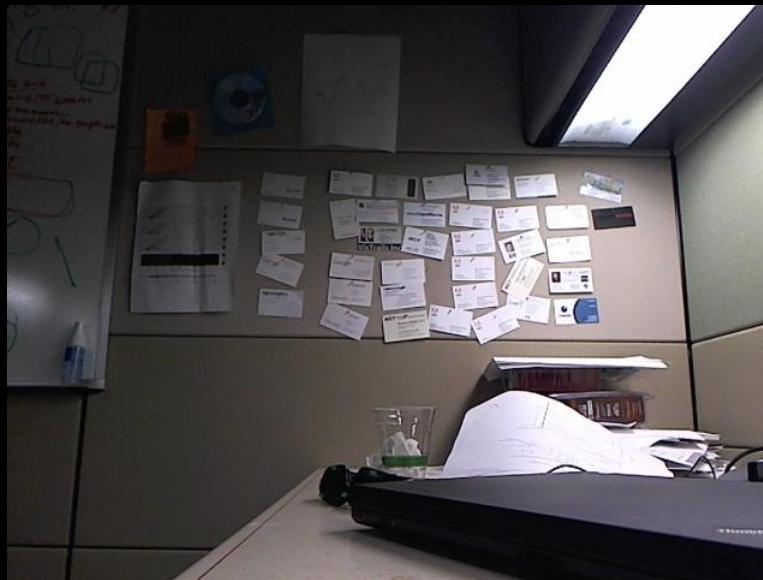


Image 0

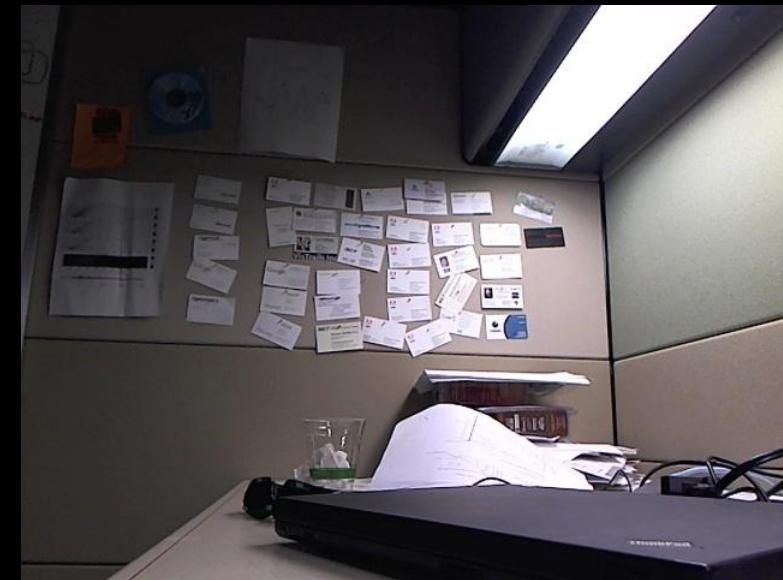


Image 1

Performance

- CUDA 3.0, Driver 260.16 wall clock times

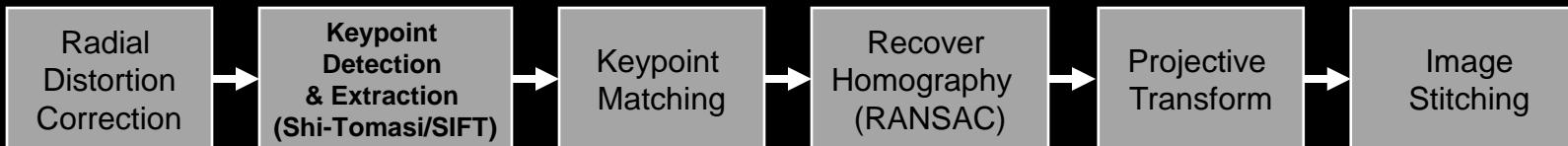
Alpha Expansion Performance

Iteration	Time (ms)	
	GTX460	GTX 480
1	101.74	50.44
2	102.85	50.77
3	31.95	18.95
4	28.59	18.68
5	28.18	18.82
6	28.92	18.59

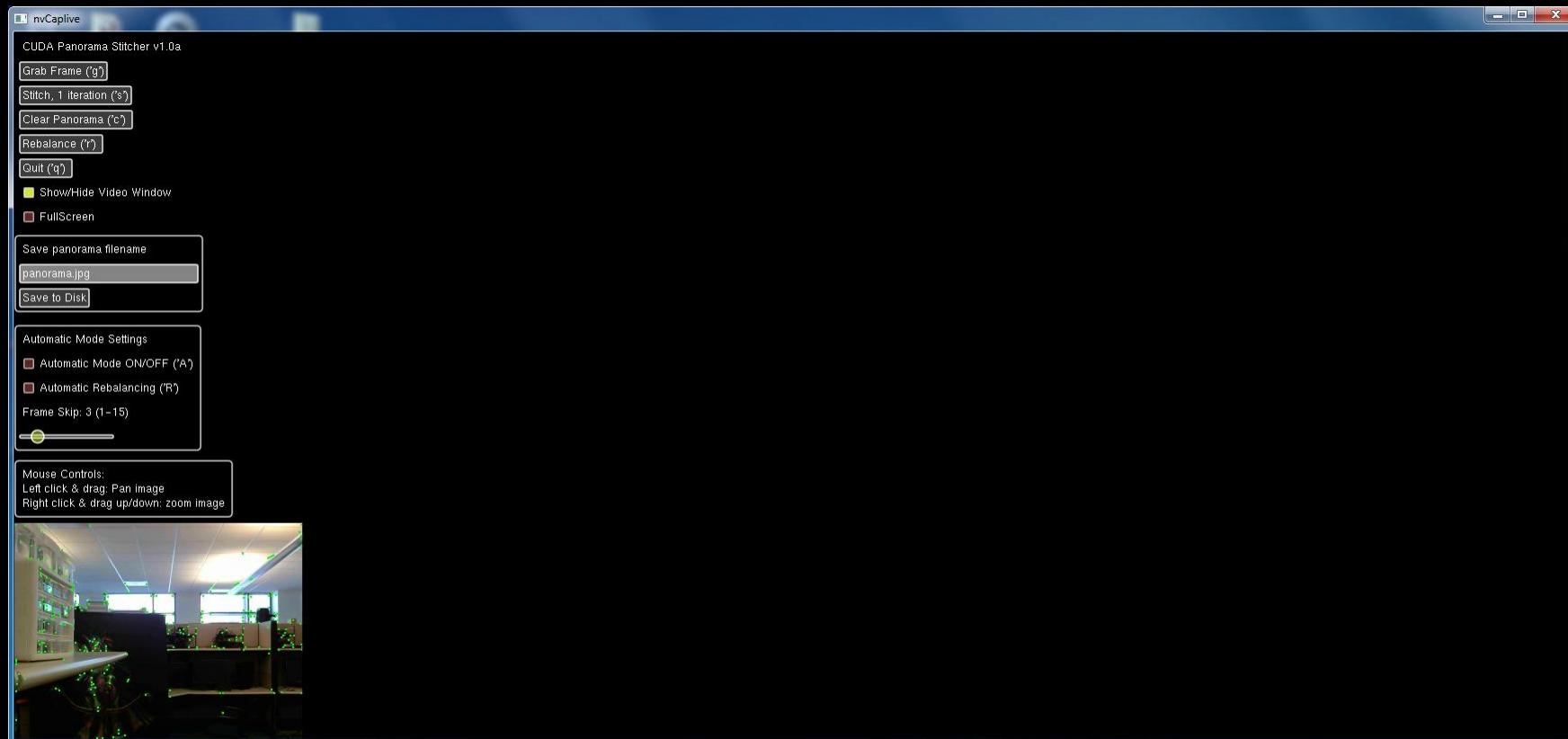
Image Pipeline: Panorama Stitching

Left
Image

Right
Image



Example Application



Questions?

GPU TECHNOLOGY CONFERENCE

