Hardware Subdivision
and Tessellation of
Catmull-Clark Surfaces

Charles Loop

Microsoft Research

Outline

DirectX 11 Pipeline

Subdivision Surfaces

Gregory Patch Approximation

GPU Subdivision

DirectX 11 Pipeline

Input Assembler

J

Vertex Shader

Hull Shader

Tessellator

Domain Shader > Y 2 Compute Shader

Geometry Shader

Rasterizer

Pixel Shader

\.

Output Merger

DX Compute

* GPGPU-Computing
* Single shared context

 Cuda-like
— HLSL Syntax:

[numthreads (8, 1, 1)]

void Copy(uint3 blockIdx : SV GrouplID,
uint3 DTid : SV DispatchThreadID,
uint3 threadIdx : SV _GroupThreadID,
uint GI : SV GroupIndex)

{

Output[8*blockIdx.x + threadIldx.x] =

Input[8*blockIdx.x + threadIlIdx.x];

Hardware Tessellation Pipeline

 Three new pipeline stages

Input Assembler

Vertex Shader

— Hull Shader (programmable)

S
—

Tessellator

— Tessellator Unit (configurable)

g
—

Geometry Shader

— Domain Shader (programmable) e

Hull Shader (HS)

* Transform input control points
* One thread per output point.

 Hull Shader Constant Function

— Compute edge and inside
tessellation factors

Tessellator (TS)

* Fixed function stage, configurable

e Domains:
* Spacing:

— integer, fractional, pow?2

Tessellator (TS)

%

Level 5.4

Level 6.6

Tessellator (TS)

Left=3.5
Right=4.4
Bottom = 3.0

Top,Right =4.5

Bottom,Left =9.0

Inside Tess:

minimum

Inside Tess: Inside Tess:
average maximum

Domain Shader (DS)

Evaluate patch with input
parameters u, v, [w]

Interpolate attributes

Apply displacements .

Output position, normal, etc.

Bitwise Consistent Evaluation

e Patches share boundaries

— Coincident vertices evaluated via different code paths
— Floating point addition non-commutative

Solution: symmetric or order consistent evaluation

» References http://developer.nvidia.com

- @ SIGGRAPHZ00?
Next-Generation
Rendering of
Subdivision Surfaces Implement N
Tianyun Ni
Developer Technology - NVIDIA
<N NVIDIA.

nviDiA

Subdivision Surfaces

Catmull-Clark Subdivision

Catmull, E. AND Clark, J. 1978,
Recursively generated B-spline surfaces on arbitrary topological meshes

subdivision

Problem: Infinite number of patches

subdivision

* Poor fit to hardware tessellation paradigm

Stam, J. 1998,

e Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary
parameter values

* Exact evaluation is possible, but slow

Problem: Infinite number of patches

k = subdivision level

0,1

> J7 ol
subdivision 0,0 o

* Poor fit to hardware tessellation paradigm

Stam, J. 1998,

e Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary
parameter values

* Exact evaluation is possible, but slow

Approximate Subdivision Surfaces

Approximate Subdivision Surfaces

Loop, C., Schaefer, S. Ni, T., AND Castafio, I. 2009,
Approximating subdivision surfaces with Gregory patches for tessellation hardware

Bicubic Bézier Patch

b3 bs; bs, bs;
B(u,v) =b3(u) -B-b3(v)

b b, b, b,;

20

boo bos bgz bys
b B — b,, by; by, bys
b,y b b 13 by by; by, by
H 12 b3y bs; b3, b

! b

bOO b01 b02 03

b*(w) =[1-w)® 31 —w?u 3(1-wu? u3]

Gregory Quad Patch

P * * P

+ \f; [f; -

€; ""“"-—-——:L-o o—1&
f, f,

fO- f1+ +

e[') —""0 N O:—-—_._.___“ e,

[f0 \fl
po. ot - P

Q(w,v) =b°(w) - G(w,v) - b>(v)

G(u,v) =

€y

Fo(u,v) F3(u,v)
Fi(u,v) F,(u,v)

el

e;

e;

P2
€3
€,
P

Gregory Quad Patch

| LE -. 2 p
| | Q(w,v) =b*(w) - G(w,v) - b>(v)
+ f; f;
63 0—-——._____1:?0 c’_f_._____._._---le2
3 2] ~
Ps3 €o eél_
+ v g .
€ | % °tl““--weT G(u,v) = Co o(w,v) Fs3(w,v)
fy €1 Fl (u; U) FZ (u, U)
LPo e e,
Po :33 91: “p
ufs +vfy o
FO(u' U) = F1; F2; F3 are similar

u+v

Gregory Triangle Patch

T(u,v,w) = udpy +v3p; + wip,
3uv(u + v)(ued + vel)
3vw(v + w)(vef + we3)
3wu(w + u)(we;s + uey)

12uvw(uF, + vF; + wF,)

Geometric Construction

Patch Construction

e General construction for
3 or 4 sided faces

Gregory patches in 1-1 correspondence
with control mesh faces

Patch Construction

e General construction for
3 or 4 sided faces

— Corner Points p

Patch Construction

e General construction for
3 or 4 sided faces

— Corner Points p

— Edge Points e{, eg

Patch Construction

e General construction for
3 or 4 sided faces

— Corner Points p
— Edge Points e{, eg

— Face Points fg, fy

Edge Midpoints/Face Centroids

i=0,..n—1 wherenisthe valence of v

Corner Point

n-3 4 ”21 .
“h+s5 n(n+5)_0(mi i)
i=

Interpolate limit position of Catmull-Clark Surface

Edge Points

n—1
2 - '
q= - z (1—-o cos(%)) cos(%) m; + Zacos(zn,l:n) C;)
i=0

o = (4 + cos?(%))~1/2

Interpolate limit tangent of Catmull-Clark Surface

Edge Points

n—1
2 - -
a=") (1~ o cos(2)) cos(Z) m; + 20e0s(2T) ¢)
i=0
o ==(4-+-cosz(%))"1/2

N 2
e =p+§/1q

Interpolate limit tangent of Catmull-Clark Surface

Face Points

Iy = 3 (m;y; —m;_4) + 3 (c; —¢i-1)

Face Points

1 2
=3 (m;y; —m;_,) + 3 (€i —¢€i—1)

1
f& = E(Clv + (d — 2¢y — cy)ed + 2¢cpe] + 1)

_ {3 quad
~ |4 triangle

Implementation

Implementation

Two Approaches

Vertex/Hull Shader Approach

 Vertex Shader:

— Compute p,ej, ey ,1;, i =0,...,n — 1 per vertex

e Hull Shader:

— Compute e;r, e]T,fjJr,fj_ ,j=0..2(or3)

— Pass through p;

Hull Shader Stencil Approach

* Cluster mesh faces by neighborhood type
— permutation of a face 1-ring neighborhood
— draw call per neighborhood type

* Neighborhood determines a stencil matrix

— hull shader computes matrix/vector product

Two GPU Approaches

* Vertex/Hull Shaders
— Exploit vertex-centric nature of computations
— 3 or 4 point patch primitives
— Fat vertices

* Hull Shader Stencil Approach
— Map patch construction to hull shader exclusively
— 6 to 32 point patch primitives
— Thin vertices

Results

GPU Subdivision

Hybrid SubD/Tess Data Flow

Mesh Data

Data-Parallel
' ! } Catmull-Clark
Subdivision

DirectX 11
> Tessellation
Pipeline

Subdivision with Tessellation

* Simplifies Mesh Connectivity
— Quad mesh, isolated extraordinary vertices
— Reduces hull shader matrix combinations
— Enables more clustering, fewer draw calls

* Performance/Quality Tradeoff
— Stam’s direct evaluation procedure

— Curvature continuous patching
— More accurate Gregory approximation

Data-Parallel Subdivision

Catmull-Clark Refinement Rules:

1. Face points - the average of all old points
defining a face.

Edge points - the average of the two old vertex
points and two new face points incident on the

2.

edge.

. -2 1 1
Vertex points - the average nTV + ~ P+ ~ Q
where V is the old vertex point, P is the average

of the all o
vertex, anc

points of a

d vertex points adjacent to the old
Q is the average of the new face
| faces incident to the old vertex.

Subdivision Tables

™~
= =
o IR
o o0
= | &
= g (== I - = B
S| =
N O = N m
— Lo~ O OO nwnuwm o~
(o I T S o N O mMmM™N < m < - N O O O
— N M T m n n n W WM~ M~ 00 O W I~ o0
o O o0 o < O - N O MmO s = < < o -
m ;N Mmoo <+ m M om
omoaoa ocw I]

[10]
1
12
13
14
15
16

17]

18]
19

Face Kernel

[numthreads (8, 4, 1)]

void FacePoint (uint3 blockIdx : SV GrouplD,
uint3 DTid : SV DispatchThreadID,
uint3 threadIdx : SV _GroupThreadID,
uint GI : SV GroupIndex)

int Faceldx = 8 * blockIdx.x + threadIdx.x;
if (Faceldx < FO) {
int h = FO ITa[2*Faceldx];
int n = FO ITa[2*Faceldx+1];
float g = 0.0f;
for (int j=0; J<n; J++){
g += VB[SRC OFFSET + 4*F0 IT[h++] + threadIdx.y];

}
a /= ((float)n);

VB[DEST OFFSET 1 + 4* (Faceldx) + threadIdx.y] = q;

Edge Kernel

[numthreads (8, 4, 1)]

void EdgePoint (uint3 blockIdx : SV GrouplD,
uint3 DTid : SV _DispatchThreadID,
uint3 threadIdx : SV _GroupThreadID,
uint GI : SV GroupIndex)

int EdgelIdx 8 * blockIdx.x + threadIdx.x;

if (EdgelIdx < EOQ) {

float g = 0.25f£*(
VB[SRC OFFSET + 4*E0 IT[4*Edgeldx+0] + threadIdx.y] +
VB[SRC OFFSET + 4*E0 IT[4*Edgeldx+l] + threadIdx.y] +
VB[SRC OFFSET + 4*E0 IT[4*Edgeldx+2] + threadIdx.y] +
VB[SRC OFFSET + 4*E0 IT[4*Edgeldx+3] + threadIdx.y]);

VB[DEST OFFSET 2 + 4*Edgeldx + threadIdx.y] = q;

Vertex Kernel

[numthreads (8, 4, 1)]

void VertexPoint (uint3 blockIdx : SV GrouplD,
uint3 DTid : SV _DispatchThreadID,
uint3 threadIdx : SV _GroupThreadlD,
uint GI : SV GroupIndex)

int VertexIdx = 8 * blockIdx.x + threadIdx.x;

if (VertexIdx < VO0) {
int h = VO ITa[2*VertexIdx];
int n = VO ITa[2*VertexIdx+1l];

float g = 0.0f;

for (int 3J=0; j<n; Jj++){

g += VB[SRC OFFSET + 4*VO IT[h+2*j] + threadIdx.y]
VB[SRC OFFSET + 4*V0O IT[h+2*j+1] + threadIdx.y];

'

float fn

(float)n;

float wv = (fn-2)/fn;
float wp = 1.0f/ (fn*fn);

VB[DEST OFFSET 3 + 4*VertexIdx + threadIdx.y] =
wv*VB[SRC OFFSET + 4*VertexIdx + threadIdx.y] + wp*Qq;

Tessellator Pipeline Stage

Simplified Patch Input

[/

/|
A

Regular Patch Extraordinary Patch

16 control points 2n + 8 control points

Regular Patches

* Hull Shader
— B-spline to Bézier B=Q-D-Q" 60 FLOPS

* Domain Shader
—pos=u-B-v, normal =(du-B-v) X (u-B-dv)
— Reverse DeCastlejau pyramid 162 FLOPS

Domain Shader

float ufl4], duldl;
float3 uB[4], duBl4];

CubicBezier (uv.x, u, du);

for (uint 1 = 0; 1 < 4; i++) {
uB[1i] = float3(0, 0, 0);
duB[1i] = float3(0, 0, 0);

for (uint J = 0; 7 < 4; j++) {
float3 A = B[4*1 + 7J];

uB[i] += ulj] * A;
duB[i] += dul]j] * A;

float3 WorldPos
float3 Tangent
float3 BiTangent

float3 (0, 0, 0);
float3 (0, 0, 0);
float3(0, 0, 0);

CubicBezier (uv.y, u, du);

for (i = 0; 1 < 4; i++) {
WorldPos += wuB[i] * wuli];
Tangent += duB[i] * wul[i];
BiTangent += uB[i] * duli];

Basis Functions

void CubicBezier (in float u, out float b[4], out float d[4])
{

float t = u;

float s = 1.0 - u;

float a0 = s * s;
float al = 2 * s * t;
float a2 = t * t;

b[0] = s * al;
b[1] = t * a0 + s * al;
b[2] =t * al + s * a2;
b[3] = t * a2;

d[0] = - a0;

d[(l] = a0 - al;

d[2] = al - az2;

d[3] = a2;

Exact Evaluation of the Limit Surface

e Stam’s algorithm TS

— sjx(w,v) = b(u,v) P - Sk v, j =
0 | 1

0,0 1,0

k = subdivision level

Exact Evaluation of the Limit Surface

e Stam’s algorithm
—b(w,v) P - (V- A V1) - v, =T

0,0 1,0

3 2

k = subdivision level

Exact Evaluation of the Limit Surface

e Stam’s algorithm

0,1

—b(u,v)-Pj-V-Ak-Y‘l-vO |3 2

]:

-

eigen basis functions eigen space projection
2n + 8 bicubic (2n + 8) x (2n + 8) matrix-vector
polynomials multiply

0,0 1,0

k = subdivision level

Exact Evaluation of the Limit Surface

e Stam’s algorithm
3 2
—b(u,v) - P - V-A*- VT -y, j =
~ v — — 0 1
eigen basis functions eigen space projection 00 o5
2n + 8 bicubic (2n + 8) x (2n + 8) matrix-vector
polynomials multiply

k = subdivision level

* Hull Shader

— Eigen space projection

— 2n + 8 threads, 6n + 24 FLOPS
 Domain Shader

— Determine j, k, raise A to kt*power, remap (u, v), evaluate
eigen basis functions and derivatives, form sum-of-products

— 108n + 534 FLOPS

Curvature Continuous Patching

Loop, C. AND Schaefer, S. 2008,
e (G2 tensor product splines over extraordinary vertices

— Bicubic patch per regular quad

— Biseptic patch per irregular quad (64 coefficients)
e 2n + 8 precomputed basis functions

* Hull Shader
— max output: 32 vertices, pack 2 into 1
— 32 threads, 12n + 48 FLOPS per thread

 Domain Shader
— Independent of valencen 568 FLOPS

Gregory Patch Approximation

 Complexity Reduction
— from: quads & tris, 1000’s HS matrices
—to: 9 cases (n=3,...,12)

* Hull Shader
— 20 threads, 6n + 24FLOPS per thread

e Domain Shader
— 174 FLOPS

Results

____GPU___| Twohole | Bigguy | _Cat _

Radeon 5870 0.30 0.31 0.35
GTX 480 0.33 0.36 0.48

time in milliseconds

frames per second

1200

1000

800

600

400

200

Twohole

Radeon 5870 GTX 480

2 4 8 16 32 64 2 4 8 16 32 64

tess factor

W Gregory VH

B Gregory HS

1 Gregory HS subd
B Stam

M Biseptic

frames per second

Bigguy

Radeon 5870

GTX 480

1200

1000

800

600

400 -

200 ~

32

64

tess factor

32

64

B Gregory VH

B Gregory HS

M Gregory HS subd
B Stam

M Biseptic

frames per second

1200

Cat

Radeon 5870 GTX 480

1000

800

600

400 -

200 -+

32 64 2 4 8 16 32 64
tess factor

B Gregory VH

B Gregory HS

1 Gregory HS subd
W Stam

M Biseptic

Conclusions

* Approximation is fastest

— ideal for displacement mapping

* GPU mesh subdivision is fast
— memory needs impractical for deep subdivision
— tessellation big win for dense sampling
* Hybrid subd/tess is interesting
— complexity reduction
— speed/accuracy/quality knob

Thanks!

