
GTRI_B-1

ECRB - HPC - 1

GPU VSIPL - 1

Introduction to GPU VSIPL

Dan Campbell*, Andrew Kerr+

*Georgia Tech Research Institute
+School of Electrical and Computer Engineering

dan.campbell@gtri.gatech.edu

23 September 2010

mailto:dan.campbell@gtri.gatech.edu

GTRI_B-2

ECRB - HPC - 2

GPU VSIPL - 2

Outline

• VSIPL Background

• Using VSIPL

• GPU VSIPL

• Conclusion

GTRI_B-3

ECRB - HPC - 3

GPU VSIPL - 3

VSIPL - Vector Signal Image Processing Library

• Portable API for linear algebra, image and signal
processing

• Aimed at Embedded / Desktop / Cluster environments

• Goal: Improve productivity, maintain performance

• High level math kernels  fewer lines of code

• No rewrite required to move platforms; rewrite to tune may be needed

• Scalable parallelism under the hood (map file -> automap)

• Fairly mature technology:

• Original API Specification approved April 2000, continued growth since

• Supported by DARPA in mid ’90s, Navy, AFRL, HPCMO, ODUSD (S&T)
transition support since; consortium effort

• Lots of demos, in fairly wide use:

• Aegis, JSF, others

• Historically 90%+ speed of hand-optimized

GTRI_B-4

ECRB - HPC - 4

GPU VSIPL - 4

VSIPL – Key Features

• Integrated memory model; direct, first-class
coherence controls

• Direct support for mathematical objects
• Scalars, vectors, matrices, tensors: first-class, lightweight objects attached

to heavyweight memory model
• Heavyweight state objects: e.g. FFT plan, QRD

• Flexible precision and type support: includes floating
point, fixed point, integer; complex, boolean, index

• Functional coverage driven by SP application needs &
architecture opportunities

• Basic math: operators, trig, clamps, exponents, max, etc
• Linear algebra: operators, scatter/gather, system solvers (LLS, QRD,

Covariance, Toeplitz, LUD, Cholesky, general, SVD)
• Signal Processing: FFT, Convolution/Correlation, Windowing, FIR/IIR Filters,

histograms, RNG
• Defined subsets: Core & Core Lite

GTRI_B-5

ECRB - HPC - 5

GPU VSIPL - 5

VSIPL – Further Information

VSIPL Website: http://www.vsipl.org

• Full API Specification Documents

• Reference Implementations

• VSIPL Implementation Validation Test Suite

• Profile Definitions

• Links to implementations

http://www.vsipl.org/

GTRI_B-6

ECRB - HPC - 6

GPU VSIPL - 6

Outline

• VSIPL Background

• Using VSIPL

• GPU VSIPL

• Conclusion

GTRI_B-7

ECRB - HPC - 7

GPU VSIPL - 7

VSIPL Memory Model

• Blocks are the primary memory abstraction

• Opaque representation of a dense array

• Portable, complete encapsulation of memory management

• All blocks have a type: int, float, boolean, etc; real or complex

• Optionally associated with app-supplied pointer

• Ownership state set via admit() & release(); controls coherence

• Views are the primary mathematical abstraction

• Opaque representation of math objects such as vectors, matrices

• All views have an underlying block (and thus fixed type)

• Mapped to block via offset, per-dimension stride and length

• May be remapped easily; mapping is lightweight

• All math functions operate on views; corresponding block must be in

admitted state

GTRI_B-8

ECRB - HPC - 8

GPU VSIPL - 8

VSIPL Blocks and Views

row
stride

column
stride

• Blocks

• Linear regions of contiguous elements

• int, float, complex – translated to interleaved format on block admit

• Owned by VSIPL – opaque to application

• Explicit admit and release operations implement VSIPL consistency model

• Views
• fundamental mathematical objects

• map elements of block into object

• offset, row stride, column stride, row length, column length

• subviews take slices of existing views

• enable flexible data layout

offset stride

row length

column
length

Matrix view Vector view

length

offset

GTRI_B-9

ECRB - HPC - 9

GPU VSIPL - 9

VSIPL Memory Model – Simple Example

vsip_scalar_f *d4 = malloc(sizeof(vsip_scalar_f)*LENGTH);

vsip_block_f *b4 = vsip_blockbind_f (d4, LENGTH, VSIP_MEM_NONE);

vsip_vview_f *v4 = vsip_vbind_f (b4, 0, 1, LENGTH);

vsip_vfill_f (1.0f, v4); /* This is an error! */

vsip_blockadmit_f (b4, VSIP_FALSE); /* No copy here */

vsip_vfill_f (1.0f, v4);

vsip_blockrelease_f (b4, VSIP_TRUE); /* Copies data to malloc’d array */

for (i=0; i<LENGTH; i++) printf (“%f “, d4[i]);

for (i=0; i<LENGTH; i++) d4[i] = 0.4f;

vsip_blockadmit_f (b4, VSIP_TRUE); /* Copy from user array */

for (i=0; i<LENGTH; i++) printf (“%f “, vsip_vget_f(v4, i));

GTRI_B-10

ECRB - HPC - 10

GPU VSIPL - 10

VSIPL Memory Model – Additional Elements

• Some operations leverage heavyweight state objects

• FFT

• Random Number Generator

• FIR/IIR

• Convolution/Correlation

• LU/QR/Cholesky/SV Decompositions

• Import / Export functionality

• Heavyweight state objects can be exported to memory for retention

• Exported objects not portable

GTRI_B-11

ECRB - HPC - 11

GPU VSIPL - 11

VSIPL Toy Example

#define LENGTH 10

vsip_vview_f *v1 = vsip_vcreate_f (LENGTH, VSIP_MEM_NONE);

vsip_block_f *b2 = vsip_blockcreate_f (LENGTH, VSIP_MEM_NONE);

vsip_vview_f *v2 = vsip_vbind_f (b2, 0, 1, LENGTH);

vsip_block_f *b3 = vsip_blockcreate_f (LENGTH*2+3, VSIP_MEM_NONE);

vsip_vview_f *v3 = vsip_vbind_f (b3, 3, 2, LENGTH);

vsip_vramp_f (0, 0.2f, v1);

vsip_vramp_f (1, -0.1f, v2);

vsip_vfill_f (-44.0f, v3);

vsip_vadd_f (v1, v2, v3);

for (i=0; i<LENGTH; i++) printf (“%f ”, vsip_vget_f(v3, i));

Output: 1.0 1.1 1.2 1.3 1.4 1.5………

GTRI_B-12

ECRB - HPC - 12

GPU VSIPL - 1212

Application Example: Range Doppler Map

• Simple Range/Doppler data visualization demo

• Intro app for new VSIPL programmer

• 53x Speedup TASP  GPU-VSIPL

• No changes to source code

Section
GTX480

Time (ms)

X5650
(1 core)

Time (ms) Speedup

Admit 0.81 0 0

Baseband 0.75 127.09 169

Zeropad 0.83 10.73 12.9

Fast time FFT .59 513.89 871

Multiply 14.01 13.13 0.93

Fast Time FFT-1 0.61 513.70 842

Slow time FFT, 2x CT 5.68 503.42 88.6

log10 |.|2 0.90 124.12 137.9

Release 9.36 0 0

Total: 33.82 1806.10 53.4

GTRI_B-13

ECRB - HPC - 13

GPU VSIPL - 13

VSIPL Example – RD Map 1

/* Admit input blocks for VSIPL processing */

vsip_blockadmit_f(d->data_if_block,VSIP_TRUE);

vsip_cblockadmit_f(d->filter_block,VSIP_TRUE);

/* Admit output & scratchpad blocks for VSIPL processing */

vsip_blockadmit_f(d->rd_map_mag_block,VSIP_FALSE);

vsip_cblockadmit_f(d->data_bb_block,VSIP_FALSE);

vsip_cblockadmit_f(d->data_padded_block,VSIP_FALSE);

/* Multiply IF signals by synthesized carriers */

vsip_rcvmul_f(d->data_if_vview,d->carrier_cvview,d->data_bb0_cvview);

/* Apply low-pass filters */

vsip_cfirflt_f(d->data_lpf_fir,d->data_bb0_cvview,d->data_bb_cvview);

/* Initialize padded data to zeros */

vsip_vfill_f((float)0,d->z_re_vview);

vsip_vfill_f((float)0,d->z_im_vview);

GTRI_B-14

ECRB - HPC - 14

GPU VSIPL - 14

VSIPL Example – RD Map 2

/* Copy data row-by-row from real input to complex workspace */

for(i = 0; i < p->num_pulses; i++) {

vsip_cvputoffset_f(d->data_bb_row_cvview,i*p->samples_per_pulse);

vsip_cvputoffset_f(d->z_short_row_cvview,i*p->num_range_bins);

vsip_cvcopy_f_f(d->data_bb_row_cvview,d->z_short_row_cvview);

}

/* Compute FFT of each pulse of the data */

vsip_ccfftmip_f(d->fft_plan_fast,d->z_cmview);

/* Multiply rows element-wise */

for(i = 0; i < p->num_doppler_bins; i++) {

vsip_cvputoffset_f(d->z_long_row_cvview,i*p->num_range_bins);

vsip_cvjmul_f(d->z_long_row_cvview,d->s_cvview,d->z_long_row_cvview);

}

/* Map Back to Range Domain (in fast-time dimension) */

vsip_ccfftmip_f(d->inv_fft_plan_fast,d->z_cmview);

GTRI_B-15

ECRB - HPC - 15

GPU VSIPL - 15

VSIPL Example – RD Map 3

/* Compute Slow Time FFT of Matched Filtered Data */

/* Transpose */

vsip_cmtrans_f(d->rd_map_cmview,d->rd_map_trans_cmview);

/* Compute FFT across pulses */

vsip_ccfftmip_f(d->fft_plan_slow,d->rd_map_trans_cmview);

/* Transpose */

vsip_cmtrans_f(d->rd_map_trans_cmview,d->rd_map_cmview);

/* Compute Magnitude of range-Doppler Map */

vsip_vcmagsq_f(d->rd_map_cview,d->rd_map_mag_vview);

vsip_vlog10_f(d->rd_map_mag_vview,d->rd_map_mag_vview);

/* Copy results to host */

vsip_blockrelease_f (d->rd_map_mag_block, VSIP_TRUE);

GTRI_B-16

ECRB - HPC - 16

GPU VSIPL - 16

VSIPL Platform Issues

• VSIPL API compliant software is portable, however…

• Accelerator-based VSIPL implementations have

different performance considerations than pure CPU

• Small operations more costly

• Release/admit, get/put much more costly

• Higher dimensionality is more efficient

• CPU implementations more tolerant of application

memory errors

GTRI_B-17

ECRB - HPC - 17

GPU VSIPL - 17

Outline

• VSIPL Background

• Using VSIPL

• GPU VSIPL

• Conclusion

GTRI_B-18

ECRB - HPC - 18

GPU VSIPL - 1818

VSIPL & GPU: Well Matched

• VSIPL is great for exploiting GPUs

– High level API with good coverage for dense linear algebra

– Allows non experts to benefit from hero programmers

– Explicit but abstracted memory access controls

– API precision flexibility

• GPUs are great for VSIPL users

– Improves prototyping by speeding algorithm testing

– Cheap addition allows more engineers access to HPC

– Large speedups without needing explicit parallelism at application level

GTRI_B-19

ECRB - HPC - 19

GPU VSIPL - 1919

GPU-VSIPL Implementation

• GPU VSIPL: Implementation of VSIPL for CUDA
GPUs

• Fully encapsulated CUDA backend

– Leverages CUFFT library

– All VSIPL functions accelerated

– No CUDA-specific memory management required

• Functional Coverage:

– Single precision floating point, some basic integer

– Matrix, Vector & Scalar, complex & real support

– Elementwise, FFT, FIR, histogram, RNG, support

– Several linear system solvers

– All of Core Lite Profile, most of Core Profile, some additional

GTRI_B-20

ECRB - HPC - 20

GPU VSIPL - 20

GPU-VSIPL Functional Coverage
• What’s covered from VSIPL Core

– Data Types
• real, complex, integer, boolean, index

– View Types
• Matrix, vector

– Element-wise Operators
• arithmetic, trigonometric, transcendental,

scatter/gather, logical, and comparison
– Signal Processing

• FFT (in-place, out-of-place, batched)
• Fast FIR filter, window creation,

1D correlation
• Random number generation, histogram

– Linear Algebra
• generalized matrix product
• QR decomposition, least-squares solver

• What’s Not (yet)
– Linear Algebra

• Covariance, Linear Least Squares Solver
• What’s Added Beyond VSIPL Core

– Scalar and matrix versions of element-wise
vector operators

– Matrix utility functions

VSIPL API

Core Profile

GPU VSIPL

Core Lite

Profile

GTRI_B-21

ECRB - HPC - 21

GPU VSIPL - 21

Some GPU VSIPL Performance

QR

Decomposition

Matrix-vector product

1D Correlation

Complex In-place FFT

GTRI_B-22

ECRB - HPC - 22

GPU VSIPL - 2222

• Simple Range/Doppler data visualization demo

• Intro app for new VSIPL programmer

• 53x Speedup TASP  GPU-VSIPL

• No changes to source code

Section
GTX480

Time (ms)

X5650
(1 core)

Time (ms) Speedup

Admit 0.81 0 0

Baseband 0.75 127.09 169

Zeropad 0.83 10.73 12.9

Fast time FFT .59 513.89 871

Multiply 14.01 13.13 0.93

Fast Time FFT-1 0.61 513.70 842

Slow time FFT, 2x CT 5.68 503.42 88.6

log10 |.|2 0.90 124.12 137.9

Release 9.36 0 0

Total: 33.82 1806.10 53.4

Application Performance: RD Map

GTRI_B-23

ECRB - HPC - 23

GPU VSIPL - 23

Optimization Techniques: Template Kernels

• Template kernels for specialization

• Example: guard conditionals in inner loops

• Boolean template parameter may short-circuit conditional expression

• Optimizer removes control flow entirely for notConditional=true
specialization

template <bool notConditional> __global__ void kernel(int *A, int N) {

int tid = threadIdx.x + blockDim.x * blockIdx.x;

if (notConditional || tid < N) { // conditional expression that may be

A[tid] = f(A[tid]); // short-circuited at compile time

}

}

…

bool notCconditional = !(N % blockSize.x); // true if N is multiple of blockSize

kernel< notConditional ><<< gridSize, blockSize >>>(A, N);

• notConditional = true: no control flow, 13 instructions, 17 registers

• notConditional = false: control flow, 16 instructions, 23 registers

GTRI_B-24

ECRB - HPC - 24

GPU VSIPL - 24

Optimization Techniques: Template Kernels

• Template kernels and functors for real and complex-valued operators

struct F_mul_f {

__device__ float operator()(float a, float b) { return a*b; }

};

struct F_cmul_f {

__device__ float2 operator()(float2 a, float2 b) {

return make_float2(a.x * b.x - a.y * b.y, a.x * b.y + a.y * b.x);

}

};

template<bool notConditional, typename binary_operator_T, typename view_T, typename T>

__global__ void kernel_vsip_vbinary_f(view_T A, const T *a, view_T B, const T *b, view_T R, T *r) {

int tid = threadIdx.x + blockDim.x * blockIdx.x;

if (notConditional || tid < R.length) {

binary_operator_T f;

r[tid] = f(a[tid], b[tid]);

}

}

...

// vsip_vmul_f

kernel_vsip_vbinary_f< notConditional, F_mul_f, vsip_vview_f, float ><<< grid, block >>>(

*A, A->block->device, *B, B->block->device, *R, R->block->device);

// vsip_cvmul_f

kernel_vsip_vbinary_f< notConditional, F_cmul_f, vsip_cvview_f, float2><<< grid, block >>>(

*A, A->block->device, *B, B->block->device, *R, R->block->device);

GTRI_B-25

ECRB - HPC - 25

GPU VSIPL - 25

Optimization Techniques: QR Decomposition

• Matrix decompositions are common operations in signal processing
applications

• Standard algorithms:

• have computationally intensive serialized procedures

• require fine-grain synchronization and communication across threads

• are composed of memory-bound primitive operations

• GPU VSIPL implements Blocked Householder
QR decomposition

• applies r reflections in one matrix-matrix
product

• dominant computation is compute-bound

• coarse-grain serialization of kernels

• kernel-level parallelism offers
performance opportunity on Fermi-class
GPUs

Speedup on GTX280 compared to Intel MKL on Intel Xeon at 2.83 GHz with 6MB L2

GTRI_B-26

ECRB - HPC - 26

GPU VSIPL - 2626

Optimization Techniques: QR Decomposition

GTRI_B-27

ECRB - HPC - 27

GPU VSIPL - 2727

Optimization Techniques: QR Decomposition

GTRI_B-28

ECRB - HPC - 28

GPU VSIPL - 2828

Optimization Techniques: QR Decomposition

GTRI_B-29

ECRB - HPC - 29

GPU VSIPL - 2929

Optimization Techniques: QR Decomposition

GTRI_B-30

ECRB - HPC - 30

GPU VSIPL - 3030

Optimization Techniques: QR Decomposition

GTRI_B-31

ECRB - HPC - 31

GPU VSIPL - 3131

Optimization Techniques: QR Decomposition

[1] Kerr, Campbell, Richards. “QR Decomposition on GPUs.” GPGPU „09.

GTRI_B-32

ECRB - HPC - 32

GPU VSIPL - 3232

Optimization Techniques: QR Decomposition

GTRI_B-33

ECRB - HPC - 33

GPU VSIPL - 3333

Optimization Techniques: QR Decomposition

GTRI_B-34

ECRB - HPC - 34

GPU VSIPL - 34

Optimization Techniques: QR Decomposition

• Dominant computations in Blocked Householder Reflections are
compute-bound

• WY computation consists of matrix-matrix products with up to 32 columns

• A and Q updates are matrix products with dimensions that are multiples of 32
with no fringes

• A and Q updates may be performed in parallel with memory-bound operations

GTRI_B-35

ECRB - HPC - 35

GPU VSIPL - 35

Outline

• VSIPL Background

• Using VSIPL

• GPU VSIPL

• Conclusion

GTRI_B-36

ECRB - HPC - 36

GPU VSIPL - 36

• GPU VSIPL: CUDA performance

without CUDA optimization

• Information on GPU VSIPL website:

http://gpu-vsipl.gtri.gatech.edu

• Available for free download
• Windows 32/64; Linux 32/64; OSX

• Unsupported, no redistribution permitted

• Other licenses available

• Commercially supported version

available from:
Runtime Computing Solutions

http://www.runtimecomputing.com/

GE Intelligent Platforms http://www.ge-ip.com/

GPU VSIPL Summary

gpu-vsipl.gtri.gatech.edu

http://gpu-vsipl.gtri.gatech.edu/
http://gpu-vsipl.gtri.gatech.edu/
http://gpu-vsipl.gtri.gatech.edu/
http://www.runtimecomputing.com/
http://www.ge-ip.com/
http://www.ge-ip.com/
http://www.ge-ip.com/

