Operating System
Abstractions for GPU

Programming

Chris Rossbach, Microsoft Research
Emmett Witchel, University of Texas at Austin
September 23 2010

Motivation

» Broaden GPU application domains
- Cheaper/simpler development cycles
- Bigger deployed base
- Better utilization in deployed systems

CUDA is a tremendous leap for parallel
programming, but...

we need better OS-/level abstractions

v Programmers can express things whose implementations fall
short

Consider a simplified machine

int main(argc argv) {

VIHEW dépx Eﬁea?a& ‘qHacka cpl dnd a disk?

fpr1ntf(stderr “failure\n”);

return 0O;

}

user-mode
programs
programmer-

visible interface A-mode

ibraries,
runtimes

OS-level
abstractions

Hardware
interface

GPU Abstractions

user-mode
programs
he kil —
visible interface br-mode
UDA APls aders libraries,
Kernels B s runtimes
1 OS-level
abstraction! kernel
HW

GPU

The programmer gets to work with great abstractions...
S0 is this a problem?

Poor OS abstractions limit GPUs

Doing fine without OS support:
- Gaming/Graphics
- Shader Languages
- DirectX, OpenGL
> GPU Computing
- user-mode/batch
- scientific algorithms

- Latency-tolerant
- CUDA

» The application ecosystem is more diverse
» Poor OS abstractions - limited domains

Outline

4

» The need for OS abstractions

» Why CUDA alone (currently) isn’t enough
» New OS abstractions

» Related Work

» Conclusion

Interactive Applications

» Gestural Interface

» Brain—-Computer Interface (no apologies!)
» Spatial Audio

» Image Recognition

Processing user input:
* need low latency, concurrency
= * must be multiplexed by OS

Gestural Interface

Raw Images “Hand”
events

Image Point cloud HID
Filtering Input=>05

Geometric
Transform Gesture

Recognition

» High data rates
» Noisy input
» Data-parallel algorithms

What | wish | could do

#> catusb | xform | detect | hidinput &

\

Inherently Data
» catusb: sequential parallel om usb

» Xxform:
> Noise filtering
o Geometric transformation

» detect: extract gestures from point cloud
» hidinput: send mouse events (or whatever)

. Could parallelize on a CMP, but...

GPUs succeed where CPUs fail

Noise Filtering (xform)

Small window

1000
Acceptable
qualit
2 100
o
(9]
]
P 10 _ ~\ mCM™MP
Qo
0 w GPU
5 [
(.
e\
0.1

w-size \/

Not only do we wantto _ _

use the GPU, we need to! Higher is better
ta 3GB RAM

*4 cores: Intel Core 2 Quad 2.40GHz
*Nvidia GeForce 9800 GX2

So use the GPU! (naive approach)

#> catusb I@ | de@l hidinput &

Ruh catusb on CPU
Run xform uses GPU
Run detect uses GPU
Run hidinput: on CPU

v v VvV Vv

And use CUDA to write xform and detect!

Running a program on a GPU

» GPUs cannot run OS: different ISA
» Disjoint memory space, no coherence*

» Host CPU must manage execution
- Program inputs explicitly bound at runtime

Main

User-mode apps memory

must implement

\ Copy inputS | T Copy Outputs lSend Com@

GPU
memory

Technology Stack V

ew

12 kernel crossings xform detect
* 6 copy_to_user
* 6 copy_from_user CUDA Runtime

* Performance tradeoffs for

, Av User Mode Drivers
UITIC/ ¢ aClOlls
user (DXVA)

kernel OS Executive

Kernel Mode Drivers

o -
Run
CPU Shader
| Program

So, big deal...do it all in the kernel

user catusb xform

detect hidinput

kernel OS Executive

Kernel Mode Drivers

HAL

USB CPU

* No high level abstractions
« If you're MS and/or nVidia, this is tenable...
« Solution is specialized

but there is still a data migration problem...

Hardware View

We'd prefer: |
Cache pollution

e catusb: USB bus - GPU memory Wasted bandwidth

« xform, detect: no transfers Wasted power

* hidinput: single GPU->main mem transfer hidinput

The machine can do this, where are the interfaces?

xform
detect

o T TES DM

catusb

Current task:

xform

Outline

4

4
» Why CUDA alone (currently) isn’t enough
» New OS abstractions

» Related Work
» Conclusion

Doesn’t CUDA address these
problems?

CUDA streams, async:

“Write-combining memory” Overlap capture, xfer, exec

(uncacheable)

Northbridge

Page-locked host memory
(faster DMA)

Portable Memory

(share page-locked)
Southbridge GPUDirect™

Mapped Memory
(map mem into GPU space)
(transparent xfer - app-level upcalls)

CUDA Streams

» Overlap Communication with Computation

Copy X_0 Copy Y_O

Kernel X_b Copy Y_1
Copy X_1

p—

Copy Engine

Copy X_0

Copy Y_O

Copy X_1

Copy Y_1

Compute Engine

Kernel X_a

Kernel X_b

Kernel Y

Streams: explicitly scheduled

Copy Engine Compute Engine
CudaMemcpyAsync(X_0..); Copy X_0
KernelX 0<<<..>>>();
KernelX 1<<<..>>>();
CudaMemcpyAsync(X_1..)

Kernel X_a

Kernel X_b
Copy X_1
CudaMemcpyAsync(Y_0);
KernelY 0<<<..>>>(); Copy Y_O
CudaMemcpyAsync(Y_1);

Kernel Y

Copy Y_1

Each stream proceeds serially, different streams overlap
Naive programming eliminates potential concurrency

Reorder Code=>better schedule

CudaMemcpyAsync (X_0..);
KernelX 0<<<..>>>();
KernelX_ 1<<<..>>>();

CudaMemcpyAsync(Y_0);
KernelY 0<<<..>>>();

CudaMemcpyAsync(X_1..)
CudaMemcpyAsync(Y_1);

* Order sensitive

Copy Engine

Copy X_0

Copy Y_O

Copy X_1

Compute Engine

Kernel X_a

Kernel X_b

Kernel Y

 Applications must statically determine order

» Couldn’t a scheduler with a global view do a
better job dynamically?

Asynchrony & CUDA

xform performance

4000

3000

2000

frames per second

1000

Higher is
better 0

H->D: Host-to-Device only
H<D: Device-to-Host only

H->D

H<-D

H <—->D: duplex communication

H<->D

W ptask-analogue

m CUDA-async-ping-pong
w CUDA-async

m CUDA

*Windows 7 x64 8GB RAM
Intel Core 2 Quad 2.66GHz
*Nvidia GeForce GT230

GPUDirect™

» “Allows 379 party devices to access CUDA
memory’: (eliminates data copy)

GPU Other device

BUT:
* requires driver support
* not just CUDA support!
* no programmer-visible interface

 OS can do better

Problems CUDA cannot solve

Traditional OS guarantees:
» Fairness

» Isolation

» User-space runtime cannot provide these!

- (Although they can stop your uncle Phil from violating
them!)

CPU-bound processes hurt GPUs

Impact of CPU Saturation

T 4000

S 3500

w

< 3000

8

? 2500

% 2000 w normal load

= 1500 M loaded

1000

Higheris 500
bett

eter 0

H->D H<-D H<->D

H->D: Host-to-Device only *Windows 7 x64 8GB RAM
H<D: Device-to-Host only *Intel Core 2 Quad 2.66GHz

H €-D: duplex communication *Nvidia GeForce GT230

GPU-bound processes hurt CPUs

Mouse Move Frequency

180

- 160
S 140
& 120 = !
2 100 |\ —7 1 —
§ 30 _\ —=No GPU work
@ \ | —xform ()
¢ 60 xform (nocomm
3 40 %j g — xform (H<->D)
e 59 |
0
Elatter lines 0 20000 40000 60000
Are better Time (milliseconds)
H->D: Host-to-Device only *Windows 7 x64 8GB RAM
H<D: Device-to-Host only *Intel Core 2 Quad 2.66GHz

H €<-D: duplex communication *Nvidia GeForce GT230

Meaningful “GPU Computing” implies
GPUs should be managed like CPUs

» Process APl analogues
» IPC APl analogues
» Scheduler hint analogues

» Must integrate with existing interfaces
- CUDA/DXGI/DirectX
- DRI/DRM/OpenGL

Outline

)
)

4

» New OS abstractions
» Related Work

» Conclusion

Proposed OS abstractions

» ptask
- Like a process, thread, can exist without user host process
> OS abstraction...not a full CPU-process
- List of mappable input/output resources

» endpoint
> Globally named kernel object

- Can be mapped to ptask input/output resources
o A data source or sink (e.a_buffer in GPlLI memorv)

» channel Expand system call interface:
> Similar to a pipe * process API analogues
- Connect arbitrary endje IPC AP analogues

© 11, LM M, NM _
> Generalization of GPU scheduler hints

Revised technology stack

pmg rams

de
I'L-IlITIS

‘U

HW

Gestural interface revisited

process: ::j g-input \
catusb
ptask:
ptask: ‘ hands l hid_in
xform
. = process RIGCE
D B cloud h|d|nput
= ptask
D = endpoint Computation expressed as a graph
E> = channel » Synthesis [Masselin 89] (streams, pumps)

* Dryad [Isard 07]

» Steamlt [Thies 02]

» Offcodes [Weinsberg 08]
e others...

Gestural interface revisited

process: USB->GPU mem :ML
catusb
ptask:
usbsrc rawimg detect
ptask: ‘ hands ' hid_in
xform
. = process RIGCE
D _ cloud hidinput
= ptask
D = endpoint GPU mem >GPU mem
|:> = channel

» Eliminate unnecessary communication...

Gestural interface revisited

New data triggers
process: new computation

catusb

g_input

I

ptask:
detect

usbsrc

hands hid_in

©
~
Q
n
2}

xform
. = process RIGCE
cloud hidinput
D = ptask
D = endpoint
|:> = channel

« Eliminates unnecessary communication
« Eliminates u/k crossings, computation

Early Results: potential benefit

xform performance 10X

5 4000 7
S 3500 &
§ 3000 / \
. 2500
2 2000 3.9X
8 1500 e
% 1000
= 500
0
Higher is H<->D
better
Segmentation + Geometry
W ptask-analogue @ naive-CUDA
H->D: Host-to-Device only *Windows 7 x64 8GB RAM
H<D: Device-to-Host only *Intel Core 2 Quad 2.66GHz

H €-D: duplex communication *Nvidia GeForce GT230

Outline
>
>
4

4

» Related Work
» Conclusion

p—

Related Work

» OS support for Heterogeneous arch:
> Helios [Nightingale 09]
> BarrelFish [Baumann 09]
o Offcodes [Weinsberg 08]

» Graph-based programming models
o Synthesis [Masselin 89]

Monsoon/ld [Arvind]

Dryad [Isard 07]

Streamlt [Thies 02]

DirectShow

- TCP Offload [Currid 04]

» GPU Computing
- CUDA, OpenCL

(¢]

o

(¢]

o

Conclusions

» CUDA: programming interface is right,
- but OS must get involved

» Need fairness, isolation
» Current interfaces waste data movement
» Current interfaces inhibit modularity/reuse

» Current interfaces limiting
° interactive apps

Questions?

Backup slides...

OffCOd es [Weinsberg 08]

» Similarities:
- OS + GPU
- Motivated by similar data migration issues
> Graph-based programming model

» Differences

- Host OS +target device firmware must support the
same offcode APIl/runtime: device must run offcode
runtime

> NIC: TCP-Offload focused

- didn’t evaluate GPU

> no scheduler integration

~(PU still not a first class resource

Anatomy of a GPU shader program

» Cannot run OS: different ISA

» Host CPU must orchestrate execution
- Disjoint memory space, no coherence
> Program inputs explicitly bound at runtime

PS_OUTPUT DepthTransform(PS_INPUT In)

{
PS_OUTPUT res;
float4 sample = g ABPhaseTexture.Sample(s, In.Tex);
float4 xyzEntry = g XYZCalibration.Sample(s, In.Tex);
float abValue = sample[9];
float zValueRaw = sample[1];

res[1] = xyzEntry[1] * zAdjust;
res[2] = zAdjust;
res[3] = abValue;

e mm

Hardware View

We'd prefer: Cache pollution
 catusb > GPU memory Wasted bandwidth
» xform = detect no transfers Wasted power

* hidinput: single GPU->main mem transfer

The machine can do this, where are the interfaces?
Cru '

‘7‘1
—

o T TES DM

Current task:

Revised technology stack

Applications

Device-level APIs (CUDA driver API, DirectX)

Direct X DRI CUDA Runtime user
DRM

CUDA Kernel Driver

GPU Hardware

