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• I am the founder and CTO of The Foundry

• Worked in CG and VFX since completing my CS degree in 1987

– when you rolled your own

• Worked in production on effects and animations

– Zap, Rushes, Computer Film Company, Animal Logic

• Worked at software houses making commercial VFX software

– Discreet Logic, Softimage, Animal Logic

• Since starting The Foundry, concentrated on image processing for VFX

About Me
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• The Foundry is a developer of VFX software for film and TV

• Academy Award winning software used on 8 of the 10 highest grossing 

movies of all time

• Main emphasis has been on compositing tools

– Nuke, Ocula, Furnace, Keylight

• Recently branching out

– Mari - CGI texture paint tool

– Katana - CGI lighting tool (still in development)

– Storm - realtime digital cinematography tool (still in development)

About The Foundry
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• ‘Stuff’ done to images after live action shooting

• Pretty much all digital now

• Traditionally part of post-production, alongside editing etc...

• Not just giant killer robots and big explosions

– replacing practicals and live action elements

– used for fixup/repair/replacement

– used for mood

Visual Effects
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Simplified Production Workflow

Script
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Simplified Production Workflow

Script Preproduction

•Storyboarding
•Design
•Blocking
•Pre-vis
•Set Build
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Simplified Production Workflow

Script Preproduction

•Storyboarding
•Design
•Blocking
•Pre-vis
•Set Build

Production

• Shooting stuff
• Review
• On-set vis

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk


Visual Effects Softwarewww.thefoundry.co.uk

Simplified Production Workflow

Script Preproduction

•Storyboarding
•Design
•Blocking
•Pre-vis
•Set Build

Production

• Shooting stuff
• Review
• On-set vis

Postproduction

•Editing
•CGI
•Compositing
•Colour Grading
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Simplified VFX Post Workflow
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Simplified VFX Post Workflow

CGI

• Modelling
• Animation
• Simulation
• Rendering
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Simplified VFX Post Workflow

Composite

• Painting
• Fix-ups
• Layering
• Effects

CGI

• Modelling
• Animation
• Simulation
• Rendering
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Simplified VFX Post Workflow

Composite

• Painting
• Fix-ups
• Layering
• Effects

Grade

• Colour correct
• Simple effects

CGI

• Modelling
• Animation
• Simulation
• Rendering
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• Highly collaborative

– many people working on many stages of the production

• Highly pipelined

– modelling feeds to animation feeds to rendering feeds to comp

• Highly iterative

– many passes required to achieve the final results

– iterative both within and between stages

VFX Workflows I
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VFX Workflows II

Supervisor Render Farm ReviewArtist
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• In larger houses, artists tend to be specialised

• In smaller shops, tend to be more generalists

• Typically equipped with a high spec workstation

– big CPU, big GPU and big disks

• Sits on a fast network with SANs and access to a render farm

• Puts project together, and previews several frames

– low latency is key

• Batches rest of sequence off to render farm to finish

Artists
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• Terabytes of data and days of compute can go into a single frame

– throughput is key

• Currently achieved by servers, and lots of them

– Weta Digital used 40,000 cores to render Avatar

• Simulation, CGI and compositing computed on render farms

• CPUs are almost exclusively used for rendering

– early days for GPU rendering software

– will be hard to GPU everything, CPUs here for a while yet

Rendering
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• We have little control over the hardware our users buy

– unlike a dedicated HPC centre

• They have a varied set of computers including...

– workstations with big GPUs and big CPUs

– render farms with no GPUs and big CPUs

– laptops with incy CPUs and smaller GPUs

– everything between

• They expect our software to make the same pictures on all of them

VFX Compute Ecosystems
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• Increased performance from GPUs is starting to...

– reducing time and cost of render/review iterations

– give ‘realtime’ VFX in some cases, removing the need for renders

– allow for more complex effects

• render times seem to stay constant despite the available FLOPs

– allow VFX to be used more pervasively throughout production

– blurs stages of production

• post increasingly being brought into production

What GPUs are doing to VFX
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• Currently specialise in image processing for compositing

– Nuke - feature rich compositing application

• Specialist plug-in created by dedicated research team

– Furnace - motion estimation based tools for compositing

– Ocula - tools for stereo compositing

– CameraTracker - computes camera position in live action shot

• Mostly CPU based, but we are starting to exploit the GPU

• Also being used in pre-production and actual production

The Foundry’s Compositing Software
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• Advent of CUDA/OpenCL has allowed for complex image processing

– many algorithms not possible with GPGPU approach

– e.g. motion estimation, a key piece of Foundry IP

• We have a fantastic opportunity to improve our software

– to reduce latency for the artist

– to increase throughput on renders

– use it in new situations

– do cool new stuff

GPUs Come of Age For Image Processing
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• Why not ‘dive-in’ and develop GPU enabled effects?

• We have to have a CPU compute path

– for CPU based render farms

– for old or slow GPUs

• CPUs have FLOPs we should use even if there is a decent GPU

• CPU and GPU results must agree

– not truly possible due to nature of the hardware

– visually indistinguishable is the metric we want

Developing GPU Enabled Effects I
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• Writing separate CPU and GPU implementations is

– twice the effort to implement

– easy enough for simple algos to agree, e.g. brightness effect

– practically impossible to make sure complicated algorithms agree

• where much of our bread and butter is

– horribly difficult to debug and maintain agreement

Developing GPU Enabled Effects II
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• Getting peak performance is a specialist task

– You need to do it differently per device

– Hand optimisation gets in the way of writing algorithms

– My researchers aren’t performance engineers

• How do you deal with new hardware or new optimisation techniques?

– Hand crafting code locks you in

– Need to individually recode everything = expensive

Developing GPU Enabled Effects III
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• We have hundreds of effects and millions of lines of code

• Will need to rewrite all of them to exploit GPUs

• An ad-hoc approach to exploiting GPUs will not scale

– it be slow to deliver anything

– it would increase development costs

– it would be a nightmare to maintain

• So we chose not to go that route

Don’t Go There
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• Or “Righteous Image Processing”, RIP, as we call it internally

• Project to deliver a multi-device image processing framework

• Allows us to exploit GPUs and CPUs and avoid those problems

• Based on work done with Imperial College London

• And it works

– we have shipping software based on it

– the gnomes at home are writing more as I speak

Introducing ‘Blink’
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• RIP wraps image processing up into a high level C++ API

• Programmer writes special C++ classes to do their work

• These are device independent and clear expressions of an algorithm

• At compile time, we translate those classes into specific 

implementations for each device we support

• Programmer can also run untranslated kernel as-is on the CPU,

– for easy debugging and development

RIP Overview
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RIP Workflow

NVidia
GPU CUDA 1.2

x86 CPU SSE

RIP C++ High 
Level Kernel

Run As Is On 
CPU

Develop and Debug Optimised Execution

Translate

NVidia
GPU CUDA 2.0
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• OpenCL gives you a multi-device programming framework

• But memory and compute behave different between devices

– you can’t forget that with OpenCL

• To get any performance, you still need to code differently per device

• OpenCL makes a good back end for RIP however

– but still a young technology with immature drivers

Doesn’t OpenCL Do That?
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• Parallelism is where all the FLOPs now are

• Algorithm’s data dependence is what constrains its parallelism

• Traditional implementations obscure that data dependence

• Making data dependence explicit = analysis free knowledge of 

parallelism

• Knowing that you can

– map algorithm to devices in appropriate manner

– allows for inter algorithm optimisations

Data Dependence Is Key To Parallelism 

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk


Visual Effects Softwarewww.thefoundry.co.uk

• Purely for image processing

• Application of map/reduce for that domain, with some extras

• Access to all data is abstracted and made explicit

– images

– reductions

– carry dependence

• Programmer never given direct access to or ownership of the data

– always controlled by the framework

RIP Basic Design
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• Abstraction of a single pass image processing operation

• Implicit 3D iteration space,  (X and Y ranges + N components)

• Explicit declaration of how data is accessed at each point in space

– rich set of access specifications

• A function is executed once at each point in the iteration space

– in which you only have restricted access to data

– and read only access to class members

• A bit like a high level version of a GPU kernel for image processing

RIP Kernel
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class InvertKernel : public Kernel2<eComponentWise,
                                    AccessSpec<TapAccess,  eRead,   eComponentWise>,
                                    AccessSpec<TapAccess,  eWrite,  eComponentWise> >
{
public:
  template <class SRC, class DST>
  void kernel(SRC &src, DST &dst, const IterationPosition &)
  {
    *dst = DST::clamp(DST::kWhitePoint - *src);
  }
};

void InvertImage(Compute::Image &source, Compute::Image &destination)
{
  InvertKernel inverter;
  destination.device().iterate(inverter, source, destination);
}

Trivial Example
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class InvertKernel : public Kernel2<eComponentWise,
                                    AccessSpec<TapAccess,  eRead,   eComponentWise>,
                                    AccessSpec<TapAccess,  eWrite,  eComponentWise> >
{
public:
  template <class SRC, class DST>
  void kernel(SRC &src, DST &dst, const IterationPosition &)
  {
    *dst = DST::clamp(DST::kWhitePoint - *src);
  }
};

void InvertImage(Compute::Image &source, Compute::Image &destination)
{
  InvertKernel inverter;
  destination.device().iterate(inverter, source, destination);
}

Trivial Example

Access Spec
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class InvertKernel : public Kernel2<eComponentWise,
                                    AccessSpec<TapAccess,  eRead,   eComponentWise>,
                                    AccessSpec<TapAccess,  eWrite,  eComponentWise> >
{
public:
  template <class SRC, class DST>
  void kernel(SRC &src, DST &dst, const IterationPosition &)
  {
    *dst = DST::clamp(DST::kWhitePoint - *src);
  }
};

void InvertImage(Compute::Image &source, Compute::Image &destination)
{
  InvertKernel inverter;
  destination.device().iterate(inverter, source, destination);
}

Trivial Example

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk


Visual Effects Softwarewww.thefoundry.co.uk

class InvertKernel : public Kernel2<eComponentWise,
                                    AccessSpec<TapAccess,  eRead,   eComponentWise>,
                                    AccessSpec<TapAccess,  eWrite,  eComponentWise> >
{
public:
  template <class SRC, class DST>
  void kernel(SRC &src, DST &dst, const IterationPosition &)
  {
    *dst = DST::clamp(DST::kWhitePoint - *src);
  }
};

void InvertImage(Compute::Image &source, Compute::Image &destination)
{
  InvertKernel inverter;
  destination.device().iterate(inverter, source, destination);
}

Trivial Example

Kernel Body
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class InvertKernel : public Kernel2<eComponentWise,
                                    AccessSpec<TapAccess,  eRead,   eComponentWise>,
                                    AccessSpec<TapAccess,  eWrite,  eComponentWise> >
{
public:
  template <class SRC, class DST>
  void kernel(SRC &src, DST &dst, const IterationPosition &)
  {
    *dst = DST::clamp(DST::kWhitePoint - *src);
  }
};

void InvertImage(Compute::Image &source, Compute::Image &destination)
{
  InvertKernel inverter;
  destination.device().iterate(inverter, source, destination);
}

Trivial Example
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class InvertKernel : public Kernel2<eComponentWise,
                                    AccessSpec<TapAccess,  eRead,   eComponentWise>,
                                    AccessSpec<TapAccess,  eWrite,  eComponentWise> >
{
public:
  template <class SRC, class DST>
  void kernel(SRC &src, DST &dst, const IterationPosition &)
  {
    *dst = DST::clamp(DST::kWhitePoint - *src);
  }
};

void InvertImage(Compute::Image &source, Compute::Image &destination)
{
  InvertKernel inverter;
  destination.device().iterate(inverter, source, destination);
}

Trivial Example

Accessors
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class InvertKernel : public Kernel2<eComponentWise,
                                    AccessSpec<TapAccess,  eRead,   eComponentWise>,
                                    AccessSpec<TapAccess,  eWrite,  eComponentWise> >
{
public:
  template <class SRC, class DST>
  void kernel(SRC &src, DST &dst, const IterationPosition &)
  {
    *dst = DST::clamp(DST::kWhitePoint - *src);
  }
};

void InvertImage(Compute::Image &source, Compute::Image &destination)
{
  InvertKernel inverter;
  destination.device().iterate(inverter, source, destination);
}

Trivial Example
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extern "C" void __global__ 
CUDA_GPU_InvertKernel_kernel_unsigned_char_1_unsigned_char_1(
             int4 const _fc_dod, int const _fc_c, 
             unsigned char const *const src, int4 const src_bounds, int3 const src_steps, 
             unsigned char *const dst, int4 const dst_bounds, int3 const dst_steps)
{
  int2 const _fc_pos = _fc_compute_pos();
  if (_fc_pos.x < _fc_dod.z && _fc_pos.y < _fc_dod.w) {
    _fc_component(dst, uchar, _fc_pos.x, _fc_pos.y, _fc_c) 
       = clamp((unsigned char)((255U - 
                                _fc_component(src, uchar, _fc_pos.x, _fc_pos.y, _fc_c))),       
               (unsigned char)((0)), 
               (unsigned char)((255)));
  }
}

Equivalent generated CUDA kernel, one of 32 variants.
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extern "C" void __global__ 
CUDA_GPU_InvertKernel_kernel_unsigned_char_1_unsigned_char_1(
             int4 const _fc_dod, int const _fc_c, 
             unsigned char const *const src, int4 const src_bounds, int3 const src_steps, 
             unsigned char *const dst, int4 const dst_bounds, int3 const dst_steps)
{
  int2 const _fc_pos = _fc_compute_pos();
  if (_fc_pos.x < _fc_dod.z && _fc_pos.y < _fc_dod.w) {
    _fc_component(dst, uchar, _fc_pos.x, _fc_pos.y, _fc_c) 
       = clamp((unsigned char)((255U - 
                                _fc_component(src, uchar, _fc_pos.x, _fc_pos.y, _fc_c))),       
               (unsigned char)((0)), 
               (unsigned char)((255)));
  }
}

Equivalent generated CUDA kernel, one of 32 variants.

One Of Many Generated
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extern "C" void __global__ 
CUDA_GPU_InvertKernel_kernel_unsigned_char_1_unsigned_char_1(
             int4 const _fc_dod, int const _fc_c, 
             unsigned char const *const src, int4 const src_bounds, int3 const src_steps, 
             unsigned char *const dst, int4 const dst_bounds, int3 const dst_steps)
{
  int2 const _fc_pos = _fc_compute_pos();
  if (_fc_pos.x < _fc_dod.z && _fc_pos.y < _fc_dod.w) {
    _fc_component(dst, uchar, _fc_pos.x, _fc_pos.y, _fc_c) 
       = clamp((unsigned char)((255U - 
                                _fc_component(src, uchar, _fc_pos.x, _fc_pos.y, _fc_c))),       
               (unsigned char)((0)), 
               (unsigned char)((255)));
  }
}

Equivalent generated CUDA kernel, one of 32 variants.
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extern "C" void __global__ 
CUDA_GPU_InvertKernel_kernel_unsigned_char_1_unsigned_char_1(
             int4 const _fc_dod, int const _fc_c, 
             unsigned char const *const src, int4 const src_bounds, int3 const src_steps, 
             unsigned char *const dst, int4 const dst_bounds, int3 const dst_steps)
{
  int2 const _fc_pos = _fc_compute_pos();
  if (_fc_pos.x < _fc_dod.z && _fc_pos.y < _fc_dod.w) {
    _fc_component(dst, uchar, _fc_pos.x, _fc_pos.y, _fc_c) 
       = clamp((unsigned char)((255U - 
                                _fc_component(src, uchar, _fc_pos.x, _fc_pos.y, _fc_c))),       
               (unsigned char)((0)), 
               (unsigned char)((255)));
  }
}

Equivalent generated CUDA kernel, one of 32 variants.

Translate Function Body
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extern "C" void __global__ 
CUDA_GPU_InvertKernel_kernel_unsigned_char_1_unsigned_char_1(
             int4 const _fc_dod, int const _fc_c, 
             unsigned char const *const src, int4 const src_bounds, int3 const src_steps, 
             unsigned char *const dst, int4 const dst_bounds, int3 const dst_steps)
{
  int2 const _fc_pos = _fc_compute_pos();
  if (_fc_pos.x < _fc_dod.z && _fc_pos.y < _fc_dod.w) {
    _fc_component(dst, uchar, _fc_pos.x, _fc_pos.y, _fc_c) 
       = clamp((unsigned char)((255U - 
                                _fc_component(src, uchar, _fc_pos.x, _fc_pos.y, _fc_c))),       
               (unsigned char)((0)), 
               (unsigned char)((255)));
  }
}

Equivalent generated CUDA kernel, one of 32 variants.
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• C++ is a very rich and flexible language

– the reason we chose it to express our kernels

• However to code translate we only use restricted subset in a kernel

– native C types, e.g. int, float, char etc...

– ‘blessed’ types and functions, e.g. RIP::Vec2f, cos, fabs etc....

– any purely inlined function, POD type or simple class

– no recursion

• Aggregate types (ie: std::vector like) are a work in progress

Not Quite C++
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• Pattern of access at each point in iteration space is main abstraction

– ‘tap’ i.e. the current point

– 1D or 2D range around the current iteration position

– random access

• Read or Write

• Integer transforms 

– scale, rotate, translate, transpose, reverse,

• Edge conditions.

Access Pattern Specifications
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• The ‘easy’ case,

• Process zero or more input images to one or more output images,

– any number of inputs or outputs

– arbitrary access specifications on images

• can get very complex with the variety of access pattern we have

– no dependencies between points in the iteration space

“Ordinary” Kernels
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• Reductions combine all elements in a data structure in some way

– e.g. find the sum of all the pixels in an image

• RIP can perform associative reductions

– done via explicit RIP::Kernel::Reduction abstraction class

• Object being reduced into is given to the kernel

– making data independent to the kernel

• Allows for appropriate parallelisation on each device

– including shared memory usage on the GPU

Reductions
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class SumKernel : public Kernel1<eComponentWise,
                                 AccessSpec<TapAccess, eRead, eComponentWise> >
                , public Reduction<PerComponentReductionData<float> >
{
  public:
    template <class SRC>
    void reduce(SRC &src,
                PerComponentReductionData<float> &reductionData,
                const IterationPosition &pos) const
    {
      reductionData.addSample(pos.component(), float(*src));
    }
}

Summation Reduction Code Example
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class SumKernel : public Kernel1<eComponentWise,
                                 AccessSpec<TapAccess, eRead, eComponentWise> >
                , public Reduction<PerComponentReductionData<float> >
{
  public:
    template <class SRC>
    void reduce(SRC &src,
                PerComponentReductionData<float> &reductionData,
                const IterationPosition &pos) const
    {
      reductionData.addSample(pos.component(), float(*src));
    }
}

Summation Reduction Code Example

Class Decorator Specifing Reduction Type
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class SumKernel : public Kernel1<eComponentWise,
                                 AccessSpec<TapAccess, eRead, eComponentWise> >
                , public Reduction<PerComponentReductionData<float> >
{
  public:
    template <class SRC>
    void reduce(SRC &src,
                PerComponentReductionData<float> &reductionData,
                const IterationPosition &pos) const
    {
      reductionData.addSample(pos.component(), float(*src));
    }
}

Summation Reduction Code Example
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class SumKernel : public Kernel1<eComponentWise,
                                 AccessSpec<TapAccess, eRead, eComponentWise> >
                , public Reduction<PerComponentReductionData<float> >
{
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    template <class SRC>
    void reduce(SRC &src,
                PerComponentReductionData<float> &reductionData,
                const IterationPosition &pos) const
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      reductionData.addSample(pos.component(), float(*src));
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}

Summation Reduction Code Example

Reduction Object Is A Parameter
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GPUs Divide and Conquer

CPUs Accumulate
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• Floating point precision is finite, 

– which means (a+b)+(c+d) != ((a+b)+c)+d

• GPUs and CPUs join their data in different orders

• So CPUs and GPUs reductions will produce different results

– same problem for parallel reduce on multicore CPUs

• Main source of uncontrollable divergence between devices

• In practice, not that big an issue however, but must be aware of it

Problems with Reductions
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• RIP allows for data carry between points in the iteration space

– classic use case is the rolling buffer box blur

– which can make points in iteration space interdependent

• We make a distinction between 

– local carries, eg: box blur

– full carries, some analysis algorithms

Carry Dependencies I
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• Again, explicitly declare type of data being carried

• Kernels can access images and carried data at each point in iteration

• Carried data has an initialisation window and carry range

• Allows automatic partitioning of the parallelisation

– for small windows, can parallelise per pixel on GPU

• by ‘running up’ at each, and writing data out

– always drag data along row/column on CPU

• Whole row data carries have poorer partitioning 

Carry Dependencies II
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class BoxBlurKernel : public Kernel2<eComponentWise,
                                     AccessSpec<Ranged1DAccess, eRead, eComponentWise, ClampedEdge>,
                                     AccessSpec<TapAccess, eWrite, eComponentWise> >
                    , public Rolling<float>
{ 
  void initialiseRollingData(float &rollingData,
                             const IterationPosition &pos) 
  { rollingData = 0; }
  
  template<class SRC, class DST>
  void rollingRunup(SRC &src, DSTACCESS &dst, float &rollingData,
                    int runupPosition, const IterationPosition &pos)
  { rollingData += src(runupPosition, pos.component()); }

  template <class SRC, class DST>
  void kernel(SRC &src, DST &dst, float &rollingData, 
              const IterationPosition &pos) 
  {
    float value = rollingData * _filterWidthInv;
    *dst = DSTACCESS::clamp(value);
    rollingData += float(src(_radius+1, pos.component()) - float(src(-_radius, pos.component()));
  }

protected :
  const int _radius;
  const float _filterWidthInv;
};
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• One of our core bits of IP

• Effectively per pixel tracking between images

– you get a vector per pixel indicating inter-image displacement

• Allows you to solve lots of problems in 2D VFX

– including ‘in-betweening’ to retime footage

• A large set of complex algorithms

• Impossible to do with GP-GPU techniques

• Implemented on RIP framework

About Motion Estimation
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• Complex set of algorithms that needed 33 RIP kernels to implement

• On a 4 Core Xeon E5504@2GHz,10:1 retime of SD footage achieve 5 fps

– no SSE path yet, will go faster when we do

• On a Quadro 5000 we achieve 200fps!

– including host to GPU device transfer

• Thorny issue, the pictures are different between CPU and GPU

– because of a ‘push’ algorithm

– which is a problem anyway on a multicore CPU

– could fix via atomics, but at a large compute cost

Implementing Motion Estimation In RIP
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• In practice computation bottlenecks simply get moved

– our retimer can compute SD at around 200fps on a Quadro 5000

– as a plugin to After Effects, it peaks at around 15fps

• Amdhal’s law has kicked in

– for VFX, file i/o is a big part of the serial computation

• So do as much computation as possible while in memory

– but CPU apps attempt to do that

Moving Bottlenecks
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• Code translate all kernels type and accessors

– all transformations and large reductions

• Complete implementation of a processing graph

– to manage tiled image rendering for large data sets

– as a harness for kernel fusion

• Complete SSE support on CPU

Near Term Future Work
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• Run time translation of kernels

– requires run time compilers for CPU and GPU

• Inter-kernel optimisations

– data dependencies allows for ‘simple’ low level kernel fusion

• which reduces memory traffic = higher performance

• hard cases as well (eg: chained set of ranged access kernels)

– e.g. loop fusion of ranged accessors via array contraction

– Proof of concept via collaboration with Imperial College London

Future Research
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• We were much more ambitious that we thought

• Clang/LLVM rocks (basis of our parsing)

• You still need to know about the hardware

• Breaking CPU/GPU agreement is occasionally necessary

– provided you know why and where you are doing it

• It is sometimes necessary to write separate GPU and CPU paths

• Run time compilation is essential for where we want to take this

• OpenCL on its own isn’t what you need

What We’ve Learnt
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