
Hardware Subdivision
and Tessellation of

Catmull-Clark Surfaces

Charles Loop

Microsoft Research

Outline

• DirectX 11 Pipeline

• Subdivision Surfaces

• Gregory Patch Approximation

• GPU Subdivision

DirectX 11 Pipeline

Domain Shader

Hull Shader

Tessellator

Input Assembler

Vertex Shader

Geometry Shader

Output Merger

Rasterizer

Pixel Shader

Data Compute Shader

DX Compute

• GPGPU-Computing

• Single shared context

• Cuda-like

– HLSL Syntax:

[numthreads(8, 1, 1)]

void Copy(uint3 blockIdx : SV_GroupID,

 uint3 DTid : SV_DispatchThreadID,

 uint3 threadIdx : SV_GroupThreadID,

 uint GI : SV_GroupIndex)

{

 Output[8*blockIdx.x + threadIdx.x] =

 Input[8*blockIdx.x + threadIdx.x];

}

Compute Shader

Domain Shader

Hull Shader

Tessellator

Input Assembler

Vertex Shader

Geometry Shader

Setup/Raster

Hardware Tessellation Pipeline

• Three new pipeline stages

– Hull Shader (programmable)

– Tessellator Unit (configurable)

– Domain Shader (programmable)

Domain Shader

Tessellator

Input Assembler

Vertex Shader

Geometry Shader

Setup/Raster

Hull Shader

• Transform input control points

• One thread per output point.

• Hull Shader Constant Function

– Compute edge and inside
tessellation factors

Hull Shader (HS)

Domain Shader

Hull Shader

Input Assembler

Vertex Shader

Geometry Shader

Setup/Raster

Tessellator

Tessellator (TS)

• Fixed function stage, configurable

• Domains:

– tri, quad, isoline

• Spacing:

– integer, fractional, pow2

Tessellator (TS)

Level 5 Level 5.4 Level 6.6

Tessellator (TS)

Inside Tess:
minimum

Inside Tess:
average

Inside Tess:
maximum

Top,Right = 4.5

Bottom,Left = 9.0

Left = 3.5
Right = 4.4

Bottom = 3.0

Hull Shader

Tessellator

Input Assembler

Vertex Shader

Geometry Shader

Setup/Raster

Domain Shader

Domain Shader (DS)

• Evaluate patch with input
parameters 𝑢, 𝑣, 𝑤

• Interpolate attributes

• Apply displacements

• Output position, normal, etc.

Bitwise Consistent Evaluation

• Patches share boundaries
– Coincident vertices evaluated via different code paths

– Floating point addition non-commutative

• References http://developer.nvidia.com

Solution: symmetric or order consistent evaluation

Subdivision Surfaces

Catmull-Clark Subdivision

Catmull, E. AND Clark, J. 1978,
Recursively generated B-spline surfaces on arbitrary topological meshes

subdivision

Problem: Infinite number of patches

subdivision

• Poor fit to hardware tessellation paradigm

•

• Exact evaluation is possible, but slow

Stam, J. 1998,
Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary

parameter values

Problem: Infinite number of patches

subdivision

• Poor fit to hardware tessellation paradigm

•

• Exact evaluation is possible, but slow

Stam, J. 1998,
Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary

parameter values

𝑗

𝑗 =

𝑘 = subdivision level

0 1

3 2

0,0 1,0

0,1

𝑗, 𝑘

Approximate Subdivision Surfaces

Approximate Subdivision Surfaces

Loop, C. , Schaefer, S. Ni, T., AND Castaño, I. 2009,
Approximating subdivision surfaces with Gregory patches for tessellation hardware

Bicubic Bézier Patch

𝐵 𝑢, 𝑣 = b3 𝑢 ⋅ 𝐁 ⋅ b3(𝑣)

𝐁 =

𝐛00 𝐛01 𝐛02 𝐛03
𝐛10 𝐛11 𝐛12 𝐛13
𝐛20 𝐛21 𝐛22 𝐛23
𝐛30 𝐛31 𝐛32 𝐛33

𝐛00 𝐛01

𝐛10

𝐛20

𝐛30

𝐛11

𝐛21 𝐛22

𝐛12

𝐛02

𝐛31 𝐛32 𝐛33

𝐛23

𝐛13

𝐛03

b3 𝑢 = 1 − 𝑢 3 3 1 − 𝑢 2𝑢 3 1 − 𝑢 𝑢2 𝑢3

Gregory Quad Patch

𝑄 𝑢, 𝑣 = b3 𝑢 ⋅ 𝐆(𝑢, 𝑣) ⋅ b3(𝑣)

𝐆(𝑢, 𝑣) =

𝐩3 𝐞0
− 𝐞3

+ 𝐩2
𝐞0
+ 𝐅0(𝑢, 𝑣) 𝐅3(𝑢, 𝑣) 𝐞3

−

𝐞1
− 𝐅1(𝑢, 𝑣) 𝐅2(𝑢, 𝑣) 𝐞2

+

𝐩0 𝐞1
+ 𝐞2

− 𝐩1

Gregory Quad Patch

𝑄 𝑢, 𝑣 = b3 𝑢 ⋅ 𝐆(𝑢, 𝑣) ⋅ b3(𝑣)

𝐆(𝑢, 𝑣) =

𝐩3 𝐞0
− 𝐞3

+ 𝐩2
𝐞0
+ 𝐅0(𝑢, 𝑣) 𝐅3(𝑢, 𝑣) 𝐞3

−

𝐞1
− 𝐅1(𝑢, 𝑣) 𝐅2(𝑢, 𝑣) 𝐞2

+

𝐩0 𝐞1
+ 𝐞2

− 𝐩1

𝐅0(𝑢, 𝑣) =
𝑢 𝐟0
+ + 𝑣 𝐟0

−

𝑢 + 𝑣
 𝐅1, 𝐅2, 𝐅3 are similar

Gregory Triangle Patch

𝑇 𝑢, 𝑣, 𝑤 = 𝑢3𝐩0 + 𝑣
3𝐩1 + 𝑤

3𝐩2
 + 3𝑢𝑣 𝑢 + 𝑣 𝑢𝐞0

+ + 𝑣𝐞1
−

 + 3𝑣𝑤 𝑣 + 𝑤 𝑣𝐞1
+ + 𝑤𝐞2

−

 + 3𝑤𝑢 𝑤 + 𝑢 𝑤𝐞2
+ + 𝑢𝐞0

−

 + 12𝑢𝑣𝑤 𝑢𝐅0 + 𝑣𝐅1 +𝑤𝐅2

𝐅0(𝑣, 𝑤) =
𝑤 𝐟0
− + 𝑣 𝐟0

+

𝑣 + 𝑤
, 𝐅1 𝑢,𝑤 =

𝑢 𝐟1
− + 𝑤 𝐟1

+

𝑤 + 𝑢
, 𝐅2(𝑢, 𝑣) =

𝑣 𝐟2
− + 𝑢 𝐟2

+

𝑢 + 𝑣

Geometric Construction

Patch Construction

• General construction for
3 or 4 sided faces

Gregory patches in 1-1 correspondence
with control mesh faces

Patch Construction

p

• General construction for
3 or 4 sided faces

– Corner Points 𝐩

Patch Construction

p

• General construction for
3 or 4 sided faces

– Corner Points 𝐩

– Edge Points 𝐞0
+, 𝐞0
−

𝐞0
+

𝐞0
−

Patch Construction

p 𝐞0
+

𝐞0
−

𝐟0
+
𝐟0
−

• General construction for
3 or 4 sided faces

– Corner Points 𝐩

– Edge Points 𝐞0
+, 𝐞0
−

– Face Points 𝐟0
+, 𝐟0
−

Edge Midpoints/Face Centroids

v

mi

ci

mi+1

mi-1

ci+1

ci-1
𝑖 = 0,…𝑛 − 1 where 𝑛 is the valence of 𝐯

Corner Point

p

Interpolate limit position of Catmull-Clark Surface

𝐩 =
𝑛 − 3

𝑛 + 5
𝐯 +

4

𝑛(𝑛 + 5)
 (𝐦𝑖 + 𝐜𝑖)

𝑛−1

𝑖=0

Edge Points

Interpolate limit tangent of Catmull-Clark Surface

𝐪 =
2

𝑛
 ((1 − 𝜎 cos 𝜋

𝑛
)

𝑛−1

𝑖=0

cos 2𝜋𝑖
𝑛
𝐦𝑖 + 2𝜎cos

2𝜋𝑖+𝜋
𝑛
𝐜𝑖)

𝜎 = (4 + cos2 𝜋

𝑛
)−1 2

𝐪

Edge Points

Interpolate limit tangent of Catmull-Clark Surface

𝐪 =
2

𝑛
 ((1 − 𝜎 cos 𝜋

𝑛
)

𝑛−1

𝑖=0

cos 2𝜋𝑖
𝑛
𝐦𝑖 + 2𝜎cos

2𝜋𝑖+𝜋
𝑛
𝐜𝑖)

𝜎 = (4 + cos2 𝜋

𝑛
)−1 2

𝐞0
+ = 𝐩 +

2

3
𝜆 𝐪

𝐞0
+

Face Points

𝐫0 =
1

3
𝐦𝑖+1 −𝐦𝑖−1 +

2

3
(𝐜𝑖 − 𝐜𝑖−1)

Face Points

𝐫0
+ =
1

3
𝐦𝑖+1 −𝐦𝑖−1 +

2

3
(𝐜𝑖 − 𝐜𝑖−1)

𝐟0
+ =
1

𝑑
(𝑐1𝐯 + 𝑑 − 2𝑐0 − 𝑐1 𝐞0

+ + 2𝑐0𝐞1
− + 𝐫0)

𝑑 =
3 𝑞𝑢𝑎𝑑
4 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒

𝐟0
+

𝐯
𝐞0
+

𝐞1
−

Implementation

Implementation

Two Approaches

Vertex/Hull Shader Approach

• Vertex Shader:

– Compute 𝐩, 𝐞0
+, 𝐞0
− , 𝐫𝑖 , 𝑖 = 0, … , 𝑛 − 1 per vertex

• Hull Shader:

– Compute 𝐞𝑗
+, 𝐞𝑗
− , 𝐟𝑗
+, 𝐟𝑗
− , 𝑗 = 0…2 (𝑜𝑟 3)

– Pass through 𝐩𝑗

Hull Shader Stencil Approach

• Cluster mesh faces by neighborhood type

– permutation of a face 1-ring neighborhood

– draw call per neighborhood type

• Neighborhood determines a stencil matrix

– hull shader computes matrix/vector product

Two GPU Approaches

• Vertex/Hull Shaders
– Exploit vertex-centric nature of computations

– 3 or 4 point patch primitives

– Fat vertices

• Hull Shader Stencil Approach
– Map patch construction to hull shader exclusively

– 6 to 32 point patch primitives

– Thin vertices

Results

More Results

GPU Subdivision

Hybrid SubD/Tess Data Flow

Domain Shader

Hull Shader

Tessellator

Input Assembler

Vertex Shader

Geometry Shader

Output Merger

Rasterizer

Pixel Shader

Compute Shader

Mesh Data

DirectX 11
Tessellation

Pipeline

Data-Parallel
Catmull-Clark

Subdivision

Subdivision with Tessellation

• Simplifies Mesh Connectivity

– Quad mesh, isolated extraordinary vertices

– Reduces hull shader matrix combinations

– Enables more clustering, fewer draw calls

• Performance/Quality Tradeoff

– Stam’s direct evaluation procedure

– Curvature continuous patching

– More accurate Gregory approximation

Data-Parallel Subdivision

Catmull-Clark Refinement Rules:

1. Face points - the average of all old points
defining a face.

2. Edge points - the average of the two old vertex
points and two new face points incident on the
edge.

3. Vertex points - the average
𝑛−2

𝑛
𝐕 +
1

𝑛
𝐏 +
1

𝑛
𝐐

where 𝐕 is the old vertex point, 𝐏 is the average
of the all old vertex points adjacent to the old
vertex, and 𝐐 is the average of the new face
points of all faces incident to the old vertex.

Subdivision Tables

[numthreads(8, 4, 1)]

void FacePoint(uint3 blockIdx : SV_GroupID,

 uint3 DTid : SV_DispatchThreadID,

 uint3 threadIdx : SV_GroupThreadID,

 uint GI : SV_GroupIndex)

{

 int FaceIdx = 8 * blockIdx.x + threadIdx.x;

 if (FaceIdx < F0){

 int h = F0_ITa[2*FaceIdx];

 int n = F0_ITa[2*FaceIdx+1];

 float q = 0.0f;

 for (int j=0; j<n; j++){

 q += VB[SRC_OFFSET + 4*F0_IT[h++] + threadIdx.y];

 }

 q /= ((float)n);

 VB[DEST_OFFSET_1 + 4*(FaceIdx) + threadIdx.y] = q;

 }

}

Face Kernel

[numthreads(8, 4, 1)]

void EdgePoint(uint3 blockIdx : SV_GroupID,

 uint3 DTid : SV_DispatchThreadID,

 uint3 threadIdx : SV_GroupThreadID,

 uint GI : SV_GroupIndex)

{

 int EdgeIdx = 8 * blockIdx.x + threadIdx.x;

 if (EdgeIdx < E0){

 float q = 0.25f*(

 VB[SRC_OFFSET + 4*E0_IT[4*EdgeIdx+0] + threadIdx.y] +

 VB[SRC_OFFSET + 4*E0_IT[4*EdgeIdx+1] + threadIdx.y] +

 VB[SRC_OFFSET + 4*E0_IT[4*EdgeIdx+2] + threadIdx.y] +

 VB[SRC_OFFSET + 4*E0_IT[4*EdgeIdx+3] + threadIdx.y]);

 VB[DEST_OFFSET_2 + 4*EdgeIdx + threadIdx.y] = q;

 }

}

Edge Kernel

[numthreads(8, 4, 1)]

void VertexPoint(uint3 blockIdx : SV_GroupID,

 uint3 DTid : SV_DispatchThreadID,

 uint3 threadIdx : SV_GroupThreadID,

 uint GI : SV_GroupIndex)

{

 int VertexIdx = 8 * blockIdx.x + threadIdx.x;

 if (VertexIdx < V0){

 int h = V0_ITa[2*VertexIdx];

 int n = V0_ITa[2*VertexIdx+1];

 float q = 0.0f;

 for (int j=0; j<n; j++){

 q += VB[SRC_OFFSET + 4*V0_IT[h+2*j] + threadIdx.y]

 + VB[SRC_OFFSET + 4*V0_IT[h+2*j+1] + threadIdx.y];

 }

 float fn = (float)n;

 float wv = (fn-2)/fn;

 float wp = 1.0f/(fn*fn);

 VB[DEST_OFFSET_3 + 4*VertexIdx + threadIdx.y] =

 wv*VB[SRC_OFFSET + 4*VertexIdx + threadIdx.y] + wp*q;

 }

}

Vertex Kernel

Tessellator Pipeline Stage

Simplified Patch Input

2𝑛 + 8 control points 16 control points

Regular Patch Extraordinary Patch

Regular Patches

• Hull Shader

– B-spline to Bézier 𝐁 = Q ∙ 𝐃 ∙ Q𝑇 60 FLOPS

• Domain Shader
– 𝑝𝑜𝑠 = u ∙ 𝐁 ∙ v, 𝑛𝑜𝑟𝑚𝑎𝑙 = (du ∙ 𝐁 ∙ v) × (u ∙ 𝐁 ∙ dv)

– Reverse DeCastlejau pyramid 162 FLOPS

Domain Shader
float u[4], du[4];

float3 uB[4], duB[4];

CubicBezier(uv.x, u, du);

for (uint i = 0; i < 4; i++) {

 uB[i] = float3(0, 0, 0);

 duB[i] = float3(0, 0, 0);

 for (uint j = 0; j < 4; j++) {

 float3 A = B[4*i + j];

 uB[i] += u[j] * A;

 duB[i] += du[j] * A;

 }

}

float3 WorldPos = float3(0, 0, 0);

float3 Tangent = float3(0, 0, 0);

float3 BiTangent = float3(0, 0, 0);

CubicBezier(uv.y, u, du);

for (i = 0; i < 4; i++) {

 WorldPos += uB[i] * u[i];

 Tangent += duB[i] * u[i];

 BiTangent += uB[i] * du[i];

}

Basis Functions

void CubicBezier(in float u, out float b[4], out float d[4])

{

 float t = u;

 float s = 1.0 - u;

 float a0 = s * s;

 float a1 = 2 * s * t;

 float a2 = t * t;

 b[0] = s * a0;

 b[1] = t * a0 + s * a1;

 b[2] = t * a1 + s * a2;

 b[3] = t * a2;

 d[0] = - a0;

 d[1] = a0 - a1;

 d[2] = a1 - a2;

 d[3] = a2;

}

Exact Evaluation of the Limit Surface

• Stam’s algorithm

– 𝑠𝑗,𝑘 𝑢, 𝑣 = 𝑏(𝑢, 𝑣) ∙ P𝑗 ∙ S
𝑘 ∙ 𝐯0

0 1

3 2
𝑗 =

𝑘 = subdivision level

0,0 1,0

0,1

Exact Evaluation of the Limit Surface

• Stam’s algorithm

– 𝑏(𝑢, 𝑣) ∙ P𝑗 ∙ (V ∙ Λ
𝑘 ∙ V−1) ∙ 𝐯0

0 1

3 2
𝑗 =

𝑘 = subdivision level

0,0 1,0

0,1

Exact Evaluation of the Limit Surface

• Stam’s algorithm

– 𝑏(𝑢, 𝑣) ∙ P𝑗 ∙ V ∙ Λ
𝑘 ∙ V−1 ∙ 𝐯0

eigen basis functions
2𝑛 + 8 bicubic
polynomials

eigen space projection
2𝑛 + 8 × 2𝑛 + 8 matrix-vector

multiply

0 1

3 2
𝑗 =

𝑘 = subdivision level

0,0 1,0

0,1

Exact Evaluation of the Limit Surface

• Stam’s algorithm

– 𝑏(𝑢, 𝑣) ∙ P𝑗 ∙ V ∙ Λ
𝑘 ∙ V𝑇 ∙ 𝐯0

• Hull Shader

– Eigen space projection
– 2𝑛 + 8 threads, 6𝑛 + 24 FLOPS

• Domain Shader
– Determine 𝑗, 𝑘, raise Λ to 𝑘𝑡ℎpower, remap 𝑢, 𝑣 , evaluate

eigen basis functions and derivatives, form sum-of-products
– 108𝑛 + 534 FLOPS

eigen basis functions
2𝑛 + 8 bicubic
polynomials

eigen space projection
2𝑛 + 8 × 2𝑛 + 8 matrix-vector

multiply

0 1

3 2
𝑗 =

𝑘 = subdivision level

0,0 1,0

0,1

Curvature Continuous Patching

•
– Bicubic patch per regular quad
– Biseptic patch per irregular quad (64 coefficients)

• 2𝑛 + 8 precomputed basis functions

• Hull Shader
– max output: 32 vertices, pack 2 into 1
– 32 threads, 12𝑛 + 48 FLOPS per thread

• Domain Shader
– Independent of valence 𝑛 568 FLOPS

Loop, C. AND Schaefer, S. 2008,
G2 tensor product splines over extraordinary vertices

Gregory Patch Approximation

• Complexity Reduction

– from: quads & tris, 1000’s HS matrices

– to: 9 cases (𝑛 = 3,… , 12)

• Hull Shader

– 20 threads, 6𝑛 + 24FLOPS per thread

• Domain Shader

– 174 FLOPS

Results

Subdivision Stage

GPU Twohole Bigguy Cat

Radeon 5870 0.30 0.31 0.35

GTX 480 0.33 0.36 0.48

time in milliseconds

Twohole

0

200

400

600

800

1000

1200

2 4 8 16 32 64 2 4 8 16 32 64

fr
am

e
s

p
e

r
se

co
n

d

tess factor

Radeon 5870 GTX 480

Gregory VH

Gregory HS

Gregory HS subd

Stam

Biseptic

Bigguy

0

200

400

600

800

1000

1200

2 4 8 16 32 64 2 4 8 16 32 64

fr
am

e
s

p
e

r
se

co
n

d

tess factor

Radeon 5870 GTX 480

Gregory VH

Gregory HS

Gregory HS subd

Stam

Biseptic

Cat

0

200

400

600

800

1000

1200

2 4 8 16 32 64 2 4 8 16 32 64

fr
am

e
s

p
e

r
se

co
n

d

tess factor

Radeon 5870 GTX 480

Gregory VH

Gregory HS

Gregory HS subd

Stam

Biseptic

Conclusions

• Approximation is fastest

– ideal for displacement mapping

• GPU mesh subdivision is fast

– memory needs impractical for deep subdivision

– tessellation big win for dense sampling

• Hybrid subd/tess is interesting

– complexity reduction

– speed/accuracy/quality knob

Thanks!

