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DirectX 11 Pipeline 
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DX Compute 

• GPGPU-Computing 

• Single shared context 

• Cuda-like 

– HLSL Syntax: 

[numthreads(8, 1, 1)] 

void Copy(uint3 blockIdx : SV_GroupID,  

 uint3 DTid : SV_DispatchThreadID,  

 uint3 threadIdx : SV_GroupThreadID, 

 uint GI : SV_GroupIndex ) 

{ 

   Output[8*blockIdx.x + threadIdx.x] = 

 Input[8*blockIdx.x + threadIdx.x]; 

} 

Compute Shader 



Domain Shader 

Hull Shader 

Tessellator 

Input Assembler 

Vertex Shader 

Geometry Shader 

Setup/Raster 

Hardware Tessellation Pipeline 

• Three new pipeline stages 

 

– Hull Shader (programmable) 

 

– Tessellator Unit (configurable) 

 

– Domain Shader (programmable) 

 



Domain Shader 

Tessellator 

Input Assembler 

Vertex Shader 

Geometry Shader 

Setup/Raster 

Hull Shader 

• Transform input control points 

• One thread per output point. 

 

• Hull Shader Constant Function 

– Compute edge and inside 
tessellation factors 

 

Hull Shader (HS) 



Domain Shader 

Hull Shader 
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Tessellator (TS) 

• Fixed function stage, configurable 

 

• Domains: 

– tri, quad, isoline 

 

• Spacing: 

– integer, fractional, pow2 



Tessellator (TS) 

Level 5 Level 5.4 Level 6.6 



Tessellator (TS) 

Inside Tess: 
minimum 

Inside Tess: 
average 

Inside Tess:  
maximum 

Top,Right = 4.5 
 

Bottom,Left = 9.0 

Left = 3.5 
Right = 4.4 

Bottom = 3.0 



Hull Shader 

Tessellator 
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Geometry Shader 

Setup/Raster 

Domain Shader 

Domain Shader (DS) 

• Evaluate patch with input  
parameters 𝑢, 𝑣, 𝑤  

 

• Interpolate attributes 

 

• Apply displacements 

 

• Output position, normal, etc. 

 



Bitwise Consistent Evaluation 

• Patches share boundaries 
– Coincident vertices evaluated via different code paths 

– Floating point addition non-commutative 

 

• References    http://developer.nvidia.com 

Solution: symmetric or order consistent evaluation 
 



Subdivision Surfaces 



Catmull-Clark Subdivision 

Catmull, E. AND Clark, J.  1978,  
Recursively generated B-spline surfaces on arbitrary topological meshes   

subdivision 



Problem: Infinite number of patches 

subdivision 

• Poor fit to hardware tessellation paradigm 

 

•   

 

• Exact evaluation is possible, but slow 

Stam, J. 1998,  
Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary 

parameter values 



Problem: Infinite number of patches 

subdivision 

• Poor fit to hardware tessellation paradigm 

 

•   

 

• Exact evaluation is possible, but slow 

Stam, J. 1998,  
Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary 

parameter values 
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Approximate Subdivision Surfaces 



Approximate Subdivision Surfaces 

Loop, C. , Schaefer, S. Ni, T., AND Castaño, I. 2009,  
Approximating subdivision surfaces with Gregory patches for tessellation hardware 



Bicubic Bézier Patch 

𝐵 𝑢, 𝑣 = b3 𝑢  ⋅ 𝐁 ⋅ b3(𝑣) 

𝐁 =

𝐛00 𝐛01 𝐛02 𝐛03
𝐛10 𝐛11 𝐛12 𝐛13
𝐛20 𝐛21 𝐛22 𝐛23
𝐛30 𝐛31 𝐛32 𝐛33

 

𝐛00  𝐛01 
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𝐛30  

𝐛11  

𝐛21  𝐛22  

𝐛12  

𝐛02  

𝐛31  𝐛32  𝐛33  

𝐛23  

𝐛13  

𝐛03  

b3 𝑢 = 1 − 𝑢 3 3 1 − 𝑢 2𝑢 3 1 − 𝑢 𝑢2 𝑢3  



Gregory Quad Patch 

𝑄 𝑢, 𝑣 = b3 𝑢  ⋅ 𝐆(𝑢, 𝑣) ⋅ b3(𝑣) 

𝐆(𝑢, 𝑣) =

𝐩3 𝐞0
− 𝐞3

+ 𝐩2
𝐞0
+ 𝐅0(𝑢, 𝑣) 𝐅3(𝑢, 𝑣) 𝐞3

−

𝐞1
− 𝐅1(𝑢, 𝑣) 𝐅2(𝑢, 𝑣) 𝐞2

+

𝐩0 𝐞1
+ 𝐞2

− 𝐩1

 



Gregory Quad Patch 

𝑄 𝑢, 𝑣 = b3 𝑢  ⋅ 𝐆(𝑢, 𝑣) ⋅ b3(𝑣) 

𝐆(𝑢, 𝑣) =

𝐩3 𝐞0
− 𝐞3

+ 𝐩2
𝐞0
+ 𝐅0(𝑢, 𝑣) 𝐅3(𝑢, 𝑣) 𝐞3

−

𝐞1
− 𝐅1(𝑢, 𝑣) 𝐅2(𝑢, 𝑣) 𝐞2

+

𝐩0 𝐞1
+ 𝐞2

− 𝐩1

 

𝐅0(𝑢, 𝑣) =
𝑢 𝐟0
+ + 𝑣 𝐟0

−

𝑢 + 𝑣
 𝐅1, 𝐅2, 𝐅3 are similar 



Gregory Triangle Patch 

𝑇 𝑢, 𝑣, 𝑤  =  𝑢3𝐩0 + 𝑣
3𝐩1 + 𝑤

3𝐩2
  +   3𝑢𝑣 𝑢 + 𝑣 𝑢𝐞0

+ + 𝑣𝐞1
−

  +   3𝑣𝑤 𝑣 + 𝑤 𝑣𝐞1
+ + 𝑤𝐞2

−

  +   3𝑤𝑢 𝑤 + 𝑢 𝑤𝐞2
+ + 𝑢𝐞0

−

  +   12𝑢𝑣𝑤 𝑢𝐅0 + 𝑣𝐅1 +𝑤𝐅2  

 

𝐅0(𝑣, 𝑤) =
𝑤 𝐟0
− + 𝑣 𝐟0

+

𝑣 + 𝑤
, 𝐅1 𝑢,𝑤 =

𝑢 𝐟1
− + 𝑤 𝐟1

+

𝑤 + 𝑢
, 𝐅2(𝑢, 𝑣) =

𝑣 𝐟2
− + 𝑢 𝐟2

+

𝑢 + 𝑣
 



Geometric Construction 



Patch Construction 

• General construction for 
3 or 4 sided faces 

 

 

 

 

Gregory patches in 1-1 correspondence  
with control mesh faces 



Patch Construction 

p 

• General construction for 
3 or 4 sided faces 

 

 

– Corner Points 𝐩 

 

 



Patch Construction 

p 

• General construction for 
3 or 4 sided faces 

 

 

– Corner Points 𝐩 

 

– Edge Points 𝐞0
+, 𝐞0
− 
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Patch Construction 

p 𝐞0
+ 

𝐞0
− 

𝐟0
+ 
𝐟0
− 

• General construction for 
3 or 4 sided faces 

 

 

– Corner Points 𝐩 

 

– Edge Points 𝐞0
+, 𝐞0
− 

 

– Face Points 𝐟0
+, 𝐟0
− 

 



Edge Midpoints/Face Centroids 

v 

mi 

ci 

mi+1 

mi-1 

ci+1 

ci-1 
𝑖 = 0,…𝑛 − 1   where 𝑛 is the valence of 𝐯 



Corner Point 

p 

Interpolate limit position of Catmull-Clark Surface 

𝐩 =
𝑛 − 3

𝑛 + 5
𝐯 +

4

𝑛(𝑛 + 5)
 (𝐦𝑖 + 𝐜𝑖)

𝑛−1

𝑖=0

 



Edge Points 

Interpolate limit tangent of Catmull-Clark Surface 

𝐪 =
2

𝑛
 ((1 − 𝜎 cos 𝜋

𝑛
)

𝑛−1

𝑖=0

cos 2𝜋𝑖
𝑛
𝐦𝑖 + 2𝜎cos

2𝜋𝑖+𝜋
𝑛
𝐜𝑖) 

 
𝜎 = (4 + cos2 𝜋

𝑛
)−1 2  

 

𝐪 



Edge Points 

Interpolate limit tangent of Catmull-Clark Surface 

𝐪 =
2

𝑛
 ((1 − 𝜎 cos 𝜋

𝑛
)

𝑛−1

𝑖=0

cos 2𝜋𝑖
𝑛
𝐦𝑖 + 2𝜎cos

2𝜋𝑖+𝜋
𝑛
𝐜𝑖) 

 
𝜎 = (4 + cos2 𝜋

𝑛
)−1 2  

 

𝐞0
+ = 𝐩 +

2

3
𝜆 𝐪 

𝐞0
+ 



Face Points 

𝐫0 =
1

3
𝐦𝑖+1 −𝐦𝑖−1 +

2

3
(𝐜𝑖 − 𝐜𝑖−1) 

 
 



Face Points 

𝐫0
+ =
1

3
𝐦𝑖+1 −𝐦𝑖−1 +

2

3
(𝐜𝑖 − 𝐜𝑖−1) 

 

𝐟0
+ =
1

𝑑
(𝑐1𝐯 + 𝑑 − 2𝑐0 − 𝑐1 𝐞0

+ + 2𝑐0𝐞1
− + 𝐫0) 

 

𝑑 =  
3 𝑞𝑢𝑎𝑑       
4 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒

 

𝐟0
+ 

𝐯 
𝐞0
+ 

𝐞1
− 



Implementation 



Implementation 

Two Approaches 



Vertex/Hull Shader Approach 

• Vertex Shader: 

– Compute 𝐩, 𝐞0
+, 𝐞0
− , 𝐫𝑖 , 𝑖 = 0, … , 𝑛 − 1 per vertex 

 

• Hull Shader: 

– Compute 𝐞𝑗
+, 𝐞𝑗
− , 𝐟𝑗
+, 𝐟𝑗
− , 𝑗 = 0…2 (𝑜𝑟 3) 

– Pass through 𝐩𝑗 

 



Hull Shader Stencil Approach 

• Cluster mesh faces by neighborhood type 

– permutation of a face 1-ring neighborhood 

– draw call per neighborhood type 

 

• Neighborhood determines a stencil matrix 

– hull shader computes matrix/vector product 

 



Two GPU Approaches 

• Vertex/Hull Shaders 
– Exploit vertex-centric nature of computations 

– 3 or 4 point patch primitives 

– Fat vertices 

 

• Hull Shader Stencil Approach 
– Map patch construction to hull shader exclusively 

– 6 to 32 point patch primitives 

– Thin vertices 

 



Results 



More Results 



GPU Subdivision 



Hybrid SubD/Tess Data Flow 

Domain Shader 

Hull Shader 

Tessellator 

Input Assembler 

Vertex Shader 

Geometry Shader 

Output Merger 

Rasterizer 

Pixel Shader 

Compute Shader 

Mesh Data 

DirectX 11 
Tessellation 

Pipeline 

Data-Parallel 
Catmull-Clark  

Subdivision 



Subdivision with Tessellation 

• Simplifies Mesh Connectivity 

– Quad mesh, isolated extraordinary vertices 

– Reduces hull shader matrix combinations 

– Enables more clustering, fewer draw calls 

• Performance/Quality Tradeoff 

– Stam’s direct evaluation procedure 

– Curvature continuous patching 

– More accurate Gregory approximation 



Data-Parallel Subdivision 



Catmull-Clark Refinement Rules: 

1. Face points - the average of all old points 
defining a face. 

2. Edge points - the average of the two old vertex 
points and two new face points incident on the 
edge. 

3. Vertex points - the average 
𝑛−2

𝑛
𝐕 +
1

𝑛
𝐏 +
1

𝑛
𝐐 

where 𝐕 is the old vertex point, 𝐏 is the average 
of the all old vertex points adjacent to the old 
vertex, and 𝐐 is the average of the new face 
points of all faces incident to the old vertex. 



Subdivision Tables 



[numthreads(8, 4, 1)] 

void FacePoint(uint3 blockIdx : SV_GroupID,  

      uint3 DTid : SV_DispatchThreadID,  

      uint3 threadIdx : SV_GroupThreadID, 

      uint GI : SV_GroupIndex ) 

{ 

    int FaceIdx = 8 * blockIdx.x + threadIdx.x; 

 

    if (FaceIdx < F0){ 

        int h = F0_ITa[2*FaceIdx]; 

        int n = F0_ITa[2*FaceIdx+1]; 

 

        float q = 0.0f; 

        for (int j=0; j<n; j++){ 

            q += VB[SRC_OFFSET + 4*F0_IT[h++] + threadIdx.y]; 

        } 

        q /= ((float)n); 

 

        VB[DEST_OFFSET_1 + 4*(FaceIdx) + threadIdx.y] = q; 

    } 

} 

Face Kernel 



[numthreads(8, 4, 1)] 

void EdgePoint(uint3 blockIdx : SV_GroupID,  

               uint3 DTid : SV_DispatchThreadID,  

               uint3 threadIdx : SV_GroupThreadID, 

               uint GI : SV_GroupIndex ) 

{ 

    int EdgeIdx = 8 * blockIdx.x + threadIdx.x; 

 

    if (EdgeIdx < E0){ 

        float q = 0.25f*( 

            VB[SRC_OFFSET + 4*E0_IT[4*EdgeIdx+0] + threadIdx.y] +  

            VB[SRC_OFFSET + 4*E0_IT[4*EdgeIdx+1] + threadIdx.y] +  

            VB[SRC_OFFSET + 4*E0_IT[4*EdgeIdx+2] + threadIdx.y] +  

            VB[SRC_OFFSET + 4*E0_IT[4*EdgeIdx+3] + threadIdx.y] ); 

 

            VB[DEST_OFFSET_2 + 4*EdgeIdx + threadIdx.y] = q; 

    } 

} 

Edge Kernel 



[numthreads(8, 4, 1)] 

void VertexPoint(uint3 blockIdx : SV_GroupID,  

                 uint3 DTid : SV_DispatchThreadID,  

                 uint3 threadIdx : SV_GroupThreadID, 

                 uint GI : SV_GroupIndex) 

{ 

    int VertexIdx = 8 * blockIdx.x + threadIdx.x; 

 

    if (VertexIdx < V0){ 

        int h = V0_ITa[2*VertexIdx]; 

        int n = V0_ITa[2*VertexIdx+1]; 

 

        float q = 0.0f; 

        for (int j=0; j<n; j++){ 

            q += VB[SRC_OFFSET + 4*V0_IT[h+2*j  ] + threadIdx.y]  

               + VB[SRC_OFFSET + 4*V0_IT[h+2*j+1] + threadIdx.y]; 

        } 

 

        float fn = (float)n; 

 

        float wv = (fn-2)/fn; 

        float wp = 1.0f/(fn*fn); 

 

        VB[DEST_OFFSET_3 + 4*VertexIdx + threadIdx.y] =  

             wv*VB[SRC_OFFSET + 4*VertexIdx + threadIdx.y] + wp*q; 

    } 

} 

Vertex Kernel 



Tessellator Pipeline Stage 



Simplified Patch Input 

2𝑛 + 8 control points 16 control points 

Regular Patch Extraordinary Patch 



Regular Patches 

• Hull Shader 

– B-spline to Bézier  𝐁 = Q ∙ 𝐃 ∙ Q𝑇    60 FLOPS 

 

• Domain Shader 
– 𝑝𝑜𝑠 = u ∙ 𝐁 ∙ v,  𝑛𝑜𝑟𝑚𝑎𝑙 = (du ∙ 𝐁 ∙ v) × (u ∙ 𝐁 ∙ dv) 

– Reverse DeCastlejau pyramid   162 FLOPS 



Domain Shader 
float u[4], du[4]; 

float3 uB[4], duB[4]; 

 

CubicBezier(uv.x, u, du); 

 

for (uint i = 0; i < 4; i++) { 

     uB[i] =  float3(0, 0, 0); 

    duB[i] =  float3(0, 0, 0); 

 

    for (uint j = 0; j < 4; j++) { 

        float3 A = B[4*i + j]; 

 

         uB[i] +=  u[j] * A; 

        duB[i] += du[j] * A; 

    } 

} 

 

float3 WorldPos  = float3(0, 0, 0); 

float3 Tangent   = float3(0, 0, 0); 

float3 BiTangent = float3(0, 0, 0); 

 

CubicBezier(uv.y, u, du); 

 

for (i = 0; i < 4; i++) { 

    WorldPos  +=  uB[i] *  u[i]; 

    Tangent   += duB[i] *  u[i]; 

    BiTangent +=  uB[i] * du[i]; 

} 



Basis Functions 

void CubicBezier(in float u, out float b[4], out float d[4]) 

{ 

    float t = u; 

    float s = 1.0 - u; 

 

    float a0 = s * s; 

    float a1 = 2 * s * t; 

    float a2 = t * t; 

 

    b[0] =          s * a0; 

    b[1] = t * a0 + s * a1; 

    b[2] = t * a1 + s * a2; 

    b[3] = t * a2; 

 

    d[0] =    - a0; 

    d[1] = a0 - a1; 

    d[2] = a1 - a2; 

    d[3] = a2; 

} 



Exact Evaluation of the Limit Surface 

• Stam’s algorithm 

– 𝑠𝑗,𝑘 𝑢, 𝑣 = 𝑏(𝑢, 𝑣) ∙ P𝑗 ∙ S
𝑘 ∙ 𝐯0 
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Exact Evaluation of the Limit Surface 

• Stam’s algorithm 

– 𝑏(𝑢, 𝑣) ∙ P𝑗 ∙ (V ∙ Λ
𝑘 ∙ V−1) ∙ 𝐯0 
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Exact Evaluation of the Limit Surface 

• Stam’s algorithm  

– 𝑏(𝑢, 𝑣) ∙ P𝑗 ∙ V ∙ Λ
𝑘 ∙ V−1 ∙ 𝐯0 

 

 

eigen basis functions 
2𝑛 + 8 bicubic  
polynomials 

eigen space projection 
2𝑛 + 8 × 2𝑛 + 8  matrix-vector  

multiply 
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Exact Evaluation of the Limit Surface 

• Stam’s algorithm  

– 𝑏(𝑢, 𝑣) ∙ P𝑗 ∙ V ∙ Λ
𝑘 ∙ V𝑇 ∙ 𝐯0 

 

 
• Hull Shader 

– Eigen space projection   
– 2𝑛 + 8 threads, 6𝑛 + 24 FLOPS 

• Domain Shader 
– Determine 𝑗, 𝑘, raise Λ to 𝑘𝑡ℎpower, remap 𝑢, 𝑣 , evaluate 

eigen basis functions and derivatives, form sum-of-products   
– 108𝑛 + 534 FLOPS 

eigen basis functions 
2𝑛 + 8 bicubic  
polynomials 

eigen space projection 
2𝑛 + 8 × 2𝑛 + 8  matrix-vector  

multiply 

0 1 

3 2 
𝑗 = 

𝑘 = subdivision level 

0,0 1,0 

0,1 



Curvature Continuous Patching 

•   
– Bicubic patch per regular quad 
– Biseptic patch per irregular quad (64 coefficients) 

• 2𝑛 + 8 precomputed basis functions 
 

• Hull Shader  
– max output: 32 vertices, pack 2 into 1  
– 32 threads, 12𝑛 + 48 FLOPS per thread 

 

• Domain Shader 
– Independent of valence 𝑛     568 FLOPS 

Loop, C. AND Schaefer, S.  2008,  
G2  tensor product splines over extraordinary vertices 



Gregory Patch Approximation 

• Complexity Reduction 

– from: quads & tris, 1000’s HS matrices 

– to: 9 cases (𝑛 = 3,… , 12) 

 

• Hull Shader 

– 20 threads, 6𝑛 + 24FLOPS per thread 

 

• Domain Shader 

– 174 FLOPS 

 

 



Results 



Subdivision Stage 

GPU Twohole Bigguy Cat 

Radeon 5870 0.30 0.31 0.35 

GTX 480 0.33 0.36 0.48 

time in milliseconds 
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Conclusions 

• Approximation is fastest 

– ideal for displacement mapping 

• GPU mesh subdivision is fast 

– memory needs impractical for deep subdivision 

– tessellation big win for dense sampling 

• Hybrid subd/tess is interesting 

– complexity reduction 

– speed/accuracy/quality knob 

 



Thanks! 


