Al

Adobe

Computational Photography: Real Time Plenoptic Rendering
Andrew Lumsdaine, Georgi Chunev | Indiana University

Todor Georgiev | Adobe Systems

© 2010 Adobe Systems Incorporated. All Rights Reserved.

Who was at the Keynote Yesterday?

© 2010 Adobe Systems Incorporated. All Rights Reserved. 2 "‘

Adobe

Overview

Plenoptic cameras
Rendering with GPUs

Effects
Choosing focus
Choosing viewpoint (parallax)
Stereo
Choosing depth of field
HDR
Polarization
Super resolution

Demos
Conclusion

© 2010 Adobe Systems Incorporated. All Rights Reserved.

Making (and Recreating) Memories

© 2010 Adobe Systems Incorporated. All Rights Reserved. 4 "‘

Adobe

n/.
(V)
[-
)

-

O

al

D

N

-

s Wrong with

What

© 2010 Adobe Systems Incorporated. All Rights Reserved.

Perspective

.. e ”’% Painting

" ~ g - ith polished
M L =L = W_” P
w,":rbmr' . S /// / silver sky
sighting ‘f S |
hole &

Sight linc 4
e — g

-———

© 2010 Adobe Systems Incorporated. All Rights Reserved.

CAPTURE PROCESS VIEW

JNN\'.:?HH.!

¢

Color Color
I] I] Diﬁicglt
E Exposure Exposure to Adjust

,O Focus

© 2010 Adobe Systems Incorporated. All Rights Reserved.

Along Came Photoshop

CAPTURE PROCESS VIEW

) color B color] color

E Exposure E Exposure E Exposure

£ Focus

© 2010 Adobe Systems Incorporated. All Rights Reserved.

What's Wrong with This Picture?

© 2010 Adobe Systems Incorporated. All Rights Reserved. "‘

Adobe

What's Wrong? It's Only a Picture!

© 2010 Adobe Systems Incorporated. All Rights Reserved. "‘

Adobe

Can We Create More than Pictures?

Can we request that Photography renders the
full variety offered by the direct observation of
objects? Is it possible to create a photographic

print in such a manner that it represents the
exterior world framed, in appearance, between
the boundaries of the print, as if those
boundaries were that of a window opened on

reality.

Gabriel Lippmann, 1908.

© 2010 Adobe Systems Incorporated. All Rights Reserved.

Pixels and Cores

Moore’s Law: Megapixels keep growing
7.2 MP = 8 by 10 at 300dpi

Available on cell phones

60MP sensors available now

Larger available soon (can a use be found?)

Theoretical

Use pixels to capture richer information
about a scene oo

~=0-=NVIDIA GPU Single Precision

Computationally process captured data el Ryl ey

==s==|ntel CPU Double Precision

1000

GPU power also riding Moore’s Law curve

750

Tesla C2050
500

250

P 4
Sep-01 Jan-03 Jun-04 Oct-05 Mar-07 Jul-08 Dec-09

© 2010 Adobe Systems Incorporated. All Rights Reserved.

Infinite Variety (Focusing)

© 2010 Adobe Systems Incorporated. All Rights Reserved. "‘

Adobe

Focusing

© 2010 Adobe Systems Incorporated. All Rights Reserved. 14 "‘

Adobe

Focusing

© 2010 Adobe Systems Incorporated. All Rights Reserved. 15 "‘

Adobe

Different Views

© 2010 Adobe Systems Incorporated. All Rights Reserved. 16 "‘

Adobe

Different Views

© 2010 Adobe Systems Incorporated. All Rights Reserved. 17 "‘

Adobe

Different Views

© 2010 Adobe Systems Incorporated. All Rights Reserved. 18 "‘

Adobe

Computational Photography

With traditional photography light rays in a scene go through optical
elements and are captured by a sensor

With computational photography, we capture the light rays and apply
optical elements computationally

CAPTURE PROCES VIEW

Bl color
E Exposure E Exposure E Exposure
SO Focus £O Focus SO Focus

© 2010 Adobe Systems Incorporated. All Rights Reserved. 19 "‘

Real Time Plenoptic Rendering

Capture the information about the intensity of light rays in a scene (the
radiance or plenoptic function), not just a 2D picture

Render images — take pictures — later, computationally
Explore the “full variety”

Requires real-time rendering (made possible by GPU)
Opens new ways of working with photography

Provides new photographic effects

© 2010 Adobe Systems Incorporated. All Rights Reserved.

Taking Pictures

A traditional camera places optical elements into the light rays in a scene
A pixel on the sensor is illuminated by rays from all directions
The sensor records the intensity of the sum of those rays

We lose all of the information about individual rays

© 2010 Adobe Systems Incorporated. All Rights Reserved.

Radiance (Plenoptic Function, Lightfield)

Instead of integrating rays from all directions, capture the rays
themselves (the radiance)

Record all the information about the scene

© 2010 Adobe Systems Incorporated. All Rights Reserved.

Computational Photography — The Basic Idea

Using radicance, we can “take the picture” computationally

Choose and apply optical elements computationally

Render computationally

Explore the “full variety” computationally

CAPTURE PROCES VIEW

Il color Bl color
(A Exposure (M Exposure (M Exposure

£O Focus £ Focus SO Focus

© 2010 Adobe Systems Incorporated. All Rights Reserved.

Radiance (and Transformations)

The radiance r(q, p) is a density function over 4D ray space

Each ray is a point in 4D ray space

Directional coordinate

.
s

2D phase space
Spatial coordinate

(2D diagrams shown because they are easier to draw.)

© 2010 Adobe Systems Incorporated. All Rights Reserved.

Radiance (and Transformations)

The radiance | - = isa density function over 4D ray space
Effects of optical elements (lenses, free space) are linear transformations

Rendering (taking a picture) is integration over all p at a given g

nap) [/
ra(q,p) = ri(q’,p) /
[g’i } -4 [E] I(q) /p?”(qnp)dp

© 2010 Adobe Systems Incorporated. All Rights Reserved.

Capturing the 4D radiance with a 2D sensor

To capture individual rays, first we have to separate them
At a particular spatial point, we have a set of rays at all directions

If we let those rays travel through a pinhole, they will separate into
distinguishable individual rays

Two pinholes will sample two positions

q1 42 q

© 2010 Adobe Systems Incorporated. All Rights Reserved.

A plenoptic camera

A camera with an array of pinholes will capture an image that represents
the 4D radiance

In practice, one might use a microlens array to capture more light

© 2010 Adobe Systems Incorporated. All Rights Reserved. 30 "‘

The focused plenoptic camera

With the Adobe camera, we make one important modification

We use the microlenses to create an array of relay cameras to sample
the plenoptic function with higher spatial resolution

Note that image plane can also be behind the sensor (virtual image is captured)

© 2010 Adobe Systems Incorporated. All Rights Reserved.

Rendering: Taking a Computational Picture

To take a picture (render) we integrate over all directions p

© 2010 Adobe Systems Incorporated. All Rights Reserved.

p

_ Microimage

]

=~
L]

i

heIL

The Story So Far

A plenoptic camera takes a 2D picture — radiance image (or “flat”)
The pixels are samples of the radiance in the 4D ray space
Optical elements (lenses, space) transform the ray space

We take a picture by rendering (computationally)

We adjust the picture by transforming the ray space (computationally)

o LT
4

gy Y

4

By
W

Me B B & & &
~r

b o e b i g D e e B B
—_—.—.-.‘.‘ (@

© 2010 Adobe Systems Incorporated. All Rights Reserved.

The Part of the Talk Where we Reveal the Magic

© 2010 Adobe Systems Incorporated. All Rights Reserved. 37 "‘

Adobe

First, the Camera

— T T~ -~
N TN N T e

e T e e e e e
St S Sl) S ey - o~ - -
S e S A e e T T e
L N O N) =) el el
e S S i i S i S e

© 2010 Adobe Systems Incorporated. All Rights Reserved. 38 ' “

Plenoptic Image (Flat)

o

yF

LB AT RS kR

SO AL BLAIBESRSRIE &
MEskIRIE &

DA R e e S o

LR

55 5 8 i e ot B B e

Lo e Lo

1T 1T ITINE

. ab x& . \ﬁ , A

TR

Lo @. %
47 m. ~h = NW‘TM ‘t

39

i ik <% ST ...m -
Bty LV uQYJ'@lh, _
S S
P\l S A ey e

e e it 1 i N 1 et 1K

e g 7 ,“M-Mwwiwﬁ%
R 75 o X e ok P At
2 \ mES om)

%T\\Vmﬁﬁu»\v@%ﬁs\%ﬂﬁ N

7 4 .,F.. 4
A O 2 - e - " - o S5 .
I
- <

- 7
e P 3 BN =04y - SREN Se 3 e

=

b7

S -

e
) &

E4

S R e T e (R i e o e s
»wwm‘n ! Wb Vot e AT 7
A8 B G L st D,

Fas y 2o w\; \.\ b \.uﬁ. b .mbn .\..v A . -
S N

s BV AT

: S A ‘\V\.u..m'.\ﬁ . > e
e g g

s
'Sl:'fﬁ\

§

id a1
. L {IE TF 3

bd

........

50 T Y T W

© 2010 Adobe Systems Incorporated. All Rights Reserved.

\\\\\\\
474049

Adobe

GPU Programming

Basic alternatives for programming GPU: General purpose (CUDA) or
graphics-based (GLSL)

Open GL Shader Language (GLSL) a natural fit

Texture mapping

R [Texture Memaory } -------------
Clip .
Buffer Vertex Primitive Project ':_?::: Fragment Fr a';i:;m - Framebuffer
Objects Processor Assembly VI%W?IHH Polygons Processor Operations Operafions
u

—P= Vertices v
~——» Fragments

Programmable Processor Framebuffer
-- - Textures g

— =P Framebuffers

© 2010 Adobe Systems Incorporated. All Rights Reserved.

Rendering with GPU using Open GL

Read in plenoptic radiance image
Create 2D texture object for radiance
Serialize image data to Open GL compatible format

Define the texture to OpenGL

/ image = Image.open(” lightfield.png’) \

str_image = image.tostring("raw", "RGBX", 0, 1)

glActiveTexture(GL_TEXTUREDO)

If Texture = glGenTextures(1)

glBind Texture(GL_.TEXTURE_RECTANGLE_ARB, IfTexture)

glTexlmage2D(GL_.TEXTURE_RECTANGLE_ARB, 0, 3,
image.size[0], image.size[1], 0,

K GL_RGBA,GL_UNSIGNED _BYTE, str_image) /

© 2010 Adobe Systems Incorporated. All Rights Reserved.

GLSL Implementation of Rendering

Patch P

Microlens P ‘.
Image N Y e
Ny [e A
Captured Radiance K #

. Rendered
PN, * Image

Full Resolution

LRI
I
i SRS R

© 2010 Adobe Systems Incorporated. All Rights Reserved.

GLSL Implementation of Rendering

Texture
(Captured Radian

Rendered
Image

Fragment Per Fragment
Processor Operations

gl_TexCoord[0].st gl_FragColor

© 2010 Adobe Systems Incorporated. All Rights Reserved.

GLSL Implementation of Rendering

Given output pixel coordinate gl _TexCoord[0].st

Find relevant microimage p= 3]
: T — _ | = M _ [z _
Find offset within q = (x L#Ju) m (ﬂ p) M
M —M
Center q’:q_|_!“’2 —(ﬁ_p)M_'_PLZ
M
|——|
p q' (o — M)
> >} -

T I

rendered /

image

——

© 2010 Adobe Systems Incorporated. All Rights Reserved.

GLSL Rendering

uniform sampler2DRect flat; M |

) P ¢ (p—M)
uniform float M, mu; - > >

(S S S o O T A I

void main() J Xﬁ e/ixﬁ Ji Xﬁ
{ e —Ea—==—£2 R

vec2 x_-mu = gl_TexCoord[0].st/mu; //x/pu \ ~ :

vec2 p = floor(x_mu); //p=|z/u 8

vec2 g = (x-mu — p) * M; // (@/pw—p)M

vec2 qp = q + 0.5«x(mu — M); //d =q+ (p—M)/2

_ : p o
vecd colXY = vec4(0.0); Microimage
for (int i = —1;i <=1; ++i) { | re

for (int j = -1;) <=1, ++j) { ixels

vec2 ij = vec2(float(i), float(]));
vec2 dqg = qp — ij * M;
vec2 fx = (p + ij)*mu + dq;

colXY += texture2DRect(flat, fx);

) J Pixels ‘:::]]|]|]| l|
gl_FragColor = colXY / 5.0;
} juiede MO AR ARRRNRRENERRRNNARES

© 2010 Adobe Systems Incorporated. All Rights Reserved.

Choosing View

Captured Radiance

Microlens P ‘.
Image n Y e

Full Resolution

© 2010 Adobe Systems Incorporated. All Rights Reserved.

Rendered
Image

Choosing View

Patch P

Microlens P ‘.
Image Ny Y
ny [i
Captured Radiance | # ‘_

N, “ % Rendered
TR e

© 2010 Adobe Systems Incorporated. All Rights Reserved.

Choosing View

Microlens P ‘.
Image . Y
Ty | .
Captured Radiance T H

Nx .-’I‘. " .I-\. I-.'.I-
Ny, | = “ “ Rendered
H : N, Image

© 2010 Adobe Systems Incorporated. All Rights Reserved.

GLSL Rendering

e or e DR e Hat. // Plenoptic image e
uniform float M, mu; P L4 (M)
Hn‘mml\gffgélﬂ T T T T s e e e
¥8|ﬁ MRIM0) s J & i J
YRER XM, T%Qesr&lal[@f/s% /f/ G —
vse% Ff) fh’&s L) !%u
iy Pby Mg // W
53&%% = 6 088k _MM) // ?/5’@— q(émi‘@/z%
v +p o
53‘&41%%&:9_ 9??@8}3 1++q_ / ‘/,Mlcrmmage
E%r (('mtJ 1+—|_|-J % { 4 ixels
X2 i —_vss%éf ﬂ%té flopl i
we% k T ﬁ; Nthlﬂi)).
e =pp +U)j7¥mﬂqdq + offset;

kL QR e B‘?%mfﬁafﬁ(fx)

il_FragColor = colXY / 5.0; \
} Rendered
gl_FragColor = colXY / 5.0; Image —"'-I|||||||||||||||||||||3I

~Iﬁj] ST T T Iﬁ:j|

© 2010 Adobe Systems Incorporated. All Rights Reserved.

Choosing View

e

© 2010 Adobe Systems Incorporated. All Rights Reserved.

Choosing View

Choosing View

- ™

© 2010 Adobe Systems Incorporated. All Rights Reserved.

Computational Refocusing

What does the sensor capture with different focal planes?

What is this in terms of phase space?

© 2010 Adobe Systems Incorporated. All Rights Reserved.

Computational Refocusing

We capture radiance ri. How can we compute r2?

Apply translation transform of the radiance and render from transformed r

Very expensive

ri(q,p) 72(q,p)

© 2010 Adobe Systems Incorporated. All Rights Reserved.

Plenoptic 2.0 Refocusing Principle

Rendering for two different focal planes

Comments?

r1(q, p) ra(q, p)

||
[= |

|
T

T
-%
T
i1
v

© 2010 Adobe Systems Incorporated. All Rights Reserved.

Plenoptic 2.0 Refocusing Principle

A new focal plane can be rendered directly from original radiance
I>(q) = /’f’z(q,p)dp = /ﬁ(q’jp’)dp
p p

r1(q, p) ra(q, p)

© 2010 Adobe Systems Incorporated. All Rights Reserved.

GLSL Rendering

uniform sampler2DRect flat; M
e

. P q' (p— M)

uniform float M, mu; - > >
PR TS U O N S O I N A S I

void main() J Xﬁ e/ixﬁ Ji Xﬁ
{ e e

vec2 x_-mu = gl_TexCoord[0].st/mu; //x/pu \ ~ |

vec2 p = floor(x_mu); //p=|z/u 8

vec2 g = (x-mu — p) * M; // (@/pw—p)M

vec2 qp = q + 0.5«x(mu — M); //d =q+ (p—M)/2

vecd colXY = vec4(0.0);
for (int i = —1;i<=1; ++i){
for (int j = —1;j <=1, ++j) {

vec2 ij = vec2(float(i), float(]));
vec2 dqg = qp — ij * M;
vec2 fx = (p + ij)*mu + dq;

colXY += texture2DRect(flat, fx);

}
}
gl_FragColor = colXY / 5.0;

}

© 2010 Adobe Systems Incorporated. All Rights Reserved.

Pixels

Rendered \\\

mage Ll iriliirirrrrrl

Computational Focusing

© 2010 Adobe Systems Incorporated. All Rights Reserved.

Computational Focusing

© 2010 Adobe Systems Incorporated. All Rights Reserved. ' “

Computational Focusing

To Find Out More

Georgiev, T., Lumsdaine, A., “Focused Plenoptic 1‘;|¢;}L;w._hW
Camera and Rendering,” Journal of Electronic
Imaging, Volume 19, Issue 2, 2010

http://www.tgeorgiev.net/GTC2010/

© 2010 Adobe Systems Incorporated. All Rights Reserved.

http://www.tgeorgiev.net/GTC2010/
http://www.tgeorgiev.net/GTC2010/

Adobe

GLSL Implementation (Basic Rendering)

uniform sampler2DRect flat; // Plenoptic image
uniform float M, mu;

void main()

{
vec2 x_mu = gl_TexCoord[0].st/mu; // x/u
vec2 p = floor(x_mu); /) p=|x/u
vec2 g = (x-mu — p) * M; // (x/p—p)M
vec2 qp = q + 0.5%(mu — M); /)4 =q+ (p—M)/2
vec2 fx = p * mu + qp; //f(il?):p#*‘qf

gl_FragColor = texture2DRect(flat, fx);
}

© 2010 Adobe Systems Incorporated. All Rights Reserved.

