
Supercomputing for the Masses: Killer-Apps, Parallel
Mappings, Scalability and Application Lifespan

Rob Farber, Senior Scientist, PNNL

2

Killer Apps

occur when personal vision matches technical capability to fulfill a
market demand

Graphics processors and games: killer apps that created a huge
market

3

Technical capability

Market forces evolved GPUs into massively parallel
GPGPUs (General Purpose GPUs).

250+ million CUDA-enabled GPUs says it all!

CUDA: put supercomputing in the hands of the masses.
December 1996, ASCI Red the first teraflop supercomputer

Today: kids buy GPUs with flop rates comparable to systems
available to scientists with supercomputer access in the mid to
late 1990s.

GeForce 480 1.35 TF/s peak 32-bit

Newegg.com: less than $500

Remember that Finnish kid who wrote some software to

understand operating systems? Inexpensive commodity

hardware enables:

• New thinking

• A large educated base of developers

4

A perfect storm of opportunities and technology

(Summary of Farber, Scientific Computing, “Realizing the Benefits of Affordable
Teraflop-capable Hardware”)

Multi-threaded software is a must-have because manufacturers
were forced to move to multi-core CPUs

The failure of Dennard’s scaling laws meant processor manufacturers
had to add cores to increase performance and entice customers

Multi-core is disruptive to single-threaded legacy apps

Businesses and research efforts will not benefit from new hardware
unless they invest in multi-threaded software

Lack of investment risks stagnation and losing to the competition

Competition is fierce, the new technology is readily available and it
is inexpensive!

Which software and models? Look to those that are:

Widely adopted and have withstood the test of time

Look at CUDA and the CUDA model

5

CUDA is not the only game in town
(but will be a focus in this talk)

Android/Iphone - mobile is
huge

(2008) (2009)

5 weeks
- 3.5M downloads

- Over $100K net

The technical capability

is there …

you supply the vision!

Augmented Reality

Jen-Hsun with RTT at 2009 GTC

6

CUDA is a game changer!

CUDA enables orders of magnitude faster apps:

10x can make computational workflows more interactive (even
poorly performing GPU apps are useful).

100x is disruptive and has the potential to fundamentally affect
scientific research by removing time-to-discovery barriers.

1000x and greater achieved through the use of the NVIDIA SFU
(Special Function Units) or multiple GPUs … Whooo Hoooo!

In a few slides: examine CUDA + Graphics = Wow!

7

CUDA was adopted amazingly fast!

February 2007: The initial CUDA SDK was made public.

Now: CUDA-based GPU Computing is part of the
curriculum at over 360 universities.

MIT, Harvard, Cambridge, Oxford, the Indian Institutes of
Technology, National Taiwan University, and the Chinese
Academy of Sciences.

8

Application speed says it all!
(fastest 100 apps in the NVIDIA Showcase Sept. 8, 2010)

0

0.5

1

1.5

2

2.5

3

3.5

4

1 11 21 31 41 51 61 71 81 91

Ranked speedup by project (best to worst)

Sp
e

e
d

u
p

 (
o

rd
e

r
o

f
m

ag
n

it
u

d
e

)

Max: 2600x

Median: 253x

Min: 98x

URL: http://www.nvidia.com/object/cuda_apps_flash_new.html click on Sort by Speed Up

http://www.nvidia.com/object/cuda_apps_flash_new.html

9

Orders of magnitude increased performance in an
extraordinary number of fields

Spanning a wide-range of computational, data driven, and real-
time applications:

Computational finance

Medical

Quantum chemistry simulations

Molecular modeling and electrostatic potentials

Diffusion

Fluid flow

Systems of differential equations

Data driven problems such as microscopy

Many can be considered killer apps in their field.

10

An example: the Metropolis algorithm 300x – 1000x

Among the ten algorithms that have had the
greatest influence on the development and practice
of science and engineering in the 20th century
(Beichl, Sullivan, 2000).

Plays a significant role in statistics, econometrics,
physics and computing science.

For some applications, MCMC simulation is the only known
general approach for providing a solution within a
reasonable time (Diaconis, Saloff-Coste, 1995).

CUDA version reported to be 300x to 1000x faster
(Alerstam, Svensson, Engels, 2008).

11

Balance Ratios
hardware characteristics for fast apps

Quick intro: Farber Scientific Computing, “HPC
Balance and Common Sense”

Extensive analysis: The Atkins report

Top 500 website

Kiviat diagrams

System performance is
represented along each axis

Allows app/system comparisons

Well balanced systems form a
circle

Courtesy Jack Dongerra and Scientific Computing

12

Its all about getting access to the data
(balance ratios for current and previous generation PNNL supercomputers)

Balance Category Atkins Report Metrics
MPP2

(retired)
Chinook
(4 core)

Chinook
(8 core)

Memory Amount
(Bytes/flop)

Atkins Report ≥ 1 Thin nodes 0.53

Suggested min > 0.71

(higher ratios are strongly
preferred)

Fat nodes 0.71
0.91 0.46

Memory Bandwidth
(B/s/flop/s)

Atkins Report ≥ 1 0.53 0.43 0.21

Suggested min > 0.53

Aggregate Link BW
(B/s/flop/s)

Atkins Report ≥ 0.2 0.15 0.34 0.17

Suggested min ≥ 0.15

Sustained Productive Disk
IO BW (B/s/flop/s)

Atkins Report ≥ 0.001 Global

Write 0.0003
0.0129 0.0064

With Local Disk Read 0.0004
0.0157 0.0079

Interconnect Latency (s) < 2 1.7 1.1 1.1

13

Three rules for fast GPU codes

1. Get the data on the GPU (and keep it there!)
• PCIe x16 v2.0 bus: 8 GiB/s in a single direction

• 20-series GPUs: 140-200 GiB/s

2. Give the GPU enough work to do
• Assume 10 s latency and 1 TF device

• Can waste (10-6 * 1012) = 1M operations

3. Reuse and locate data to avoid global
memory bandwidth bottlenecks

• 1012 flop hardware delivers 1010 flop when global
memory limited

• Can cause a 100x slowdown!

14
Results presented at SC09 (courtesy TACC)

Application lifespan
SIMD: a key from the past

Farber: general SIMD mapping from the 1980s
Acknowledgements: Work performed at or funded by the Santa Fe
Institute, the theoretical division at Los Alamos National Laboratory
and various NSF, DOE and other funding sources including the Texas
Advance Computer Center.

This mapping for Neural

Networks …

“Most efficient implementation

to date” (Singer 1990),

(Thearling 1995)

The Connection Machine Observed Peak Effective Rate vs. Number of Ranger Cores

0

50

100

150

200

250

300

350

400

0 10000 20000 30000 40000 50000 60000 70000

Number of Barcelona cores

E
ff

e
c
t
iv

e
 R

a
t
e

 (
T

F
/

s
)

60,000 cores: 363 TF/s measured

62,796 cores: 386 TF/s (projected)

15

The Parallel Mapping
energy = objFunc(p1, p2, … pn)

Examples

0, N-1

Examples

N, 2N-1

Examples

2N, 3N-1

Examples

3N, 4N-1

Step 2

Calculate

partials

Step 3

Sum partials

to get energy

Step1

Broadcast

parameters

Optimization Method

(Powell, Conjugate Gradient, Other)

p1,p2, … pn

GPU 1

p1,p2, … pn

GPU 2

p1,p2, … pn

GPU 3

p1,p2, … pn

GPU 4

16

One example: Principle Components Analysis
(PCA)

A widely used technique in data-mining and data
reduction

Demonstrate a method proposed by Sanger (1989)

B B B

O O O OO O O O OO O O O OO O O O OOO O O OO

I I I II I I I II I I I II I I I III I I II

Scales according to data

Extends to Nonlinear PCA (NLPCA)

E. Oja, J. Karhunen, L. Wang, and R.
Vigario, 1995

17

This is a general mapping
(think of your own applications!)

Optimization

Locally Weighted Linear Regression (LWLR) LWLR

Neural Networks

Naive Bayes (NB)

Gaussian Discriminative Analysis (GDA)

k-means

Logistic Regression (LR)

Independent Component Analysis (ICA)

Expectation Maximization (EM)

Support Vector Machine (SVM)

Others: (MDS, Ordinal MDS, etcetera)

18

Results

=

The Connection Machine

* CNVIDIA
(where CNVIDIA >> 1)

Nonlinear PCA

Average 100
iterations (sec)

8x core* 0.877923

C2050 ** 0.021667

speedup 40x

vs. 1 core 295x (measured)

Linear PCA

Average 100
iterations (sec)

8x core* 0.164605

C2050 ** 0.020173

speedup 8x

vs. 1 core 57x (measured)

* 2x Intel (quadcore) E5540s @ 2.53

GHz, openmp, SSE enabled via g++

** includes all data transfer overhead

(“Effective Flops”)

What is CNVIDIA for modern x86_64 machines?

19

Time includes all overhead!
(effective rate or “honest flops”)

Memory bandwidth is key

More SMP cores does not translate to faster performance!

Previous results: single-core was faster than 1/8th of an 8-core run

reducefuncarambroadcastP
TTT

ntTotalOpCou
ateEffectiveR

PCA

NLPCA

20

Scalability across GPU/CPU cluster nodes
(big hybrid supercomputers are coming, some are here)

Oak Ridge National Laboratory looks

to NVIDIA “Fermi” architecture

for new supercomputer

NERSC experimental

GPU cluster:

Dirac

EMSL experimental GPU

cluster:

Barracuda

Cuda IB cluster speedup with two-GPUs per node

(courtesy NVIDIA Corp)

0

2

4

6

8

10

12

14

16

2 3 4 5 6 7 8 9 10 11 12 13 14

Number of GPUs

S
p

e
e

d
u

p
 o

v
e

r
o

n
e

 G
P

U Nebulae
(星雲)

Shenzhen,

China

64,960

Tesla

1.27

PFlop/s

21

Looking into my crystal ball

I predict long life for GPGPU applications

Efficient CUDA codes will stay around

SIMD/SPMD/MIMD mapping translate well to new architectures

CUDA is an excellent way to create these codes

Previous SIMD example is still solving important problems

Will these applications
always be written in
CUDA?

Data-parallel
extensions are hot!

22

Thrust: a very good thing!

http://code.google.com/p/thrust/
The primary developers of Thrust are:

Jared Hoberock

Nathan Bell

Others acknowledged
Mark Harris

Michael Garland

Nadathur Satish

Shubho Sengupta

Example from

website

int main(void)

{

// generate random data on the host

thrust::host_vector<int> h_vec(100);

thrust::generate(h_vec.begin(), h_vec.end(), rand);

// transfer to device and compute sum

thrust::device_vector<int> d_vec = h_vec;

int x = thrust::reduce(d_vec.begin(), d_vec.end(), 0, thrust::plus<int>());

return 0;

} Expect good things from

Copperhead: the data-parallel

Python project!

http://code.google.com/p/thrust/

23

CUDA made simple

Most of the actual code from the PCA and NLPCA
examples

…

cudaMemcpyToSymbol("constP", &h_P[0], sizeof(float)*nParam, 0,

cudaMemcpyHostToDevice);

FcnOfInterest objFcn(input);

energy = thrust::transform_reduce(

thrust::counting_iterator<int>(0),

thrust::counting_iterator<int>(nExamples),

objFcn,

0.0f,

thrust::plus<Real>());

24

Simplicity (the functor for Thrust)

struct FcnOfInterest : public thrust::unary_function<unsigned int,Real>

{

…

__device__ Real operator()(unsigned int tid) {

Real* input = in + (tid * N_IN);

Real* param = constP; // __constant__ memory

Real sum=0.f;

// calculation goes here

return(sum);

}

};

Have a new application? Just define a new functor!

The same performance and

scalability should apply.

25

Killer apps: the computational technology is here!

A myriad of other examples are available

GPU Computing Gems edited by Wen-mei W. Hwu

GPGPUcomputing.net

The NVIDIA showcase

Many others

Tool kits

CUFFT (IMHO an excellent package)

OpenVidia

Plus many others

26

CUDA + Graphics
(a potent combination!)

Primitive restart: define an index value to be used as a
tag that tells OpenGL that the next vertex starts a new
OpenGL primitive of the same type

Keep the data on the GPU

Avoids the PCIe bottleneck

Variable length data works great!

A feature of OpenGL 3.1

Output only: visualization, rendering and games

Combine with vision recognition: Augmented Reality!

27

A primitive restart virtual world example

Perlin Noise

Primitive restart can be 100 FPS faster than other rendering
methods and delivers higher quality images

Rendering performance can be optimized by arranging the indices
to achieve the highest reuse in the texture units.

Higher quality images can be created by alternating the direction
of tessellation

Avoid the PCIe bus!

Important for games

and the movie

industry: Ken Perlin

won an Academy

Award for this noise

generator

Farber DDJ Part 18

28

Parallel Nsight shows the speed

Primitive restart: around 60 s.

Multidraw: around 3,900 s.

Iteratively drawing each triangle fan: approximately
1,100,000 s.

Generate a

512x512

heightmap using

Perlin noise

Farber DDJ Part 20

29

Predicting future killer apps?

Humility: five years ago I would not have believed:

It is now possible to get the full 3D
wiring diagram for the entire brain
of a cat or mouse

Harvard Connectome Project

Adding four PCIe devices will give my
workstation roughly the same peak flop rate
as the largest PNNL supercomputer

Adding four PCIe devices will give my
workstation roughly the same peak flop rate
as the largest PNNL supercomputer

30

Killer apps: when personal vision meets technical
capability

The Connectome project: A Galilean first opportunity for scientists
to examine the detailed schematic diagram that nature uses for
vision and cognition.

SC09: computers can simulate an entire cat brain

“The cat is out of the bag: cortical simulations with 109 neurons,
1013 synapses”, Ananthanarayanan, Esser, Simon, and Modha
(2009).

My prediction: combining detailed brain models with sufficient
computational capability will be a killer app.

People studied birds and (eventually) created supersonic aircraft

With nature’s wiring diagram for vision & language, (eventually) …?

What is your vision?

