
Chris Rossbach, Microsoft Research

Emmett Witchel, University of Texas at Austin

September 23 2010

 Broaden GPU application domains
◦ Cheaper/simpler development cycles

◦ Bigger deployed base

◦ Better utilization in deployed systems

CUDA is a tremendous leap for parallel
programming, but…

we need better OS-level abstractions
 Programmers can express things whose implementations fall

short

int main(argc, argv) {
FILE * fp = fopen(“quack”, “w”);
if(fp == NULL)

fprintf(stderr, “failure\n”);
…
return 0;

}

programmer-

visible interface

OS-level

abstractions

// How do I program just a CPU and a disk?

Hardware

interface

programmer-

visible interface

1 OS-level

abstraction!

The programmer gets to work with great abstractions…

so is this a problem?

Doing fine without OS support:
◦ Gaming/Graphics

 Shader Languages

 DirectX, OpenGL

◦ GPU Computing

 user-mode/batch

 scientific algorithms

 Latency-tolerant

 CUDA

 The application ecosystem is more diverse

 Poor OS abstractions  limited domains

 Motivation

 The need for OS abstractions

 Why CUDA alone (currently) isn’t enough

 New OS abstractions

 Related Work

 Conclusion

 Gestural Interface

 Brain-Computer Interface (no apologies!)

 Spatial Audio

 Image Recognition

Processing user input:
• need low latency, concurrency
• must be multiplexed by OS

 High data rates

 Noisy input

 Data-parallel algorithms

Image
Filtering

Gesture
Recognition

Geometric
Transform

Point cloud

“Hand”

events

Raw images

Ack! Noise!

HID
InputOS

 catusb: captures image data from usb

 xform:

◦ Noise filtering

◦ Geometric transformation

 detect: extract gestures from point cloud

 hidinput: send mouse events (or whatever)

Could parallelize on a CMP, but…

#> catusb | xform | detect | hidinput &#> catusb | xform | detect | hidinput &#> catusb | xform | detect | hidinput &

Data
parallel

Inherently
sequential

Noise Filtering (xform)

•Windows Vista 3GB RAM

•4 cores: Intel Core 2 Quad 2.40GHz

•Nvidia GeForce 9800 GX2

Small window

Large window

0.1

1

10

100

1000

4 16 32

fr
a
m

e
s
 p

e
r

s
e
c
o
n
d

window-size

CMP

GPU

Acceptable

quality

Not only do we want to
use the GPU, we need to!

Higher is better

 Run catusb on CPU

 Run xform uses GPU

 Run detect uses GPU

 Run hidinput: on CPU

And use CUDA to write xform and detect!

#> catusb | xform | detect | hidinput &

 GPUs cannot run OS: different ISA

 Disjoint memory space, no coherence*

 Host CPU must manage execution
◦ Program inputs explicitly bound at runtime

CPUMain
memory

GPU
memory

GPU

Copy inputs Copy outputs Send commands

User-mode apps

must implement

catusbcatusb

detectxform

USB GPUCPU

HAL

Kernel Mode Drivers

OS Executive

User Mode Drivers
(DXVA)

CUDA Runtime

hidinput

xform detect

hidinput

kernel

user

• 12 kernel crossings

• 6 copy_to_user

• 6 copy_from_user

• Performance tradeoffs for

runtime/abstractions

Run
Shader

Program

USB

HAL

Kernel Mode Drivers

OS Executive

• No high level abstractions

• If you’re MS and/or nVidia, this is tenable…

• Solution is specialized

but there is still a data migration problem…

GPUCPU

kernel

user catusb xform detect hidinput

CPU

GPU Northbridge

Southbridge

DIMM

DIMM

DDR2/3

USB 2.0

D
M

I
F
S
B

PCI-e

DDR2/3

catusb

Current task:

xform

Cache pollution

Wasted bandwidth

Wasted power

We’d prefer:

• catusb: USB bus  GPU memory

• xform, detect: no transfers

• hidinput: single GPUmain mem transfer

The machine can do this, where are the interfaces?

catusb

xform

detect

hidinput

 Motivation

 The need for OS abstractions

 Why CUDA alone (currently) isn’t enough

 New OS abstractions

 Related Work

 Conclusion

CPU

GPU Northbridge

Southbridge

DIMM

DIMM

DDR2/3

USB 2.0

D
M

I
F
S
B

PCI-e

DDR2/3

“Write-combining memory”
(uncacheable)

Page-locked host memory

(faster DMA)

Portable Memory

(share page-locked)

GPUDirect™

Mapped Memory
(map mem into GPU space)

(transparent xfer app-level upcalls)

CUDA streams, async:

Overlap capture, xfer, exec

 Overlap Communication with Computation

Copy X_0

Copy X_1

Kernel X_a

Copy Y_0

Copy Y_1

Kernel Y

Kernel X_b

Copy Engine Compute Engine

Copy X_0

Copy Y_0 Kernel X_a

Kernel X_b

Kernel YCopy X_1

Copy Y_1

CudaMemcpyAsync(X_0…);
KernelX_0<<<…>>>();
KernelX_1<<<…>>>();
CudaMemcpyAsync(X_1…)

CudaMemcpyAsync(Y_0);
KernelY_0<<<…>>>();
CudaMemcpyAsync(Y_1);

Copy Engine Compute Engine

Copy X_0

Copy Y_0

Kernel X_a

Kernel X_b

Kernel Y

Copy X_1

Copy Y_1

Each stream proceeds serially, different streams overlap

Naïve programming eliminates potential concurrency

CudaMemcpyAsync(X_0…);
KernelX_0<<<…>>>();
KernelX_1<<<…>>>();

CudaMemcpyAsync(Y_0);
KernelY_0<<<…>>>();

CudaMemcpyAsync(X_1…)
CudaMemcpyAsync(Y_1);

Copy Engine Compute Engine

Copy X_0

Copy Y_0 Kernel X_a

Kernel X_b

Kernel YCopy X_1

Copy Y_1

• Order sensitive

• Applications must statically determine order

• Couldn’t a scheduler with a global view do a

better job dynamically?

•Windows 7 x64 8GB RAM

•Intel Core 2 Quad 2.66GHz

•Nvidia GeForce GT230

HD: Host-to-Device only

HD: Device-to-Host only

HD: duplex communication

Higher is

better 0

1000

2000

3000

4000

H->D H<-D H<->D

xform performance

ptask-analogue

CUDA-async-ping-pong

CUDA-async

CUDA

 “Allows 3rd party devices to access CUDA
memory”: (eliminates data copy)

BUT:
• requires driver support

• not just CUDA support!

• no programmer-visible interface
• OS can do better

Traditional OS guarantees:

 Fairness

 Isolation

 User-space runtime cannot provide these!
 (Although they can stop your uncle Phil from violating

them!)

0

500

1000

1500

2000

2500

3000

3500

4000

H->D H<-D H<->D

Impact of CPU Saturation

normal load

loaded

•Windows 7 x64 8GB RAM

•Intel Core 2 Quad 2.66GHz

•Nvidia GeForce GT230

HD: Host-to-Device only

HD: Device-to-Host only

HD: duplex communication

Higher is

better

•Windows 7 x64 8GB RAM

•Intel Core 2 Quad 2.66GHz

•Nvidia GeForce GT230

HD: Host-to-Device only

HD: Device-to-Host only

HD: duplex communication

Flatter lines

Are better

 Process API analogues

 IPC API analogues

 Scheduler hint analogues

 Must integrate with existing interfaces
◦ CUDA/DXGI/DirectX

◦ DRI/DRM/OpenGL

 Motivation

 The need for OS abstractions

 Why CUDA alone (currently) isn’t enough

 New OS abstractions

 Related Work

 Conclusion

 ptask
◦ Like a process, thread, can exist without user host process

◦ OS abstraction…not a full CPU-process

◦ List of mappable input/output resources

 endpoint
◦ Globally named kernel object

◦ Can be mapped to ptask input/output resources

◦ A data source or sink (e.g. buffer in GPU memory)

 channel
◦ Similar to a pipe

◦ Connect arbitrary endpoints

◦ 1:1, 1:M, M:1, N:M

◦ Generalization of GPUDirect™ mechanism

Expand system call interface:

• process API analogues

• IPC API analogues

• scheduler hints

ptask:
detect

process:
hidinput

process:
catusb

usbsrc

hid_inhands

Computation expressed as a graph

• Synthesis [Masselin 89] (streams, pumps)

• Dryad [Isard 07]

• SteamIt [Thies 02]

• Offcodes [Weinsberg 08]

• others…

ptask:
xform

cloud

rawimg

g_input

= process

= ptask

= endpoint

= channel

ptask:
detect

process:
hidinput

process:
catusb

usbsrc

hid_inhandsptask:
xform

cloud

rawimg

g_input

= process

= ptask

= endpoint

= channel

USBGPU mem

GPU memGPU mem

• Eliminate unnecessary communication…

ptask:
detect

process:
hidinput

process:
catusb

usbsrc

hid_inhandsptask:
xform

cloud

rawimg

g_input

= process

= ptask

= endpoint

= channel

• Eliminates unnecessary communication

• Eliminates u/k crossings, computation

New data triggers

new computation

•Windows 7 x64 8GB RAM

•Intel Core 2 Quad 2.66GHz

•Nvidia GeForce GT230

0

500

1000

1500

2000

2500

3000

3500

4000

H->D H<-D H<->D

Segmentation + Geometry

xform performance

ptask-analogue naïve-CUDA

3.9x

HD: Host-to-Device only

HD: Device-to-Host only

HD: duplex communication

10x

Higher is

better

 Motivation

 The need for OS abstractions

 Why CUDA alone (currently) isn’t enough

 New OS abstractions

 Related Work

 Conclusion

 OS support for Heterogeneous arch:
◦ Helios [Nightingale 09]

◦ BarrelFish [Baumann 09]

◦ Offcodes [Weinsberg 08]

 Graph-based programming models
◦ Synthesis [Masselin 89]

◦ Monsoon/Id [Arvind]

◦ Dryad [Isard 07]

◦ StreamIt [Thies 02]

◦ DirectShow

◦ TCP Offload [Currid 04]

 GPU Computing
◦ CUDA, OpenCL

 CUDA: programming interface is right,
◦ but OS must get involved

 Need fairness, isolation

 Current interfaces waste data movement

 Current interfaces inhibit modularity/reuse

 Current interfaces limiting
◦ interactive apps

Questions?

 Similarities:
◦ OS + GPU

◦ Motivated by similar data migration issues

◦ Graph-based programming model

 Differences
◦ Host OS +target device firmware must support the

same offcode API/runtime: device must run offcode
runtime

◦ NIC: TCP-Offload focused

◦ didn’t evaluate GPU

◦ no scheduler integration

◦ GPU still not a first class resource

 Cannot run OS: different ISA

 Host CPU must orchestrate execution
◦ Disjoint memory space, no coherence

◦ Program inputs explicitly bound at runtime

PS_OUTPUT DepthTransform(PS_INPUT In)
{

PS_OUTPUT res;
float4 sample = g_ABPhaseTexture.Sample(s, In.Tex);
float4 xyzEntry = g_XYZCalibration.Sample(s, In.Tex);
float abValue = sample[0];
float zValueRaw = sample[1];

…
res[1] = xyzEntry[1] * zAdjust;
res[2] = zAdjust;
res[3] = abValue;
return res;

} fxc compiler

CPU

GPU Northbridge

Southbridge

DIMM

DIMM

DDR2/3

USB 2.0

D
M

I
F
S
B

PCI-e

DDR2/3

catusb

Current task:

xformdetect

Cache pollution

Wasted bandwidth

Wasted power

We’d prefer:

• catusb GPU memory

• xform detect no transfers

• hidinput: single GPUmain mem transfer

The machine can do this, where are the interfaces?

