
Visual Effects Softwarewww.thefoundry.co.uk

Developing GPU Enabled Visual
Effects For Film And Video

Bruno Nicoletti

Founder and CTO

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

• I am the founder and CTO of The Foundry

• Worked in CG and VFX since completing my CS degree in 1987

– when you rolled your own

• Worked in production on effects and animations

– Zap, Rushes, Computer Film Company, Animal Logic

• Worked at software houses making commercial VFX software

– Discreet Logic, Softimage, Animal Logic

• Since starting The Foundry, concentrated on image processing for VFX

About Me

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

• The Foundry is a developer of VFX software for film and TV

• Academy Award winning software used on 8 of the 10 highest grossing

movies of all time

• Main emphasis has been on compositing tools

– Nuke, Ocula, Furnace, Keylight

• Recently branching out

– Mari - CGI texture paint tool

– Katana - CGI lighting tool (still in development)

– Storm - realtime digital cinematography tool (still in development)

About The Foundry

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

• ‘Stuff’ done to images after live action shooting

• Pretty much all digital now

• Traditionally part of post-production, alongside editing etc...

• Not just giant killer robots and big explosions

– replacing practicals and live action elements

– used for fixup/repair/replacement

– used for mood

Visual Effects

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

Simplified Production Workflow

Script

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

Simplified Production Workflow

Script Preproduction

•Storyboarding
•Design
•Blocking
•Pre-vis
•Set Build

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

Simplified Production Workflow

Script Preproduction

•Storyboarding
•Design
•Blocking
•Pre-vis
•Set Build

Production

• Shooting stuff
• Review
• On-set vis

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

Simplified Production Workflow

Script Preproduction

•Storyboarding
•Design
•Blocking
•Pre-vis
•Set Build

Production

• Shooting stuff
• Review
• On-set vis

Postproduction

•Editing
•CGI
•Compositing
•Colour Grading

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

Simplified VFX Post Workflow

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

Simplified VFX Post Workflow

CGI

• Modelling
• Animation
• Simulation
• Rendering

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

Simplified VFX Post Workflow

Composite

• Painting
• Fix-ups
• Layering
• Effects

CGI

• Modelling
• Animation
• Simulation
• Rendering

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

Simplified VFX Post Workflow

Composite

• Painting
• Fix-ups
• Layering
• Effects

Grade

• Colour correct
• Simple effects

CGI

• Modelling
• Animation
• Simulation
• Rendering

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Movie of VFX Breakdown Goes Here

Avatar Breakdown, Courtesy of Twentieth Century Fox and Weta Digtal
Thursday, September 23, 2010

Movie of VFX Breakdown Goes Here

Avatar Breakdown, Courtesy of Twentieth Century Fox and Weta Digtal
Thursday, September 23, 2010

Visual Effects Softwarewww.thefoundry.co.uk

• Highly collaborative

– many people working on many stages of the production

• Highly pipelined

– modelling feeds to animation feeds to rendering feeds to comp

• Highly iterative

– many passes required to achieve the final results

– iterative both within and between stages

VFX Workflows I

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

VFX Workflows II

Supervisor Render Farm ReviewArtist

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

• In larger houses, artists tend to be specialised

• In smaller shops, tend to be more generalists

• Typically equipped with a high spec workstation

– big CPU, big GPU and big disks

• Sits on a fast network with SANs and access to a render farm

• Puts project together, and previews several frames

– low latency is key

• Batches rest of sequence off to render farm to finish

Artists

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

• Terabytes of data and days of compute can go into a single frame

– throughput is key

• Currently achieved by servers, and lots of them

– Weta Digital used 40,000 cores to render Avatar

• Simulation, CGI and compositing computed on render farms

• CPUs are almost exclusively used for rendering

– early days for GPU rendering software

– will be hard to GPU everything, CPUs here for a while yet

Rendering

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

• We have little control over the hardware our users buy

– unlike a dedicated HPC centre

• They have a varied set of computers including...

– workstations with big GPUs and big CPUs

– render farms with no GPUs and big CPUs

– laptops with incy CPUs and smaller GPUs

– everything between

• They expect our software to make the same pictures on all of them

VFX Compute Ecosystems

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

• Increased performance from GPUs is starting to...

– reducing time and cost of render/review iterations

– give ‘realtime’ VFX in some cases, removing the need for renders

– allow for more complex effects

• render times seem to stay constant despite the available FLOPs

– allow VFX to be used more pervasively throughout production

– blurs stages of production

• post increasingly being brought into production

What GPUs are doing to VFX

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

• Currently specialise in image processing for compositing

– Nuke - feature rich compositing application

• Specialist plug-in created by dedicated research team

– Furnace - motion estimation based tools for compositing

– Ocula - tools for stereo compositing

– CameraTracker - computes camera position in live action shot

• Mostly CPU based, but we are starting to exploit the GPU

• Also being used in pre-production and actual production

The Foundry’s Compositing Software

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

• Advent of CUDA/OpenCL has allowed for complex image processing

– many algorithms not possible with GPGPU approach

– e.g. motion estimation, a key piece of Foundry IP

• We have a fantastic opportunity to improve our software

– to reduce latency for the artist

– to increase throughput on renders

– use it in new situations

– do cool new stuff

GPUs Come of Age For Image Processing

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

• Why not ‘dive-in’ and develop GPU enabled effects?

• We have to have a CPU compute path

– for CPU based render farms

– for old or slow GPUs

• CPUs have FLOPs we should use even if there is a decent GPU

• CPU and GPU results must agree

– not truly possible due to nature of the hardware

– visually indistinguishable is the metric we want

Developing GPU Enabled Effects I

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

• Writing separate CPU and GPU implementations is

– twice the effort to implement

– easy enough for simple algos to agree, e.g. brightness effect

– practically impossible to make sure complicated algorithms agree

• where much of our bread and butter is

– horribly difficult to debug and maintain agreement

Developing GPU Enabled Effects II

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

• Getting peak performance is a specialist task

– You need to do it differently per device

– Hand optimisation gets in the way of writing algorithms

– My researchers aren’t performance engineers

• How do you deal with new hardware or new optimisation techniques?

– Hand crafting code locks you in

– Need to individually recode everything = expensive

Developing GPU Enabled Effects III

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

• We have hundreds of effects and millions of lines of code

• Will need to rewrite all of them to exploit GPUs

• An ad-hoc approach to exploiting GPUs will not scale

– it be slow to deliver anything

– it would increase development costs

– it would be a nightmare to maintain

• So we chose not to go that route

Don’t Go There

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

• Or “Righteous Image Processing”, RIP, as we call it internally

• Project to deliver a multi-device image processing framework

• Allows us to exploit GPUs and CPUs and avoid those problems

• Based on work done with Imperial College London

• And it works

– we have shipping software based on it

– the gnomes at home are writing more as I speak

Introducing ‘Blink’

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

• RIP wraps image processing up into a high level C++ API

• Programmer writes special C++ classes to do their work

• These are device independent and clear expressions of an algorithm

• At compile time, we translate those classes into specific

implementations for each device we support

• Programmer can also run untranslated kernel as-is on the CPU,

– for easy debugging and development

RIP Overview

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

RIP Workflow

NVidia
GPU CUDA 1.2

x86 CPU SSE

RIP C++ High
Level Kernel

Run As Is On
CPU

Develop and Debug Optimised Execution

Translate

NVidia
GPU CUDA 2.0

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

• OpenCL gives you a multi-device programming framework

• But memory and compute behave different between devices

– you can’t forget that with OpenCL

• To get any performance, you still need to code differently per device

• OpenCL makes a good back end for RIP however

– but still a young technology with immature drivers

Doesn’t OpenCL Do That?

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

• Parallelism is where all the FLOPs now are

• Algorithm’s data dependence is what constrains its parallelism

• Traditional implementations obscure that data dependence

• Making data dependence explicit = analysis free knowledge of

parallelism

• Knowing that you can

– map algorithm to devices in appropriate manner

– allows for inter algorithm optimisations

Data Dependence Is Key To Parallelism

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

• Purely for image processing

• Application of map/reduce for that domain, with some extras

• Access to all data is abstracted and made explicit

– images

– reductions

– carry dependence

• Programmer never given direct access to or ownership of the data

– always controlled by the framework

RIP Basic Design

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

• Abstraction of a single pass image processing operation

• Implicit 3D iteration space, (X and Y ranges + N components)

• Explicit declaration of how data is accessed at each point in space

– rich set of access specifications

• A function is executed once at each point in the iteration space

– in which you only have restricted access to data

– and read only access to class members

• A bit like a high level version of a GPU kernel for image processing

RIP Kernel

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

class InvertKernel : public Kernel2<eComponentWise,
 AccessSpec<TapAccess, eRead, eComponentWise>,
 AccessSpec<TapAccess, eWrite, eComponentWise> >
{
public:
 template <class SRC, class DST>
 void kernel(SRC &src, DST &dst, const IterationPosition &)
 {
 *dst = DST::clamp(DST::kWhitePoint - *src);
 }
};

void InvertImage(Compute::Image &source, Compute::Image &destination)
{
 InvertKernel inverter;
 destination.device().iterate(inverter, source, destination);
}

Trivial Example

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

class InvertKernel : public Kernel2<eComponentWise,
 AccessSpec<TapAccess, eRead, eComponentWise>,
 AccessSpec<TapAccess, eWrite, eComponentWise> >
{
public:
 template <class SRC, class DST>
 void kernel(SRC &src, DST &dst, const IterationPosition &)
 {
 *dst = DST::clamp(DST::kWhitePoint - *src);
 }
};

void InvertImage(Compute::Image &source, Compute::Image &destination)
{
 InvertKernel inverter;
 destination.device().iterate(inverter, source, destination);
}

Trivial Example

Access Spec

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

class InvertKernel : public Kernel2<eComponentWise,
 AccessSpec<TapAccess, eRead, eComponentWise>,
 AccessSpec<TapAccess, eWrite, eComponentWise> >
{
public:
 template <class SRC, class DST>
 void kernel(SRC &src, DST &dst, const IterationPosition &)
 {
 *dst = DST::clamp(DST::kWhitePoint - *src);
 }
};

void InvertImage(Compute::Image &source, Compute::Image &destination)
{
 InvertKernel inverter;
 destination.device().iterate(inverter, source, destination);
}

Trivial Example

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

class InvertKernel : public Kernel2<eComponentWise,
 AccessSpec<TapAccess, eRead, eComponentWise>,
 AccessSpec<TapAccess, eWrite, eComponentWise> >
{
public:
 template <class SRC, class DST>
 void kernel(SRC &src, DST &dst, const IterationPosition &)
 {
 *dst = DST::clamp(DST::kWhitePoint - *src);
 }
};

void InvertImage(Compute::Image &source, Compute::Image &destination)
{
 InvertKernel inverter;
 destination.device().iterate(inverter, source, destination);
}

Trivial Example

Kernel Body

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

class InvertKernel : public Kernel2<eComponentWise,
 AccessSpec<TapAccess, eRead, eComponentWise>,
 AccessSpec<TapAccess, eWrite, eComponentWise> >
{
public:
 template <class SRC, class DST>
 void kernel(SRC &src, DST &dst, const IterationPosition &)
 {
 *dst = DST::clamp(DST::kWhitePoint - *src);
 }
};

void InvertImage(Compute::Image &source, Compute::Image &destination)
{
 InvertKernel inverter;
 destination.device().iterate(inverter, source, destination);
}

Trivial Example

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

class InvertKernel : public Kernel2<eComponentWise,
 AccessSpec<TapAccess, eRead, eComponentWise>,
 AccessSpec<TapAccess, eWrite, eComponentWise> >
{
public:
 template <class SRC, class DST>
 void kernel(SRC &src, DST &dst, const IterationPosition &)
 {
 *dst = DST::clamp(DST::kWhitePoint - *src);
 }
};

void InvertImage(Compute::Image &source, Compute::Image &destination)
{
 InvertKernel inverter;
 destination.device().iterate(inverter, source, destination);
}

Trivial Example

Accessors

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

class InvertKernel : public Kernel2<eComponentWise,
 AccessSpec<TapAccess, eRead, eComponentWise>,
 AccessSpec<TapAccess, eWrite, eComponentWise> >
{
public:
 template <class SRC, class DST>
 void kernel(SRC &src, DST &dst, const IterationPosition &)
 {
 *dst = DST::clamp(DST::kWhitePoint - *src);
 }
};

void InvertImage(Compute::Image &source, Compute::Image &destination)
{
 InvertKernel inverter;
 destination.device().iterate(inverter, source, destination);
}

Trivial Example

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

extern "C" void __global__
CUDA_GPU_InvertKernel_kernel_unsigned_char_1_unsigned_char_1(
 int4 const _fc_dod, int const _fc_c,
 unsigned char const *const src, int4 const src_bounds, int3 const src_steps,
 unsigned char *const dst, int4 const dst_bounds, int3 const dst_steps)
{
 int2 const _fc_pos = _fc_compute_pos();
 if (_fc_pos.x < _fc_dod.z && _fc_pos.y < _fc_dod.w) {
 _fc_component(dst, uchar, _fc_pos.x, _fc_pos.y, _fc_c)
 = clamp((unsigned char)((255U -
 _fc_component(src, uchar, _fc_pos.x, _fc_pos.y, _fc_c))),
 (unsigned char)((0)),
 (unsigned char)((255)));
 }
}

Equivalent generated CUDA kernel, one of 32 variants.

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

extern "C" void __global__
CUDA_GPU_InvertKernel_kernel_unsigned_char_1_unsigned_char_1(
 int4 const _fc_dod, int const _fc_c,
 unsigned char const *const src, int4 const src_bounds, int3 const src_steps,
 unsigned char *const dst, int4 const dst_bounds, int3 const dst_steps)
{
 int2 const _fc_pos = _fc_compute_pos();
 if (_fc_pos.x < _fc_dod.z && _fc_pos.y < _fc_dod.w) {
 _fc_component(dst, uchar, _fc_pos.x, _fc_pos.y, _fc_c)
 = clamp((unsigned char)((255U -
 _fc_component(src, uchar, _fc_pos.x, _fc_pos.y, _fc_c))),
 (unsigned char)((0)),
 (unsigned char)((255)));
 }
}

Equivalent generated CUDA kernel, one of 32 variants.

One Of Many Generated

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

extern "C" void __global__
CUDA_GPU_InvertKernel_kernel_unsigned_char_1_unsigned_char_1(
 int4 const _fc_dod, int const _fc_c,
 unsigned char const *const src, int4 const src_bounds, int3 const src_steps,
 unsigned char *const dst, int4 const dst_bounds, int3 const dst_steps)
{
 int2 const _fc_pos = _fc_compute_pos();
 if (_fc_pos.x < _fc_dod.z && _fc_pos.y < _fc_dod.w) {
 _fc_component(dst, uchar, _fc_pos.x, _fc_pos.y, _fc_c)
 = clamp((unsigned char)((255U -
 _fc_component(src, uchar, _fc_pos.x, _fc_pos.y, _fc_c))),
 (unsigned char)((0)),
 (unsigned char)((255)));
 }
}

Equivalent generated CUDA kernel, one of 32 variants.

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

extern "C" void __global__
CUDA_GPU_InvertKernel_kernel_unsigned_char_1_unsigned_char_1(
 int4 const _fc_dod, int const _fc_c,
 unsigned char const *const src, int4 const src_bounds, int3 const src_steps,
 unsigned char *const dst, int4 const dst_bounds, int3 const dst_steps)
{
 int2 const _fc_pos = _fc_compute_pos();
 if (_fc_pos.x < _fc_dod.z && _fc_pos.y < _fc_dod.w) {
 _fc_component(dst, uchar, _fc_pos.x, _fc_pos.y, _fc_c)
 = clamp((unsigned char)((255U -
 _fc_component(src, uchar, _fc_pos.x, _fc_pos.y, _fc_c))),
 (unsigned char)((0)),
 (unsigned char)((255)));
 }
}

Equivalent generated CUDA kernel, one of 32 variants.

Translate Function Body

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

extern "C" void __global__
CUDA_GPU_InvertKernel_kernel_unsigned_char_1_unsigned_char_1(
 int4 const _fc_dod, int const _fc_c,
 unsigned char const *const src, int4 const src_bounds, int3 const src_steps,
 unsigned char *const dst, int4 const dst_bounds, int3 const dst_steps)
{
 int2 const _fc_pos = _fc_compute_pos();
 if (_fc_pos.x < _fc_dod.z && _fc_pos.y < _fc_dod.w) {
 _fc_component(dst, uchar, _fc_pos.x, _fc_pos.y, _fc_c)
 = clamp((unsigned char)((255U -
 _fc_component(src, uchar, _fc_pos.x, _fc_pos.y, _fc_c))),
 (unsigned char)((0)),
 (unsigned char)((255)));
 }
}

Equivalent generated CUDA kernel, one of 32 variants.

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

• C++ is a very rich and flexible language

– the reason we chose it to express our kernels

• However to code translate we only use restricted subset in a kernel

– native C types, e.g. int, float, char etc...

– ‘blessed’ types and functions, e.g. RIP::Vec2f, cos, fabs etc....

– any purely inlined function, POD type or simple class

– no recursion

• Aggregate types (ie: std::vector like) are a work in progress

Not Quite C++

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

• Pattern of access at each point in iteration space is main abstraction

– ‘tap’ i.e. the current point

– 1D or 2D range around the current iteration position

– random access

• Read or Write

• Integer transforms

– scale, rotate, translate, transpose, reverse,

• Edge conditions.

Access Pattern Specifications

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

• The ‘easy’ case,

• Process zero or more input images to one or more output images,

– any number of inputs or outputs

– arbitrary access specifications on images

• can get very complex with the variety of access pattern we have

– no dependencies between points in the iteration space

“Ordinary” Kernels

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

• Reductions combine all elements in a data structure in some way

– e.g. find the sum of all the pixels in an image

• RIP can perform associative reductions

– done via explicit RIP::Kernel::Reduction abstraction class

• Object being reduced into is given to the kernel

– making data independent to the kernel

• Allows for appropriate parallelisation on each device

– including shared memory usage on the GPU

Reductions

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

class SumKernel : public Kernel1<eComponentWise,
 AccessSpec<TapAccess, eRead, eComponentWise> >
 , public Reduction<PerComponentReductionData<float> >
{
 public:
 template <class SRC>
 void reduce(SRC &src,
 PerComponentReductionData<float> &reductionData,
 const IterationPosition &pos) const
 {
 reductionData.addSample(pos.component(), float(*src));
 }
}

Summation Reduction Code Example

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

class SumKernel : public Kernel1<eComponentWise,
 AccessSpec<TapAccess, eRead, eComponentWise> >
 , public Reduction<PerComponentReductionData<float> >
{
 public:
 template <class SRC>
 void reduce(SRC &src,
 PerComponentReductionData<float> &reductionData,
 const IterationPosition &pos) const
 {
 reductionData.addSample(pos.component(), float(*src));
 }
}

Summation Reduction Code Example

Class Decorator Specifing Reduction Type

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

class SumKernel : public Kernel1<eComponentWise,
 AccessSpec<TapAccess, eRead, eComponentWise> >
 , public Reduction<PerComponentReductionData<float> >
{
 public:
 template <class SRC>
 void reduce(SRC &src,
 PerComponentReductionData<float> &reductionData,
 const IterationPosition &pos) const
 {
 reductionData.addSample(pos.component(), float(*src));
 }
}

Summation Reduction Code Example

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

class SumKernel : public Kernel1<eComponentWise,
 AccessSpec<TapAccess, eRead, eComponentWise> >
 , public Reduction<PerComponentReductionData<float> >
{
 public:
 template <class SRC>
 void reduce(SRC &src,
 PerComponentReductionData<float> &reductionData,
 const IterationPosition &pos) const
 {
 reductionData.addSample(pos.component(), float(*src));
 }
}

Summation Reduction Code Example

Reduction Object Is A Parameter

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

class SumKernel : public Kernel1<eComponentWise,
 AccessSpec<TapAccess, eRead, eComponentWise> >
 , public Reduction<PerComponentReductionData<float> >
{
 public:
 template <class SRC>
 void reduce(SRC &src,
 PerComponentReductionData<float> &reductionData,
 const IterationPosition &pos) const
 {
 reductionData.addSample(pos.component(), float(*src));
 }
}

Summation Reduction Code Example

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

GPUs Divide and Conquer

CPUs Accumulate

5 2 3 4 1 8 7 6

7 7 9 13

14 22

36

7 10 14 15 23 30 365

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

• Floating point precision is finite,

– which means (a+b)+(c+d) != ((a+b)+c)+d

• GPUs and CPUs join their data in different orders

• So CPUs and GPUs reductions will produce different results

– same problem for parallel reduce on multicore CPUs

• Main source of uncontrollable divergence between devices

• In practice, not that big an issue however, but must be aware of it

Problems with Reductions

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

• RIP allows for data carry between points in the iteration space

– classic use case is the rolling buffer box blur

– which can make points in iteration space interdependent

• We make a distinction between

– local carries, eg: box blur

– full carries, some analysis algorithms

Carry Dependencies I

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Input-2 -1

Iteration Space

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Output

Initialise Rolling Buffer

Visual Effects Softwarewww.thefoundry.co.uk

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Input-2 -1

Iteration Space

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Output

Initialise Rolling Buffer

Initialisation Window

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Input-2 -1

Iteration Space

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Output

Write result

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Input-2 -1

Iteration Space

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Output

AddSubtract

Advance Rolling Buffer

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Input-2 -1

Iteration Space

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Output

Write result

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Input-2 -1

Iteration Space

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Output

AddSubtract

Advance Rolling Buffer

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Input-2 -1

Iteration Space

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Output

Write result

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

• Again, explicitly declare type of data being carried

• Kernels can access images and carried data at each point in iteration

• Carried data has an initialisation window and carry range

• Allows automatic partitioning of the parallelisation

– for small windows, can parallelise per pixel on GPU

• by ‘running up’ at each, and writing data out

– always drag data along row/column on CPU

• Whole row data carries have poorer partitioning

Carry Dependencies II

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

class BoxBlurKernel : public Kernel2<eComponentWise,
 AccessSpec<Ranged1DAccess, eRead, eComponentWise, ClampedEdge>,
 AccessSpec<TapAccess, eWrite, eComponentWise> >
 , public Rolling<float>
{
 void initialiseRollingData(float &rollingData,
 const IterationPosition &pos)
 { rollingData = 0; }

 template<class SRC, class DST>
 void rollingRunup(SRC &src, DSTACCESS &dst, float &rollingData,
 int runupPosition, const IterationPosition &pos)
 { rollingData += src(runupPosition, pos.component()); }

 template <class SRC, class DST>
 void kernel(SRC &src, DST &dst, float &rollingData,
 const IterationPosition &pos)
 {
 float value = rollingData * _filterWidthInv;
 *dst = DSTACCESS::clamp(value);
 rollingData += float(src(_radius+1, pos.component()) - float(src(-_radius, pos.component()));
 }

protected :
 const int _radius;
 const float _filterWidthInv;
};

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

class BoxBlurKernel : public Kernel2<eComponentWise,
 AccessSpec<Ranged1DAccess, eRead, eComponentWise, ClampedEdge>,
 AccessSpec<TapAccess, eWrite, eComponentWise> >
 , public Rolling<float>
{
 void initialiseRollingData(float &rollingData,
 const IterationPosition &pos)
 { rollingData = 0; }

 template<class SRC, class DST>
 void rollingRunup(SRC &src, DSTACCESS &dst, float &rollingData,
 int runupPosition, const IterationPosition &pos)
 { rollingData += src(runupPosition, pos.component()); }

 template <class SRC, class DST>
 void kernel(SRC &src, DST &dst, float &rollingData,
 const IterationPosition &pos)
 {
 float value = rollingData * _filterWidthInv;
 *dst = DSTACCESS::clamp(value);
 rollingData += float(src(_radius+1, pos.component()) - float(src(-_radius, pos.component()));
 }

protected :
 const int _radius;
 const float _filterWidthInv;
};

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

class BoxBlurKernel : public Kernel2<eComponentWise,
 AccessSpec<Ranged1DAccess, eRead, eComponentWise, ClampedEdge>,
 AccessSpec<TapAccess, eWrite, eComponentWise> >
 , public Rolling<float>
{
 void initialiseRollingData(float &rollingData,
 const IterationPosition &pos)
 { rollingData = 0; }

 template<class SRC, class DST>
 void rollingRunup(SRC &src, DSTACCESS &dst, float &rollingData,
 int runupPosition, const IterationPosition &pos)
 { rollingData += src(runupPosition, pos.component()); }

 template <class SRC, class DST>
 void kernel(SRC &src, DST &dst, float &rollingData,
 const IterationPosition &pos)
 {
 float value = rollingData * _filterWidthInv;
 *dst = DSTACCESS::clamp(value);
 rollingData += float(src(_radius+1, pos.component()) - float(src(-_radius, pos.component()));
 }

protected :
 const int _radius;
 const float _filterWidthInv;
};

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

class BoxBlurKernel : public Kernel2<eComponentWise,
 AccessSpec<Ranged1DAccess, eRead, eComponentWise, ClampedEdge>,
 AccessSpec<TapAccess, eWrite, eComponentWise> >
 , public Rolling<float>
{
 void initialiseRollingData(float &rollingData,
 const IterationPosition &pos)
 { rollingData = 0; }

 template<class SRC, class DST>
 void rollingRunup(SRC &src, DSTACCESS &dst, float &rollingData,
 int runupPosition, const IterationPosition &pos)
 { rollingData += src(runupPosition, pos.component()); }

 template <class SRC, class DST>
 void kernel(SRC &src, DST &dst, float &rollingData,
 const IterationPosition &pos)
 {
 float value = rollingData * _filterWidthInv;
 *dst = DSTACCESS::clamp(value);
 rollingData += float(src(_radius+1, pos.component()) - float(src(-_radius, pos.component()));
 }

protected :
 const int _radius;
 const float _filterWidthInv;
};

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

class BoxBlurKernel : public Kernel2<eComponentWise,
 AccessSpec<Ranged1DAccess, eRead, eComponentWise, ClampedEdge>,
 AccessSpec<TapAccess, eWrite, eComponentWise> >
 , public Rolling<float>
{
 void initialiseRollingData(float &rollingData,
 const IterationPosition &pos)
 { rollingData = 0; }

 template<class SRC, class DST>
 void rollingRunup(SRC &src, DSTACCESS &dst, float &rollingData,
 int runupPosition, const IterationPosition &pos)
 { rollingData += src(runupPosition, pos.component()); }

 template <class SRC, class DST>
 void kernel(SRC &src, DST &dst, float &rollingData,
 const IterationPosition &pos)
 {
 float value = rollingData * _filterWidthInv;
 *dst = DSTACCESS::clamp(value);
 rollingData += float(src(_radius+1, pos.component()) - float(src(-_radius, pos.component()));
 }

protected :
 const int _radius;
 const float _filterWidthInv;
};

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

class BoxBlurKernel : public Kernel2<eComponentWise,
 AccessSpec<Ranged1DAccess, eRead, eComponentWise, ClampedEdge>,
 AccessSpec<TapAccess, eWrite, eComponentWise> >
 , public Rolling<float>
{
 void initialiseRollingData(float &rollingData,
 const IterationPosition &pos)
 { rollingData = 0; }

 template<class SRC, class DST>
 void rollingRunup(SRC &src, DSTACCESS &dst, float &rollingData,
 int runupPosition, const IterationPosition &pos)
 { rollingData += src(runupPosition, pos.component()); }

 template <class SRC, class DST>
 void kernel(SRC &src, DST &dst, float &rollingData,
 const IterationPosition &pos)
 {
 float value = rollingData * _filterWidthInv;
 *dst = DSTACCESS::clamp(value);
 rollingData += float(src(_radius+1, pos.component()) - float(src(-_radius, pos.component()));
 }

protected :
 const int _radius;
 const float _filterWidthInv;
};

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

class BoxBlurKernel : public Kernel2<eComponentWise,
 AccessSpec<Ranged1DAccess, eRead, eComponentWise, ClampedEdge>,
 AccessSpec<TapAccess, eWrite, eComponentWise> >
 , public Rolling<float>
{
 void initialiseRollingData(float &rollingData,
 const IterationPosition &pos)
 { rollingData = 0; }

 template<class SRC, class DST>
 void rollingRunup(SRC &src, DSTACCESS &dst, float &rollingData,
 int runupPosition, const IterationPosition &pos)
 { rollingData += src(runupPosition, pos.component()); }

 template <class SRC, class DST>
 void kernel(SRC &src, DST &dst, float &rollingData,
 const IterationPosition &pos)
 {
 float value = rollingData * _filterWidthInv;
 *dst = DSTACCESS::clamp(value);
 rollingData += float(src(_radius+1, pos.component()) - float(src(-_radius, pos.component()));
 }

protected :
 const int _radius;
 const float _filterWidthInv;
};

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

class BoxBlurKernel : public Kernel2<eComponentWise,
 AccessSpec<Ranged1DAccess, eRead, eComponentWise, ClampedEdge>,
 AccessSpec<TapAccess, eWrite, eComponentWise> >
 , public Rolling<float>
{
 void initialiseRollingData(float &rollingData,
 const IterationPosition &pos)
 { rollingData = 0; }

 template<class SRC, class DST>
 void rollingRunup(SRC &src, DSTACCESS &dst, float &rollingData,
 int runupPosition, const IterationPosition &pos)
 { rollingData += src(runupPosition, pos.component()); }

 template <class SRC, class DST>
 void kernel(SRC &src, DST &dst, float &rollingData,
 const IterationPosition &pos)
 {
 float value = rollingData * _filterWidthInv;
 *dst = DSTACCESS::clamp(value);
 rollingData += float(src(_radius+1, pos.component()) - float(src(-_radius, pos.component()));
 }

protected :
 const int _radius;
 const float _filterWidthInv;
};

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

class BoxBlurKernel : public Kernel2<eComponentWise,
 AccessSpec<Ranged1DAccess, eRead, eComponentWise, ClampedEdge>,
 AccessSpec<TapAccess, eWrite, eComponentWise> >
 , public Rolling<float>
{
 void initialiseRollingData(float &rollingData,
 const IterationPosition &pos)
 { rollingData = 0; }

 template<class SRC, class DST>
 void rollingRunup(SRC &src, DSTACCESS &dst, float &rollingData,
 int runupPosition, const IterationPosition &pos)
 { rollingData += src(runupPosition, pos.component()); }

 template <class SRC, class DST>
 void kernel(SRC &src, DST &dst, float &rollingData,
 const IterationPosition &pos)
 {
 float value = rollingData * _filterWidthInv;
 *dst = DSTACCESS::clamp(value);
 rollingData += float(src(_radius+1, pos.component()) - float(src(-_radius, pos.component()));
 }

protected :
 const int _radius;
 const float _filterWidthInv;
};

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

class BoxBlurKernel : public Kernel2<eComponentWise,
 AccessSpec<Ranged1DAccess, eRead, eComponentWise, ClampedEdge>,
 AccessSpec<TapAccess, eWrite, eComponentWise> >
 , public Rolling<float>
{
 void initialiseRollingData(float &rollingData,
 const IterationPosition &pos)
 { rollingData = 0; }

 template<class SRC, class DST>
 void rollingRunup(SRC &src, DSTACCESS &dst, float &rollingData,
 int runupPosition, const IterationPosition &pos)
 { rollingData += src(runupPosition, pos.component()); }

 template <class SRC, class DST>
 void kernel(SRC &src, DST &dst, float &rollingData,
 const IterationPosition &pos)
 {
 float value = rollingData * _filterWidthInv;
 *dst = DSTACCESS::clamp(value);
 rollingData += float(src(_radius+1, pos.component()) - float(src(-_radius, pos.component()));
 }

protected :
 const int _radius;
 const float _filterWidthInv;
};

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

class BoxBlurKernel : public Kernel2<eComponentWise,
 AccessSpec<Ranged1DAccess, eRead, eComponentWise, ClampedEdge>,
 AccessSpec<TapAccess, eWrite, eComponentWise> >
 , public Rolling<float>
{
 void initialiseRollingData(float &rollingData,
 const IterationPosition &pos)
 { rollingData = 0; }

 template<class SRC, class DST>
 void rollingRunup(SRC &src, DSTACCESS &dst, float &rollingData,
 int runupPosition, const IterationPosition &pos)
 { rollingData += src(runupPosition, pos.component()); }

 template <class SRC, class DST>
 void kernel(SRC &src, DST &dst, float &rollingData,
 const IterationPosition &pos)
 {
 float value = rollingData * _filterWidthInv;
 *dst = DSTACCESS::clamp(value);
 rollingData += float(src(_radius+1, pos.component()) - float(src(-_radius, pos.component()));
 }

protected :
 const int _radius;
 const float _filterWidthInv;
};

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

• One of our core bits of IP

• Effectively per pixel tracking between images

– you get a vector per pixel indicating inter-image displacement

• Allows you to solve lots of problems in 2D VFX

– including ‘in-betweening’ to retime footage

• A large set of complex algorithms

• Impossible to do with GP-GPU techniques

• Implemented on RIP framework

About Motion Estimation

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Images/Movie of motion estimation

Thursday, September 23, 2010

Images/Movie of motion estimation

Thursday, September 23, 2010

Images/Movie of motion estimation

Thursday, September 23, 2010

Images/Movie of motion estimation

Thursday, September 23, 2010

Images/Movie of motion estimation

Thursday, September 23, 2010

Visual Effects Softwarewww.thefoundry.co.uk

• Complex set of algorithms that needed 33 RIP kernels to implement

• On a 4 Core Xeon E5504@2GHz,10:1 retime of SD footage achieve 5 fps

– no SSE path yet, will go faster when we do

• On a Quadro 5000 we achieve 200fps!

– including host to GPU device transfer

• Thorny issue, the pictures are different between CPU and GPU

– because of a ‘push’ algorithm

– which is a problem anyway on a multicore CPU

– could fix via atomics, but at a large compute cost

Implementing Motion Estimation In RIP

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Thursday, September 23, 2010

Thursday, September 23, 2010

Visual Effects Softwarewww.thefoundry.co.uk

• In practice computation bottlenecks simply get moved

– our retimer can compute SD at around 200fps on a Quadro 5000

– as a plugin to After Effects, it peaks at around 15fps

• Amdhal’s law has kicked in

– for VFX, file i/o is a big part of the serial computation

• So do as much computation as possible while in memory

– but CPU apps attempt to do that

Moving Bottlenecks

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

• Code translate all kernels type and accessors

– all transformations and large reductions

• Complete implementation of a processing graph

– to manage tiled image rendering for large data sets

– as a harness for kernel fusion

• Complete SSE support on CPU

Near Term Future Work

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

• Run time translation of kernels

– requires run time compilers for CPU and GPU

• Inter-kernel optimisations

– data dependencies allows for ‘simple’ low level kernel fusion

• which reduces memory traffic = higher performance

• hard cases as well (eg: chained set of ranged access kernels)

– e.g. loop fusion of ranged accessors via array contraction

– Proof of concept via collaboration with Imperial College London

Future Research

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Visual Effects Softwarewww.thefoundry.co.uk

• We were much more ambitious that we thought

• Clang/LLVM rocks (basis of our parsing)

• You still need to know about the hardware

• Breaking CPU/GPU agreement is occasionally necessary

– provided you know why and where you are doing it

• It is sometimes necessary to write separate GPU and CPU paths

• Run time compilation is essential for where we want to take this

• OpenCL on its own isn’t what you need

What We’ve Learnt

Thursday, September 23, 2010

http://www.thefoundry.co.uk
http://www.thefoundry.co.uk

Finish with Foundry Show Reel

Thursday, September 23, 2010

