.....

.......

s e . 3 Developing GPU Enabled Visual
5 ” st Effects For Film And Video

‘:"'m &y’

T S IR T R 2 R T MR IR R A LR B L FTTTITT

glnfuefunfindy leefurfurloc] 6 33 55 iiti!_i",

4

U R B T -
. (i i Founder and CTO

www.thefoundry.co.uk Visual Effects Software THE FOUNDRY

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

About Me

e | am the founder and CTO of The Foundry

e Worked in CG and VFX since completing my CS degree in 1387
— when you rolled your own

e Worked in production on effects and animations
— Zap, Rushes, Computer Film Company, Animal Logic

e Worked at software houses making commercial VFX software
— Discreet Logic, Softimage, Animal Logic

e Since starting The Foundry, concentrated on image processing for VFX

www.thefoundry.co.uk Visual Effects Software THE FOUNDRY

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

About The Foundry

e The Foundry is a developer of VFX software for film and TV
e Academy Award winning software used on 8 of the 10 highest grossing
movies of all time
e Main emphasis has been on compositing tools
— Nuke, Ocula, Furnace, Keylight
e Recently branching out
— Mari - CGI texture paint tool
— Katana - CGI lighting tool (still in development)

— Storm - realtime digital cinematography tool (still in development)

www.thefoundry.co.uk Visual Effects Software THE FOUNDRY

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects

o Stuff’ done to images after live action shooting
e Pretty much all digital now
e Traditionally part of post-production, alongside editing etc...
 Not just giant killer robots and big explosions
— replacing practicals and live action elements
— used for fixup/repair/replacement

— used for mood

www.thefoundry.co.uk Visual Effects Software THE FOUNDRY

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Simplified Production Workflow

Script

www.thefoundry.co.uk Visual Effects Software THE Q% FOUNDRY

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Simplified Production Workflow

Script

* Preproduction

*Storyboarding
*Design
*Blocking
*Pre-vis

*Set Build

www.thefoundry.co.uk Visual Effects Software THE FOUNDRY

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Simplified Production Workflow

=) FOUNDRY

www.thefoundry.co.uk Visual Effects Software

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Simplified Production Workflow

=) Preproduction | Production =) Postproducion

Script

*Editing

oCGl
eCompositing
*Colour Grading

L

www.thefoundry.co.uk Visual Effects Software THE (&) FOUNDRY

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Simplified VFX Post Workflow

www.thefoundry.co.uk Visual Effects Software THE Qgé FOUNDRY

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

www.thefoundry.co.uk Visual Effects Software THE @ FOUNDRY

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Simplified VFX Post Workflow

www.thefoundry.co.uk Visual Effects Software THE @ FOUNDRY

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Simplified VFX Post Workflow

e Colour correct
e Simple effects

Yy

www.thefoundry.co.uk Visual Effects Software THE (&) FOUNDRY

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Movie of VFX Breakdown Goes Here

Avatar Breakdown, Courtesy of Twentieth Century Fox and Weta Digtal

N
—
v

@

-
o
o
-
o

. e 3
pwttames L * - AL e 2
—_— -

B

Avatar Breakdown, Courtesy of Twentieth Century Fox and Weta Digtal

o
h
o
«
™
«l
S
@
Q
£
3
2
Q
[0
w
>
©
e,
(73]
b
>
<
T

VFX Workflows |

e Highly collaborative

— many people working on many stages of the production
e Highly pipelined

— modelling feeds to animation feeds to rendering feeds to comp
e Highly iterative

— many passes required to achieve the final results

— iterative both within and between stages

www.thefoundry.co.uk Visual Effects Software THE FOUNDRY

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

VFX Workflows Il

Supervisor

www.thefoundry.co.uk Visual Effects Software THE % FOUNDRY

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Artists

e In larger houses, artists tend to be specialised
e In smaller shops, tend to be more generalists
e Typically equipped with a high spec workstation
— big CPU, big GPU and big disks
e Sits on a fast network with SANs and access to a render farm
e Puts project together, and previews several frames
— low latency is key

e Batches rest of sequence off to render farm to finish

www.thefoundry.co.uk Visual Effects Software THE FOUNDRY

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Rendering

e Terabytes of data and days of compute can go into a single frame
— throughput is key

e Currently achieved by servers, and lots of them
— Weta Digital used 40,000 cores to render Avatar

e Simulation, CGl and compositing computed on render farms

e CPUs are almost exclusively used for rendering
— early days for GPU rendering software

— will be hard to GPU everything, CPUs here for a while yet

www.thefoundry.co.uk Visual Effects Software THE FOUNDRY

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

VFX Compute Ecosystems

e We have little control over the hardware our users buy
— unlike a dedicated HPC centre
e They have a varied set of computers including...
— workstations with big GPUs and big CPUs
— render farms with no GPUs and big CPUs
— laptops with incy CPUs and smaller GPUs
— everything between

e They expect our software to make the same pictures on all of them

www.thefoundry.co.uk Visual Effects Software THE FOUNDRY

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

What GPUs are doing to VFX

e Increased performance from GPUs is starting to...
— reducing time and cost of render/review iterations
— give realtime’ VFX in some cases, removing the need for renders
— allow for more complex effects
e render times seem to stay constant despite the available FLOPs
— allow VFX to be used more pervasively throughout production
— blurs stages of production

e post increasingly being brought into production

www.thefoundry.co.uk Visual Effects Software THE FOUNDRY

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

The Foundry’s Compositing Software

e Currently specialise in image processing for compositing

— Nuke - feature rich compositing application
e Specialist plug-in created by dedicated research team

— Furnace - motion estimation based tools for compositing

— Ocula - tools for stereo compositing

— CameraTracker - computes camera position in live action shot
e Mostly CPU based, but we are starting to exploit the GPU

e Also being used in pre-production and actual production

www.thefoundry.co.uk Visual Effects Software THE FOUNDRY

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

GPUs Come of Age For Image Processing

e Advent of CUDA/OpenCL has allowed for complex image processing
— many algorithms not possible with GPGPU approach
— e.g. motion estimation, a key piece of Foundry IP
e We have a fantastic opportunity to improve our software
— to reduce latency for the artist
— to increase throughput on renders
— use it in new situations

— do cool new stuff

www.thefoundry.co.uk Visual Effects Software THE FOUNDRY

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Developing GPU Enabled Effects |

e Why not ‘dive-in’ and develop GPU enabled effects?
e We have to have a CPU compute path
— for CPU based render farms
— for old or slow GPUs
e CPUs have FLOPs we should use even if there is a decent GPU
e CPU and GPU results must agree
— not truly possible due to nature of the hardware

— visually indistinguishable is the metric we want

www.thefoundry.co.uk Visual Effects Software THE FOUNDRY

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Developing GPU Enabled Effects Il

e Writing separate CPU and GPU implementations is
— twice the effort to implement
— easy enough for simple algos to agree, e.g. brightness effect
— practically impossible to make sure complicated algorithms agree
e where much of our bread and butter is

— horribly difficult to debug and maintain agreement

www.thefoundry.co.uk Visual Effects Software THE FOUNDRY

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Developing GPU Enabled Effects Il

e Getting peak performance is a specialist task
— You need to do it differently per device
— Hand optimisation gets in the way of writing algorithms
— My researchers aren’'t performance engineers
e How do you deal with new hardware or new optimisation techniques?
— Hand crafting code locks you in

— Need to individually recode everything = expensive

www.thefoundry.co.uk Visual Effects Software THE FOUNDRY

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Don’t Go There

e We have hundreds of effects and millions of lines of code
e Will need to rewrite all of them to exploit GPUs
e An ad-hoc approach to exploiting GPUs will not scale

— it be slow to deliver anything

— it would increase development costs

— it would be a nightmare to maintain

50 we chose not to go that route

www.thefoundry.co.uk Visual Effects Software THE FOUNDRY

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Introducing Blink’

e Or "Righteous Image Processing”, RIP, as we call it internally
e Project to deliver a multi-device image processing framework
e Allows us to exploit GPUs and CPUs and avoid those problems
e Based on work done with Imperial College London
e And it works

— we have shipping software based on it

— the gnomes at home are writing more as | speak

www.thefoundry.co.uk Visual Effects Software THE FOUNDRY

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

RIP Overview

 RIP wraps image processing up into a high level C++ API
 Programmer writes special C++ classes to do their work

 These are device independent and clear expressions of an algorithm
e At compile time, we translate those classes into specific
implementations for each device we support

e Programmer can also run untranslated kernel as-is on the CPU,

— for easy debugging and development

www.thefoundry.co.uk Visual Effects Software THE FOUNDRY

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

RIP Workflow

Develop and Debug Optimised Execution

NVidia
GPU CUDA 1.2

-

. .
RIP C++ High Translate

Level Kernel \ |

NVidia
GPU CUDA 2.0

x86 CPU SSE

www.thefoundry.co.uk Visual Effects Software THE Qgé FOUNDRY

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Doesn’t OpenCL Do That?

e OpenCL gives you a multi-device programming framework
e But memory and compute behave different between devices
— you can't forget that with OpenCL
e To get any performance, you still need to code differently per device
e OpenCL makes a good back end for RIP however

— but still a young technology with immature drivers

www.thefoundry.co.uk Visual Effects Software THE FOUNDRY

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Data Dependence Is Key To Parallelism

e Parallelism is where all the FLOPs now are
e Algorithm’s data dependence is what constrains its parallelism
e Traditional implementations obscure that data dependence
e Making data dependence explicit = analysis free knowledge of
parallelism
* Knowing that you can

— map algorithm to devices in appropriate manner

— allows for inter algorithm optimisations

www.thefoundry.co.uk Visual Effects Software THE FOUNDRY

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

RIP Basic Design

e Purely for image processing
e Application of map/reduce for that domain, with some extras
e Access to all data is abstracted and made explicit
— Images
— reductions
— carry dependence
 Programmer never given direct access to or ownership of the data

— always controlled by the framework

www.thefoundry.co.uk Visual Effects Software THE FOUNDRY

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

RIP Kernel

e Abstraction of a single pass image processing operation

o Implicit 3D iteration space, (X and Y ranges + N components)

e Explicit declaration of how data is accessed at each point in space
— rich set of access specifications

e A function is executed once at each point in the iteration space
— in which you only have restricted access to data
— and read only access to class members

e A bit like a high level version of a GPU kernel for image processing

www.thefoundry.co.uk Visual Effects Software THE FOUNDRY

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

class InvertKernel : public Kernel2<eComponentWise,
AccessSpec<TapAccess, eRead, eComponentWise>,
AccessSpec<TapAccess, eWrite, eComponentWise> >

{
public:

template <class SRC, class DST>
volid kernel (SRC &src, DST &dst, const IterationPosition &)

{
*dst = DST::clamp(DST::kWhitePoint - *src);

volid InvertImage(Compute::Image &source, Compute::Image &destination)

{

InvertKernel inverter;
destination.device().l1terate(inverter, source, destination);

}

Trivial Example

www.thefoundry.co.uk Visual Effects Software THE FOUNDRY

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

:.-.'

- L =

class InvertKernel : publ:;fférne12<eComponentWise,
{ AccessSpec<TapAccess, eRead, eComponentWise>,)
Mg AccessSpec<TapAccess, eWrite, eComponentWise> >*
template <class SRC, class DST>
void kernel(SRC &src, DST &dst, const IterationPosition &)

{
*dst = DST::clamp(DST::kWhitePoint - *src);

volid InvertImage(Compute::Image &source, Compute::Image &destination)

{

InvertKernel inverter;
destination.device().l1terate(inverter, source, destination);

Trivial Example

FOUNDRY

S

www.thefoundry.co.uk Visual Effects Software THE

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

class InvertKernel : public Kernel2<eComponentWise,
AccessSpec<TapAccess, eRead, eComponentWise>,
AccessSpec<TapAccess, eWrite, eComponentWise> >

{
public:

template <class SRC, class DST>
volid kernel (SRC &src, DST &dst, const IterationPosition &)

{
*dst = DST::clamp(DST::kWhitePoint - *src);

volid InvertImage(Compute::Image &source, Compute::Image &destination)

{

InvertKernel inverter;
destination.device().l1terate(inverter, source, destination);

}

Trivial Example

www.thefoundry.co.uk Visual Effects Software THE FOUNDRY

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

class InvertKernel : public Kernel2<eComponentWise,
AccessSpec<TapAccess, eRead, eComponentWise>,
AccessSpec<TapAccess, eWrite, eComponentWise> >

‘;,féﬁplate <class SRC, class DST>
- void kernel(SRC &src, DST &dst, const IterationPosition &)

(-)Kernel Body

*dst = DST::clamp(DST::kWhitePoint - *src);

e B T I TR, | D I D SRS SR R M L e) > 595 =
o=- o B i It At Lt~ i el S e = >
= oo e - o - = 7 T 95 >

volid InvertImage(Compute::Image &source, Compute::Image &destination)

{

InvertKernel inverter;
destination.device().l1terate(inverter, source, destination);

Trivial Example

FOUNDRY

S

www.thefoundry.co.uk Visual Effects Software THE

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

class InvertKernel : public Kernel2<eComponentWise,
AccessSpec<TapAccess, eRead, eComponentWise>,
AccessSpec<TapAccess, eWrite, eComponentWise> >

{
public:

template <class SRC, class DST>
volid kernel (SRC &src, DST &dst, const IterationPosition &)

{
*dst = DST::clamp(DST::kWhitePoint - *src);

volid InvertImage(Compute::Image &source, Compute::Image &destination)

{

InvertKernel inverter;
destination.device().l1terate(inverter, source, destination);

}

Trivial Example

www.thefoundry.co.uk Visual Effects Software THE FOUNDRY

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

class InvertKernel : public Kernel2<eComponentWise,
AccessSpec<TapAccess, eRead, eComponentWise>,
AcceSSOI"S AccessSpec<TapAccess, eWrite, eComponentWise> >
public: ™ " ey,
templatfykclass SRC, class DST> “Qi
void kerWgl (SRC &src, DST &dst, g#nst IterationPosition &)

-

x*xdst = DST::clamp(DSTiszhitePoint — *src);

volid InvertImage(Compute::Image &source, Compute::Image &destination)

{

InvertKernel inverter;
destination.device().l1terate(inverter, source, destination);

}

Trivial Example

www.thefoundry.co.uk Visual Effects Software THE FOUNDRY

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

class InvertKernel : public Kernel2<eComponentWise,
AccessSpec<TapAccess, eRead, eComponentWise>,
AccessSpec<TapAccess, eWrite, eComponentWise> >

{
public:

template <class SRC, class DST>
volid kernel (SRC &src, DST &dst, const IterationPosition &)

{
*dst = DST::clamp(DST::kWhitePoint - *src);

volid InvertImage(Compute::Image &source, Compute::Image &destination)

{

InvertKernel inverter;
destination.device().l1terate(inverter, source, destination);

}

Trivial Example

www.thefoundry.co.uk Visual Effects Software THE FOUNDRY

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

extern "C" void global
CUDA GPU InvertKernel kernel unsigned char 1 unsigned char 1(
int4 const fc dod, int const fc c,
unsigned char const *const src, int4 const src bounds, int3 const src steps,
unsigned char *const dst, 1nt4 const dst bounds, int3 const dst steps)
{
int2 const fc pos = fc compute pos();
1f (fc pos.x < fc dod.z && fc pos.y < fc dod.w) {
~fc component(dst, uchar, fc pos.x, fc pos.y, fc c)

= clamp((unsigned char) ((255U0 -
_fc component(src, uchar, fc pos.x, fc pos.y, fc c))),
(unsigned char) ((0)),
(unsigned char) ((255)));

Equivalent generated CUDA kernel, one of 32 variants.

www.thefoundry.co.uk Visual Effects Software THE FOUNDRY

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

externjf,,fwv-?“;;Qiébéi;;
CWPA_GPU_InvertKernel kernel unsigned char_1_unsigned_char_1(
f int4 const fc dod, int const fc c,

. One Of Many Generated

unsigned char const *const src, int4 const src bounds, int3 const src_stepg,"

o cme..unsigned char *const dst, int4 const dst bounds, int3 const dst_ghLepey
int2 const fc pos = fc compute pos();
1f (fc pos.x < fc dod.z && fc pos.y < fc dod.w) {
~fc component(dst, uchar, fc pos.x, fc pos.y, fc c)
= clamp((unsigned char) ((255U -
_fc component(src, uchar, fc pos.x, fc pos.y, fc c))),
(unsigned char) ((0)),
(unsigned char) ((255)));

Equivalent generated CUDA kernel, one of 32 variants.

www.thefoundry.co.uk Visual Effects Software THE FOUNDRY

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

extern "C" void global
CUDA GPU InvertKernel kernel unsigned char 1 unsigned char 1(
int4 const fc dod, int const fc c,
unsigned char const *const src, int4 const src bounds, int3 const src steps,
unsigned char *const dst, 1nt4 const dst bounds, int3 const dst steps)
{
int2 const fc pos = fc compute pos();
1f (fc pos.x < fc dod.z && fc pos.y < fc dod.w) {
~fc component(dst, uchar, fc pos.x, fc pos.y, fc c)

= clamp((unsigned char) ((255U0 -
_fc component(src, uchar, fc pos.x, fc pos.y, fc c))),
(unsigned char) ((0)),
(unsigned char) ((255)));

Equivalent generated CUDA kernel, one of 32 variants.

www.thefoundry.co.uk Visual Effects Software THE FOUNDRY

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

extern "C" void global

CUDA GPU InvertKernel kernel unsigned char 1 unsigned char 1(
int4 const fc dod, int const fc c,
unsigned char const *const src, int4 const src bounds, int3 const src steps,
unsigned char *const dst, int4 const dst bounds, int3 const dst steps)

int?2 const _fﬂve*f»~*' compute pos() =

if (w#e"POs.x < fc dod.z && fc pos.y < fc dod.w Trans ; \n BOdy

= fc component (dst, uchar, fc pos.x, fc pos.y, _fc_c) e

= clamp((unsigned char) ((255U - :
_fc component(src, uchar, fc pos.x, fc pos.y, _fc_c))?,

. (unsigned char)((0)), -

”°“*a\>;% (unsigned char) ((255)));

) e
}

Equivalent generated CUDA kernel, one of 32 variants.
www.thefoundry.co.uk Visual Effects Software THE FOUNDRY

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

extern "C" void global
CUDA GPU InvertKernel kernel unsigned char 1 unsigned char 1(
int4 const fc dod, int const fc c,
unsigned char const *const src, int4 const src bounds, int3 const src steps,
unsigned char *const dst, 1nt4 const dst bounds, int3 const dst steps)
{
int2 const fc pos = fc compute pos();
1f (fc pos.x < fc dod.z && fc pos.y < fc dod.w) {
~fc component(dst, uchar, fc pos.x, fc pos.y, fc c)

= clamp((unsigned char) ((255U0 -
_fc component(src, uchar, fc pos.x, fc pos.y, fc c))),
(unsigned char) ((0)),
(unsigned char) ((255)));

Equivalent generated CUDA kernel, one of 32 variants.

www.thefoundry.co.uk Visual Effects Software THE FOUNDRY

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Not Quite C++

e C++ is a very rich and flexible language
— the reason we chose it to express our kernels
e However to code translate we only use restricted subset in a kernel
— native C types, e.q. int, float, char etc...
— blessed’ types and functions, e.g. RIP::Vec2f, cos, fabs etc....
— any purely inlined function, POD type or simple class
— NO recursion

» Aggregate types (ie: std::vector like) are a work in progress

www.thefoundry.co.uk Visual Effects Software THE FOUNDRY

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Access Pattern Specifications

e Pattern of access at each point in iteration space is main abstraction
— 'tap’ i.e. the current point
— 1D or 2D range around the current iteration position
— random access
 Read or Write
e Integer transforms
— scale, rotate, translate, transpose, reverse,

 Edge conditions.

www.thefoundry.co.uk Visual Effects Software THE FOUNDRY

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

“Ordinary” Kernels

e The 'easy’ case,
 Process zero or more input images to one or more output images,
— any number of inputs or outputs
— arbitrary access specifications on images
e can get very complex with the variety of access pattern we have

— no dependencies between points in the iteration space

www.thefoundry.co.uk Visual Effects Software THE FOUNDRY

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Reductions

 Reductions combine all elements in a data structure in some way
— e.g. find the sum of all the pixels in an image

e RIP can perform associative reductions
— done via explicit RIP::Kernel::Reduction abstraction class

e Object being reduced into is given to the kernel
— making data independent to the kernel

e Allows for appropriate parallelisation on each device

— including shared memory usage on the GPU

www.thefoundry.co.uk Visual Effects Software THE FOUNDRY

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

class SumKernel : public Kernell<eComponentWise,
AccessSpec<TapAccess, eRead, eComponentWise> >
, public Reduction<PerComponentReductionData<float> >

{
public:
template <class SRC>
volid reduce(SRC &src,
PerComponentReductionData<float> &reductionData,
const IterationPosition &pos) const
{
reductionData.addSample(pos.component(), float(*src));
}
}

Summation Reduction Code Example

FOUNDRY

S

www.thefoundry.co.uk Visual Effects Software THE

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

class SumKernel : public Kernell<eComponentW1se,
[B P SR Y I PV TP T R e R @ e o) Onenthse> >
-ubllc Reduct1on<PerComponentReductlonData<float> >”

{ g

public: CTass DEaesrItoF
template <class SRC>

volid reduce(SRC &src,
PerComponentReductionData<float> &reductionData,
const IterationPosition &pos) const

Specit mg Reductlon Type

{
reductionData.addSample(pos.component(), float(*src));
}
}
Summation Reduction Code Example
www.thefoundry.co.uk Visual Effects Software THE FOUNDRY

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

class SumKernel : public Kernell<eComponentWise,
AccessSpec<TapAccess, eRead, eComponentWise> >
, public Reduction<PerComponentReductionData<float> >

{
public:
template <class SRC>
volid reduce(SRC &src,
PerComponentReductionData<float> &reductionData,
const IterationPosition &pos) const
{
reductionData.addSample(pos.component(), float(*src));
}
}

Summation Reduction Code Example

FOUNDRY

S

www.thefoundry.co.uk Visual Effects Software THE

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

class SumKernel : public Kernell<eComponentWise,
AccessSpec<TapAccess, eRead, eComponentWise> >

, public Reduction<PerComponentReductionData<float> >

{

public:
template <class SRC>

PerComponentReduct1onData<float> &reductlonData,f:k
CON S TP mradsi-aRRagd

{ eductlon Obrject Is A Parameter

reductionData.addSample(pos.component(), float

}

Summation Reduction Code Example

www.thefoundry.co.uk Visual Effects Software THE FOUNDRY

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

class SumKernel : public Kernell<eComponentWise,
AccessSpec<TapAccess, eRead, eComponentWise> >
, public Reduction<PerComponentReductionData<float> >

{
public:
template <class SRC>
volid reduce(SRC &src,
PerComponentReductionData<float> &reductionData,
const IterationPosition &pos) const
{
reductionData.addSample(pos.component(), float(*src));
}
}

Summation Reduction Code Example

FOUNDRY

S

www.thefoundry.co.uk Visual Effects Software THE

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

www.thefoundry.co.uk

——————————————————————————————————

CPUs Accumulate

—

’———————-—\
GEED GED GED GED GED GED GED GED TGED 2o

36

GPUs Divide and Conquer

\-—-----———————————----——————————’

Visual Effects Software

THEFDUNDRY

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Problems with Reductions

e Floating point precision is finite,

— which means (a

e GPUs and CPUs join their data in different orders

D)

(C

d) =

((a

D)

C)

e S0 CPUs and GPUs reductions will produce different results

— same problem for parallel reduce on multicore CPUs

 Main source of uncontrollable divergence between devices

e In practice, not that big an issue however, but must be aware of it

www.thefoundry.co.uk

Visual Effects Software

THE FOUNDRY

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Carry Dependencies |

 RIP allows for data carry between points in the iteration space
— classic use case is the rolling buffer box blur
— which can make points in iteration space interdependent

e We make a distinction between
— local carries, eg: box blur

— full carries, some analysis algorithms

www.thefoundry.co.uk Visual Effects Software THE FOUNDRY

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Iteration Space >

Initialisation Window

< >

Input

Initialise Rolling Buffer

0 1 2 3 4 S 6 / 3 9 10 [11 | 12 [13 | 14 | 15 | Output

www.thefoundry.co.uk Visual Effects Software THE FOUNDRY

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

.|< Iteration Space >}

Input

! ! Write result

0 1 2 3 4 5 6 / 38 9 10 | 11 [12 | 13 | 14 | 15 | Output

www.thefoundry.co.uk Visual Effects Software THE FOUNDRY

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

!< Iteration Space >]

Input

Subtract . “*Add

Advance Rolling Buffer

0 1 2 3 4 S 6 / 3 9 10 [11 | 12 [13 | 14 | 15 | Output

www.thefoundry.co.uk Visual Effects Software THE FOUNDRY

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

!< Iteration Space >]

Input

! ! Write result

0 1 2 3 4 S 6 / 3 9 10 [11 | 12 [13 | 14 | 15 | Output

www.thefoundry.co.uk Visual Effects Software THE FOUNDRY

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

!< Iteration Space >]

Input

: -
Subtract Add

Advance Rolling Buffer

0 1 2 3 4 S 6 / 3 9 10 [11 | 12 [13 | 14 | 15 | Output

www.thefoundry.co.uk Visual Effects Software THE FOUNDRY

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

!< Iteration Space >]

Input

! ! Write result

0 1 2 3 4 S 6 / 3 9 10 [11 | 12 [13 | 14 | 15 | Output

www.thefoundry.co.uk Visual Effects Software THE FOUNDRY

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Carry Dependencies li

e Again, explicitly declare type of data being carried
e Kernels can access images and carried data at each point in iteration
e Carried data has an initialisation window and carry range
e Allows automatic partitioning of the parallelisation
— for small windows, can parallelise per pixel on GPU
e by running up’ at each, and writing data out
— always drag data along row/column on CPU

* Whole row data carries have poorer partitioning

www.thefoundry.co.uk Visual Effects Software THE FOUNDRY

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

class BoxBlurKernel : public Kernel2<eComponentWise,

AccessSpec<RangedlDAccess, eRead, eComponentWise, ClampedEdge>,
AccessSpec<TapAccess, eWrite, eComponentWise> >
, public Rolling<float>

volid 1initialiseRollingData(float &rollingData,
const IterationPosition &pos)
{ rollingData = 0; }

template<class SRC, class DST>

vold rollingRunup(SRC &src, DSTACCESS &dst, float &rollingData,
int runupPosition, const IterationPosition &pos)

{ rollingData += src(runupPosition, pos.component()); }

template <class SRC, class DST>
void kernel (SRC &src, DST &dst, float &rollingData,
const IterationPosition &pos)
{
float value = rollingData * filterWidthInv;
*dst = DSTACCESS::clamp(value);
rollingData += float(src(radius+l, pos.component()) - float(src(- radius, pos.component()));

4

}

protected :
const int radius;
const float filterWidthInv;

}i

www.thefoundry.co.uk Visual Effects Software THE FOUNDRY

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

e DR B S AN D AP TS o i s -~ S i o Byl ARt Sl =l

C1ass BoxBLUrKernel : pUblic Kernel 24l si e arr i e s e s e e e o o e - e
AccessSpec<Ranged1DAccess, eRead eComponentwlse, ClampedEdge>
by veror ik DeC S aPACCES S, ENTIte, ClOMPONCTI LW LS e s e’
, public Rolling<float>

volid 1initialiseRollingData(float &rollingData,
const IterationPosition &pos)
{ rollingData = 0; }

template<class SRC, class DST>

vold rollingRunup(SRC &src, DSTACCESS &dst, float &rollingData,
int runupPosition, const IterationPosition &pos)

{ rollingData += src(runupPosition, pos.component()); }

template <class SRC, class DST>
void kernel (SRC &src, DST &dst, float &rollingData,
const IterationPosition &pos)

float value = rollingData * filterWidthInv;
*dst = DSTACCESS::clamp(value);
rollingData += float(src(radius+l, pos.component()) - float(src(- radius, pos.component()));

}

protected :
const int radius;
const float filterWidthInv;

}i

www.thefoundry.co.uk Visual Effects Software THE FOUNDRY

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

class BoxBlurKernel : public Kernel2<eComponentWise,

AccessSpec<RangedlDAccess, eRead, eComponentWise, ClampedEdge>,
AccessSpec<TapAccess, eWrite, eComponentWise> >
, public Rolling<float>

volid 1initialiseRollingData(float &rollingData,
const IterationPosition &pos)
{ rollingData = 0; }

template<class SRC, class DST>

vold rollingRunup(SRC &src, DSTACCESS &dst, float &rollingData,
int runupPosition, const IterationPosition &pos)

{ rollingData += src(runupPosition, pos.component()); }

template <class SRC, class DST>
void kernel (SRC &src, DST &dst, float &rollingData,
const IterationPosition &pos)
{
float value = rollingData * filterWidthInv;
*dst = DSTACCESS::clamp(value);
rollingData += float(src(radius+l, pos.component()) - float(src(- radius, pos.component()));

4

}

protected :
const int radius;
const float filterWidthInv;

}i

www.thefoundry.co.uk Visual Effects Software THE FOUNDRY

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

class BoxBlurKernel : public Kernel2<eComponentWise,
AccessSpec<RangedlDAccess, eRead, eComponentWise, ClampedEdge>,
seBpec<TapAccess, eWrite, eComponentWise> >

volid 1initialiseRollingData(float &rollingData,
const IterationPosition &pos)
{ rollingData = 0; }

template<class SRC, class DST>

vold rollingRunup(SRC &src, DSTACCESS &dst, float &rollingData,
int runupPosition, const IterationPosition &pos)

{ rollingData += src(runupPosition, pos.component()); }

template <class SRC, class DST>
void kernel (SRC &src, DST &dst, float &rollingData,
const IterationPosition &pos)

float value = rollingData * filterWidthInv;
*dst = DSTACCESS::clamp(value);
rollingData += float(src(radius+l, pos.component()) - float(src(- radius, pos.component()));

}

protected :
const int radius;
const float filterWidthInv;

}i

www.thefoundry.co.uk Visual Effects Software THE FOUNDRY

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

class BoxBlurKernel : public Kernel2<eComponentWise,

AccessSpec<RangedlDAccess, eRead, eComponentWise, ClampedEdge>,
AccessSpec<TapAccess, eWrite, eComponentWise> >
, public Rolling<float>

volid 1initialiseRollingData(float &rollingData,
const IterationPosition &pos)
{ rollingData = 0; }

template<class SRC, class DST>

vold rollingRunup(SRC &src, DSTACCESS &dst, float &rollingData,
int runupPosition, const IterationPosition &pos)

{ rollingData += src(runupPosition, pos.component()); }

template <class SRC, class DST>
void kernel (SRC &src, DST &dst, float &rollingData,
const IterationPosition &pos)
{
float value = rollingData * filterWidthInv;
*dst = DSTACCESS::clamp(value);
rollingData += float(src(radius+l, pos.component()) - float(src(- radius, pos.component()));

4

}

protected :
const int radius;
const float filterWidthInv;

}i

www.thefoundry.co.uk Visual Effects Software THE FOUNDRY

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

class BoxBlurKernel : public Kernel2<eComponentWise,
AccessSpec<RangedlDAccess, eRead, eComponentWise, ClampedEdge>,
AccessSpec<TapAccess, eWrite, eComponentWise> >
, public Rolling<float>
g/oid initialiseRollingData(float &rollingData,
§ const IterationPosition &pos)
{{ rollingData = 0; }
template<class SRC, class DST>
vold rollingRunup(SRC &src, DSTACCESS &dst, float &rollingData,
int runupPosition, const IterationPosition &pos)
{ rollingData += src(runupPosition, pos.component()); }

template <class SRC, class DST>
void kernel (SRC &src, DST &dst, float &rollingData,
const IterationPosition &pos)

float value = rollingData * filterWidthInv;
*dst = DSTACCESS::clamp(value);
rollingData += float(src(radius+l, pos.component()) - float(src(- radius, pos.component()));

}

protected :
const int radius;
const float filterWidthInv;

}i

www.thefoundry.co.uk Visual Effects Software THE FOUNDRY

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

class BoxBlurKernel : public Kernel2<eComponentWise,

AccessSpec<RangedlDAccess, eRead, eComponentWise, ClampedEdge>,
AccessSpec<TapAccess, eWrite, eComponentWise> >
, public Rolling<float>

volid 1initialiseRollingData(float &rollingData,
const IterationPosition &pos)
{ rollingData = 0; }

template<class SRC, class DST>

vold rollingRunup(SRC &src, DSTACCESS &dst, float &rollingData,
int runupPosition, const IterationPosition &pos)

{ rollingData += src(runupPosition, pos.component()); }

template <class SRC, class DST>
void kernel (SRC &src, DST &dst, float &rollingData,
const IterationPosition &pos)
{
float value = rollingData * filterWidthInv;
*dst = DSTACCESS::clamp(value);
rollingData += float(src(radius+l, pos.component()) - float(src(- radius, pos.component()));

4

}

protected :
const int radius;
const float filterWidthInv;

}i

www.thefoundry.co.uk Visual Effects Software THE FOUNDRY

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

class BoxBlurKernel : public Kernel2<eComponentWise,
AccessSpec<RangedlDAccess, eRead, eComponentWise, ClampedEdge>,
AccessSpec<TapAccess, eWrite, eComponentWise> >
, public Rolling<float>

volid 1initialiseRollingData(float &rollingData,
const IterationPosition &pos)
{ rollingData = 0; }

d

§jvoid rollingRunup(SRC &src, DSTACCESS &dst, float &rollingData,

i int runupPosition, const IterationPosition &pos)
f{ rollingData += src(runupPosition, pos.component()); }

template <class SRC, class DST> S
void kernel (SRC &src, DST &dst, float &rollingData,

const IterationPosition &pos)

float value = rollingData * filterWidthInv;
*dst = DSTACCESS::clamp(value);
rollingData += float(src(radius+l, pos.component()) - float(src(- radius, pos.component()));

}

protected :
const int radius;
const float filterWidthInv;

}i

www.thefoundry.co.uk Visual Effects Software THE FOUNDRY

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

class BoxBlurKernel : public Kernel2<eComponentWise,

AccessSpec<RangedlDAccess, eRead, eComponentWise, ClampedEdge>,
AccessSpec<TapAccess, eWrite, eComponentWise> >
, public Rolling<float>

volid 1initialiseRollingData(float &rollingData,
const IterationPosition &pos)
{ rollingData = 0; }

template<class SRC, class DST>

vold rollingRunup(SRC &src, DSTACCESS &dst, float &rollingData,
int runupPosition, const IterationPosition &pos)

{ rollingData += src(runupPosition, pos.component()); }

template <class SRC, class DST>
void kernel (SRC &src, DST &dst, float &rollingData,
const IterationPosition &pos)
{
float value = rollingData * filterWidthInv;
*dst = DSTACCESS::clamp(value);
rollingData += float(src(radius+l, pos.component()) - float(src(- radius, pos.component()));

4

}

protected :
const int radius;
const float filterWidthInv;

}i

www.thefoundry.co.uk Visual Effects Software THE FOUNDRY

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

class BoxBlurKernel : public Kernel2<eComponentWise,
AccessSpec<RangedlDAccess, eRead, eComponentWise, ClampedEdge>,
AccessSpec<TapAccess, eWrite, eComponentWise> >
, public Rolling<float>
{
vold initialiseRollingData(float &rollingData,
const IterationPosition &pos)
{ rollingData = 0; }

template<class SRC, class DST>

vold rollingRunup(SRC &src, DSTACCESS &dst, float &rollingData,
int runupPosition, const IterationPosition &pos)

{ rollingData += src(runupPosition, pos.component()); }

It iE A T OB TINTENY S AR B EAS AL RRe S G It iE A i R S S SRttt i - . S A DRt Rt e S E BRI T i e a . DAt Sl VIR TR i S T e S ST _‘4_"_ AL EL S D == T 6 ST _‘4"_ AL NEL S
B s R ioni g S i D s B i e A g S e e D oo B I STV S Py P L e Lo p S - . _ B B . 5 . A ~ B B 5 . . A i » y X > Sh . i B y X A

ﬁvoid kernel (SRC &src, DST &dst, float &rollingData,
' const IterationPosition &pos) i
k{ ¢
§ float value = rollingData * filterWidthInv; ;
*dst = DSTACCESS::clamp(value);
3 rollingData += float(src(radius+l, pos.component()) - float(src(- radius, pos.component()));
protected :
const int radius;
const float filterWidthInv;

}i

FOUNDRY

S

www.thefoundry.co.uk Visual Effects Software THE

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

class BoxBlurKernel : public Kernel2<eComponentWise,

AccessSpec<RangedlDAccess, eRead, eComponentWise, ClampedEdge>,
AccessSpec<TapAccess, eWrite, eComponentWise> >
, public Rolling<float>

volid 1initialiseRollingData(float &rollingData,
const IterationPosition &pos)
{ rollingData = 0; }

template<class SRC, class DST>

vold rollingRunup(SRC &src, DSTACCESS &dst, float &rollingData,
int runupPosition, const IterationPosition &pos)

{ rollingData += src(runupPosition, pos.component()); }

template <class SRC, class DST>
void kernel (SRC &src, DST &dst, float &rollingData,
const IterationPosition &pos)
{
float value = rollingData * filterWidthInv;
*dst = DSTACCESS::clamp(value);
rollingData += float(src(radius+l, pos.component()) - float(src(- radius, pos.component()));

4

}

protected :
const int radius;
const float filterWidthInv;

}i

www.thefoundry.co.uk Visual Effects Software THE FOUNDRY

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

About Motion Estimation

e One of our core bits of IP
o Effectively per pixel tracking between images
— you get a vector per pixel indicating inter-image displacement
e Allows you to solve lots of problems in 2D VFX
— including ‘in-betweening’ to retime footage
e A large set of complex algorithms
e Impossible to do with GP-GPU techniques

e Implemented on RIP framework

www.thefoundry.co.uk Visual Effects Software THE FOUNDRY

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Frame 1 Motion Vectors Frame 2

i)

Push All Pixels by 50% 50% Inbetween

Thursday, September 23, 2010

\\\\\\\'\-‘?'\‘\\\

ot T e T W i MR B
TR W e w N M, W W N
- B T . - .

Thursday, September 23, 2010

Thursday, September 23, 2010

Thursday, September 23, 2010

Implementing Motion Estimation In RIP

e Complex set of algorithms that needed 33 RIP kernels to implement
e On a 4 Core Xeon E5504@2GHZz,10:1 retime of SD footage achieve 5 fps
— no SSE path yet, will go faster when we do
e On a Quadro 5000 we achieve 200fps!
— including host to GPU device transfer
 Thorny issue, the pictures are different between CPU and GPU
— because of a 'push’ algorithm
— which is a problem anyway on a multicore CPU

— could fix via atomics, but at a large compute cost

www.thefoundry.co.uk Visual Effects Software THE FOUNDRY

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Thursday, September 23, 2010

Device :Intel Xeon E5504 @ 2.00GHz
Play : Every Frame (As Fast As Possible)

Render To File

Render : Interpolated Image

peed
all
Smoothness
Block Smoothir
Pixel Smoothin

Kronos Smooth

Thursday, September 23, 2010

Moving Bottlenecks

e [n practice computation bottlenecks simply get moved
— our retimer can compute SD at around 200fps on a Quadro 5000
— as a plugin to After Effects, it peaks at around 15fps

e Amdhal’s law has kicked in
— for VFX, file i/o is a big part of the serial computation

e S0 do as much computation as possible while in memory

— but CPU apps attempt to do that

www.thefoundry.co.uk Visual Effects Software THE FOUNDRY

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Near Term Future Work

e Code translate all kernels type and accessors
— all transformations and large reductions

e Complete implementation of a processing graph
— to manage tiled image rendering for large data sets
— as a harness for kernel fusion

e Complete SSE support on CPU

www.thefoundry.co.uk Visual Effects Software THE FOUNDRY

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Future Research

e Run time translation of kernels
— requires run time compilers for CPU and GPU
e Inter-kernel optimisations
— data dependencies allows for 'simple’ low level kernel fusion
e which reduces memory traffic = higher performance
 hard cases as well (eg: chained set of ranged access kernels)
— e.qg. loop fusion of ranged accessors via array contraction

— Proof of concept via collaboration with Imperial College London

www.thefoundry.co.uk Visual Effects Software THE FOUNDRY

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

What We've Learnt

e We were much more ambitious that we thought
e Clang/LLVM rocks (basis of our parsing)
* You still need to know about the hardware
e Breaking CPU/GPU agreement is occasionally necessary
— provided you know why and where you are doing it
e |t is sometimes necessary to write separate GPU and CPU paths
e Run time compilation is essential for where we want to take this

e OpenCL on its own isn’'t what you need

www.thefoundry.co.uk Visual Effects Software THE FOUNDRY

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Thursday, September 23, 2010

