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VSIPL - Vector Signal Image Processing Library

* Portable API for linear algebra, image and signal
processing

 Aimed at Embedded / Desktop / Cluster environments
« Goal: Improve productivity, maintain performance

« High level math kernels - fewer lines of code
* No rewrite required to move platforms; rewrite to tune may be needed
« Scalable parallelism under the hood (map file -> automap)

 Fairly mature technology:

« Original API Specification approved April 2000, continued growth since

« Supported by DARPA in mid ’'90s, Navy, AFRL, HPCMO, ODUSD (S&T)
transition support since; consortium effort

 Lots of demos, in fairly wide use:

» Aegis, JSF, others
* Historically 90%+ speed of hand-optimized
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VSIPL — Key Features

 Integrated memory model; direct, first-class
coherence controls

* Direct support for mathematical objects

« Scalars, vectors, matrices, tensors: first-class, lightweight objects attached
to heavyweight memory model
« Heavyweight state objects: e.g. FFT plan, QRD

* Flexible precision and type support: includes floating
point, fixed point, integer; complex, boolean, index

 Functional coverage driven by SP application needs &

architecture opportunities

« Basic math: operators, trig, clamps, exponents, max, etc

« Linear algebra: operators, scatter/gather, system solvers (LLS, QRD,
Covariance, Toeplitz, LUD, Cholesky, general, SVD)

« Signal Processing: FFT, Convolution/Correlation, Windowing, FIR/IIR Filters,
histograms, RNG

* Defined subsets: Core & Core Lite
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VSIPL - Further Information

VSIPL Website: http://lwww.vsipl.org

Vector Signal Image Processing Library
The Open Industry Standard For Signal Processing

* Full API Specification Documents

* Reference Implementations

* VSIPL Implementation Validation Test Suite
* Profile Definitions

* Links to implementations
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VSIPL Memory Model

* Blocks are the primary memory abstraction

« Opaque representation of a dense array

* Portable, complete encapsulation of memory management

« All blocks have atype: int, float, boolean, etc; real or complex
* Optionally associated with app-supplied pointer

« Ownership state set via admit() & release(); controls coherence

* Views are the primary mathematical abstraction

 Opagque representation of math objects such as vectors, matrices
« All views have an underlying block (and thus fixed type)
 Mapped to block via offset, per-dimension stride and length
 May be remapped easily; mapping is lightweight
« All math functions operate on views; corresponding block must be in

admitted state
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VSIPL Blocks and Views

Matrix view Vector view
row \(\)ffset
offset A stride
stride >
_ O O
column ﬁ
stride
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column — D
length
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length
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* Blocks |

. . . row length
* Linear regions of contiguous elements "W '*"®

* int, float, complex — translated to interleaved format on block admit
* Owned by VSIPL — opaque to application
* Explicit admit and release operations implement VSIPL consistency model
* Views
» fundamental mathematical objects
* map elements of block into object
« offset, row stride, column stride, row length, column length
* subviews take slices of existing views
& * enable flexible data layout
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VSIPL Memory Model — Simple Example

vsip scalar f *d4 = malloc(sizeof (vsip scalar f) *LENGTH) ;
vsip block f *b4 = vsip blockbind f (d4, LENGTH, VSIP MEM NONE) ;
vsip vview f *v4 = vsip vbind f (b4, 0, 1, LENGTH);

vsip vfill £ (1.0f, v4); /* This is an error! */
vsip blockadmit f (b4, VSIP FALSE); /* No copy here */
vsip vfill £ (1.0£f, v4);

vsip blockrelease f (b4, VSIP TRUE); /* Copies data to malloc’d array */

for (i=0; i<LENGTH; i++) printf (“%f %, d4[i]);

for (i=0; i<LENGTH; i++) d4[i] = 0.4f;
vsip blockadmit f (b4, VSIP TRUE); /* Copy from user array */
for (i=0; i<LENGTH; i++) printf (“%f %, vsip vget f(v4, i));

Georgia | Research
Tech | Imsiftuie
vl GPU VSIPL -9




I | | 11
VSIPL Memory Model — Additional Elements

« Some operations leverage heavyweight state objects

« FFT

Random Number Generator

FIR/IIR

Convolution/Correlation
LU/QR/Cholesky/SV Decompositions

* Import / Export functionality

 Heavyweight state objects can be exported to memory for retention
« Exported objects not portable
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VSIPL Toy Example

#define LENGTH 10
vsip vview f *vl = vsip vcreate f (LENGTH, VSIP MEM NONE) ;

vsip block f *b2 = vsip blockcreate f (LENGTH, VSIP MEM NONE) ;
vsip vview f *v2 = vsip vbind f (b2, 0, 1, LENGTH);

vsip block f *b3 = vsip blockcreate f (LENGTH*2+3, VSIP MEM NONE) ;
vsip vview f *v3 = vsip vbind f (b3, 3, 2, LENGTH);

vsip vramp £ (0, 0.2f, vl);
vsip vramp f (1, -0.1f, v2);
vsip vfill £ (-44.0f, v3);
vsip vadd £ (vl, v2, v3);

for (i=0; i<LENGTH; i++) printf (“%f 7, vsip vget f(v3, i));

Output: 1.0 1.1 1.2 1.3 1.4 1.5....
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Application Example: Range Doppler Map

 Simple Range/Doppler data visualization demo
 Intro app for new VSIPL programmer

. Speedup TASP = GPU-VSIPL

 No changes to source code

X5650
GTX480 (1 core)
Section Time (ms) Time (ms) Speedup

Admit
Baseband
Zeropad
Fast time FFT
Multiply

Fast Time FFT!
Slow time FFT, 2x CT
logl10 |.|2
Release

Total:

1 1
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VSIPL Example — RD Map 1

/* Admit input blocks for VSIPL processing */
vsip blockadmit f(d->data_if block,VSIP_ TRUE) ;
vsip cblockadmit f(d->filter block,VSIP TRUE) ;

/* Admit output & scratchpad blocks for VSIPL processing */
vsip blockadmit f(d->rd map mag block,VSIP FALSE) ;

vsip cblockadmit f(d->data bb block,VSIP FALSE) ;

vsip cblockadmit f(d->data padded block,VSIP FALSE) ;

/* Multiply IF signals by synthesized carriers */
vsip rcvmul f(d->data if vview,d->carrier cvview,d->data bb0 cvview) ;

/* Apply low-pass filters */
vsip cfirflt f(d->data lpf fir,d->data bb0 cvview,d->data bb cvview) ;

/* Initialize padded data to zeros */
vsip vfill f((float)0,d->z re vview);
vsip vfill f((float)0,d->z im vview);
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VSIPL Example — RD Map 2

/* Copy data row-by-row from real input to complex workspace */
for(i = 0; i < p->num pulses; i++) {
vsip cvputoffset f(d->data bb row cvview,i*p->samples per pulse);
vsip cvputoffset f(d->z_short row cvview,i*p->num range bins);
vsip cvcopy f f(d->data bb row cvview,d->z_ short row cvview) ;

}

/* Compute FFT of each pulse of the data */
vsip ccfftmip f(d->fft plan fast,d->z_cmview);

/* Multiply rows element-wise */
for(i = 0; i < p->num doppler bins; i++) {
vsip cvputoffset f(d->z long row cvview,i*p->num range bins);
vsip cvjmul f(d->z_long row cvview,d->s cvview,d->z long row cvview);

}

/* Map Back to Range Domain (in fast-time dimension) */
vsip ccfftmip f(d->inv_fft plan fast,d->z cmview);
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VSIPL Example — RD Map 3

/* Compute Slow Time FFT of Matched Filtered Data */

/* Transpose */
vsip cmtrans f(d->rd map cmview,d->rd map trans cmview) ;

/* Compute FFT across pulses */
vsip ccfftmip f(d->fft plan slow,d->rd map trans_ cmview) ;

/* Transpose */
vsip cmtrans f(d->rd map trans cmview,d->rd map cmview) ;

/* Compute Magnitude of range-Doppler Map */
vsip vcmagsq f(d->rd map cview,d->rd map mag vview) ;
vsip vlogl0 f(d->rd map mag vview,d->rd map mag vview) ;

/* Copy results to host */
vsip blockrelease f (d->rd map mag block, VSIP TRUE) ;
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VSIPL Platform Issues

* VSIPL API compliant software is portable, however...

* Accelerator-based VSIPL implementations have
different performance considerations than pure CPU

« Small operations more costly
« Release/admit, get/put much more costly
« Higher dimensionality is more efficient

 CPU implementations more tolerant of application
memaory errors
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VSIPL & GPU: Well Matched

« VSIPL is great for exploiting GPUs
— High level API with good coverage for dense linear algebra
— Allows non experts to benefit from hero programmers
— Explicit but abstracted memory access controls

— API precision flexibility

« GPUs are great for VSIPL users
— Improves prototyping by speeding algorithm testing
— Cheap addition allows more engineers access to HPC
— Large speedups without needing explicit parallelism at application level
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GPU-VSIPL Implementation

« GPU VSIPL: Implementation of VSIPL for CUDA
GPUs

* Fully encapsulated CUDA backend

— Leverages CUFFT library

— All VSIPL functions accelerated

— No CUDA-specific memory management required
 Functional Coverage:

— Single precision floating point, some basic integer

— Matrix, Vector & Scalar, complex & real support

— Elementwise, FFT, FIR, histogram, RNG, support

— Several linear system solvers

— All of Core Lite Profile, most of Core Profile, some additional
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GPU-VSIPL Functional Coverage

« What’s covered from VSIPL Core

— Data Types
VSIPL API - real, complex, integer, boolean, index
— View Types
« Matrix, vector
Core Profile — Element-wise Operators

 arithmetic, trigonometric, transcendental,
scatter/gather, logical, and comparison
— Signal Processing
* FFT (in-place, out-of-place, batched)
 Fast FIR filter, window creation,
1D correlation
« Random number generation, histogram
— Linear Algebra
» generalized matrix product
* QR decomposition, least-squares solver
 What’s Not (yet)
— Linear Algebra
» Covariance, Linear Least Squares Solver
« What’s Added Beyond VSIPL Core
— Scalar and matrix versions of element-wise
vector operators
— Matrix utility functions
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Some GPU VSIPL Performance

Matrix-vector product Complex In-place FFT
Matrix-vector product 90 ‘ ‘ ‘ ‘ ‘ ' ‘ '
80|
70t
60|
§50- — ccfftip_f - GTX280
a0/ = ccfftip_f- 9800GX2 ||
30t
20}
1 1 1 L 1 1 1 1 10_
1000 2000 3000 4000 5000 6000 7000 8000
Matrix rows (m) 028 Zio 212 2i4 2‘16 zis 2'20 252 2é4 225
——vsip_mvprod_f- GTX280 Signal size
—+—cublasSgemv - GTX280 .
——ysip_mvprod_f - 9800 GX2 1D Correlation
—+—cublasSgemv - 9800 GX2 140
QR .. 120t
Decomposition
150 T T T T 100
)
a
80+
2 100} - =
% ]
i 60+
@ 50r 1
_Egujf]"%;agz a0/} — vsip_corrld f - GTX280
0 . . . . = ysip_corrld_f - 9800GX2
0 2000 4000 6000 8000 10000 20g 200 400 600 800 1000 1200
Matrix rows Reference signal size

Georgia | Research
Tech | Imsiftuie
it GPU VSIPL - 21




Application Performance: RD Map

Simple Range/Doppler data visualization demo

‘nlI"M"mm"m"llm~

‘||' .
V|
(|

Intro app for new VSIPL programmer
53x Speedup TASP = GPU-VSIPL
No changes to source code

I ""'""lm|”"“"mmmmmmlllllnuw I

-é- -

GTX480 (1 core)

Section Time (ms) Time (ms) Speedup
Admit 0.81 0 0
Baseband 0.75 127.09 169
Zeropad 0.83 10.73 12.9
Fast time FFT .59 513.89 871
Multiply 14.01 13.13 0.93
Fast Time FFT! 0.61 513.70 842
Slow time FFT, 2x CT 5.68 503.42 88.6
log10 |.|2 0.90 124.12 137.9
Release 9.36 0 0

Total: 33.82 1806.10 53.4
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Optimization Techniques: Template Kernels

« Template kernels for specialization
« Example: guard conditionals in inner loops

 Boolean template parameter may short-circuit conditional expression
« Optimizer removes control flow entirely for notConditional=true
specialization

template <bool notConditional>  global  void kernel(int *A, int N) ({
int tid = threadIdx.x + blockDim.x * blockIdx.x;

if (notConditional || tid < N) { // conditional expression that may be
A[tid] = £(A[tid]); // short-circuited at compile time
}
}
bool notCconditional = ! (N % blockSize.x); // true if N is multiple of blockSize

kernel< notConditional ><<< gridSize, blockSize >>>(A, N);

- notConditional = true: NO control flow, 13 instructions, 17 registers
- notConditional = false: control flow, 16 instructions, 23 registers
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Optimization Techniques: Template Kernels

« Template kernels and functors for real and complex-valued operators

struct F_mul f ({
__device__ float operator() (float a, float b) { return a*b; }

};

struct F_cmul f {
__device__ float2 operator() (float2 a, float2 b) {
return make float2(a.x * b.x - a.y * b.y, a.x * b.y + a.y * b.x);
}
};

template<bool notConditional, typename binary operator T, typename view T, typename T>
__global _ void kernel vsip vbinary f(view T A, const T *a, view T B, const T *b, view T R, T *r) ({
int tid = threadIdx.x + blockDim.x * blockIdx.x;
if (notConditional || tid < R.length) {
binary operator T £;
r[tid] = f(a[tid], b[tid]);

// vsip_vmul £
kernel vsip vbinary f< notConditional, F mul f, vsip vview_f, float ><<< grid, block >>>(
*A, A->block->device, *B, B->block->device, *R, R->block->device) ;

// vsip_cvmul £
kernel vsip vbinary f< notConditional, F_cmul f, vsip cvview_f, float2><<< grid, block >>>(
*A, A->block->device, *B, B->block->device, *R, R->block->device) ;
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Optimization Techniques: QR Decomposition

« Matrix decompositions are common operations in signal processing
applications

« Standard algorithms:
* have computationally intensive serialized procedures
» require fine-grain synchronization and communication across threads
« are composed of memory-bound primitive operations

—MKL - 1 thread
—»—MKL - 2 threads
4k —=—MKL - 4 threads

« GPU VSIPL implements Blocked Householder
QR decomposition

« applies r reflections in one matrix-matrix
product

 dominant computation is compute-bound
* coarse-grain serialization of kernels

« kernel-level parallelism offers
performance opportunity on Fermi-class
0

0 20I00 ZI-C)IOOM| ) BOIOO 80I00 10000 G P U S
atrix rows

Speedup on GTX280 compared to Intel MKL on Intel Xeon at 2.83 GHz with 6MB L2
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Optimization Techniques: QR Decomposition

i [P — i

: P : ' 1.} Input matrix is partitioned into
X X{x o Xiaxo X blocks A1, Ag, ... Ap, each with r
X oxiix o oxiix o x| columns.
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Optimization Techniques: QR Decomposition

____________________________

2.) A Householder reflection is
computed from the first column
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Optimization Techniques: QR Decomposition

i [ — ]

i ' 3.) and applied to the remaining
: ' columns in Aj.
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Optimization Techniques: QR Decomposition

i [P — e

: ' 4.} A Householder reflection is
' computed from the second column

___________________________
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Optimization Techniques: QR Decomposition

s [ — e i

5.) and applied to the remaining
columns in Aj.
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Optimization Techniques: QR Decomposition

6.) After r reflections are applied to

Y wT (42 As] block A;, W is computed from Y.
U R

il x x % x x I x x Then, matrix [Ag As ---Ap] and Q
<t x| ' are updated according to

Q—Q+QwWYT

Algorithm 2 Computation of W and Y from V and B [1]

1: Y =V(l:end1)

22 W=-B(1)-V(1:end, 1)

3: for j =2tordo

4. v=V(])

5:  z=—B(j)-v—B(j) -WYF v
6: W =[W Z]

.Y =Y v

8: end for

[1] Kerr, Campbell, Richards. “QR Decomposition on GPUs.” GPGPU ‘09.
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Optimization Techniques: QR Decomposition

7.) Applying the block Householder

T T . :

[_P2P1Al PTAy P £3] update I + YWT to A is equivalent

TR XOTR} KR to performing the first r

: i P | Householder reflections according to

0 X1 X X)X X . . .

| Pl the original algorithm.

0 0pix  Xxiix o xi

: ” X x " N Problem sizes for matrix-vector

o o} ix xiix xi product are much smaller.

O o xbix X Q is updated strictly with

matrix-matrix products.
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Optimization Techniques: QR Decomposition

8.) Repeat with the next block until
all of A is triangularized.
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Optimization Techniques: QR Decomposition

Average performance of QP and PT A

s ——QP - GTX280
A —e—pHa - GTxzs0 ||
—»—QP - 9800GX2

¥ ——pHa - ga00GX2
1000 2000 3000 4000 5000 6000 7000 8000
Mt rows

« Dominant computations in Blocked Householder Reflections

compute-bound

Table: Runtime in seconds for phases of blocked Householder Q)12 on GPUs

Operation GeForce GTX 280 | GeForce GTX 280
Problem size 6656 x 3328 8192 x 4096
Householder 0.326 0.565
A=P- A 0.952 1.45
WY Computation 1.25 1.86
A—T+WYT)TA | 0534 0.971
Q—QUI+WYT) | 1.36 2.79

" Total (seconds) 4.43 7.629

GFLOP/s

120 GFLOP/s

143 GFLOP/s

are

WY computation consists of matrix-matrix products with up to 32 columns
A and Q updates are matrix products with dimensions that are multiples of 32

with no fringes

A and Q updates may be performed in parallel with memory-bound operations
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GPU VSIPL Summary

[ GPUwSIPL

L C fi 9% hiipgpu-vsipl.givigatech.edu/ > O- F-

 GPU VSIPL: CUDA performance
without CUDA optimization

GPU VSIPL

GPUYSIPL is an implementation of Yector Sional Image Processing Library that targets Graphics Processing Units

(GPUs) supporting NVIDIA's CUDA platform. By leveraging processors capahle of 300 GFLOPYs or more, your
application may achieve consideratle speedup without any specialized development for GPUS, OUr rande-Dioppler

 Information on GPU VSIPL website: | _mrreessimimms s

Distribution
. - - GPUWSIPL is currently released as a binary-only static library with the restriction that the library not be redistributed
tt l I _V S I t r I at e C e l I This should enable internal development and testing to see if GPLUWSIPL meets your needs. Ifyou wish to
" ] " " distribute applications developed with GPUVSIPL, please contact us to arrange a separate licensing agreement.
Email qpu-vsipl@air.gatech.edy

For announcements on new updates to GPU YSIPL, and discussion ahoutthe software, please subscribe to the
GPUVSIPL Mailing List.

Validation

 Available for free download

GPUWSIPLwas presented to the High Performance Embedded Computing Workshop 2008, Read the GPU YSIPL

* Windows 32/64; Linux 32/64; OSX sttt o7

Download GPU VSIPL

GPUWSIPL i digtributed as a hinary built for the following platforms

® Windows 32- & B4-hit |
® Linux

® Linuxge_64

* Mac 05X

* Other licenses available

For announcements on new updates to GPU YSIPL, and discussion ahout the software, please subscribe to the
GPLU WSIPL Mailing List.

» Unsupported, no redistribution permitted

Functionality

. .
. CO I I I I I I ‘ rC I al Iy S u p p O rt‘ d V‘ rS I O I l ‘ector Image Signal Processing Library is a signal processing library specified by the YSIPL Forum intended to

suppon the developmert of platform-independent numerical cormputing applications.

GPUWSIPL is compliantwith YSIPL Core Lite Profile [POF] as well as much of ¥SIPL Core Profile, and also

available from: el
Runtime Computing Solutions

http://www.runtimecomputing.com/
GE Intelligent Platforms http://www.ge-ip.com/

= vactor and matrix types: real, complex, integer, hoolean

= elementwise arithmetic, logical, and comparison operatars

= linear algebra procedures

= generalized matrix product

= fastFIR filtering

= correlation

* FastFourier Transfarm v

gpu-vsipl.gtri.gatech.edu
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