Scaling Biologically Inspired
Computer Vision Algorithms
for Video Content Analysis

Tom Dean Jim Mutch

: @"’ Center for Biological &
\ Computational Learnin
Google € o 9

MIT Brain & Cognitive Sciences

Principles of Biological Vision

Principles of Computer Vision

Principles of Computer Vision |

* Localized, oriented, band-pass filters
— e.g., Gabor functions, Haar wavelets

* Adaptive extrema-seeking attention maps
— e.g., Harris corners, Laplacian operator

* Neighborhood preserving topographic maps
— e.g., retinotopy and subspace pooling

Case Study: Bag of Words

Detect local feature coordinates:
— random, regular grid, find interest points

Compute feature descriptors:
— histograms of gradients of local patches

Vector quantize the descriptors:
— k-means to map descriptors to clusters

Summarize as term-frequency vector:
— relationships among descriptors are lost

SIFT, SURF, GLOH, efc.

* Resize the image if necessary *
* Generate scale-space pyramid *
* Laplacian differential operator *

* Find local extrema in scale space #
* Orient the interest-point frame

* Gabor-wavelet decomposition *
* Compress resulting descriptors

¥ Operations that can be accelerated by using either CuBLAS or CuFFT.

Principles of Computer Vision |l

* Local generalized-contrast normalization
— e.g., luminance gain control in the retina

* Saturating non-linear transfer functions
— e.g., thresholding, half-wave rectification

* Efficient-distributed representations
— e.g., sparse coding, vector quantization

Case Study: Sparse Coding

Reconstruct X as a linear combination of B

B* = arg mén (m}iln |1X — AB||5 + AS(A))
where

* X Iis a matrix whose columns are flattened patches,
* B is a matrix of basis vectors with same dimension,

* 4 is a matrix of reconstruction coefficients, and

* §'is a penalty function that encourages sparsity.

Analysis-Synthesis Iteration

Analysis step: solve for B holding 4 constant

minimizeg J(B|A) = || X — AB||5
subject to Z,L 1 32

Synthesis step: solve for 4 holding B constant

minimize 4 J(A|B) = || X — AB|5 + \|| A1

David Mumford. Neuronal architectures for pattern-theoretic problems. In
L Scale Neuronal Theories of the Brain, pages 125-152. MIT Press, 1994.

Coordinate Descent in Jacket *

function X = coord_descent(A, Y)
Determine required dimensions:
, hum bases] = size(A); [~, num_cases] = size(Y);
Initalize the coefficients:
= zeros(num_cases,num_bases); | Exploits data parallelism via matrix multiplication.
Specify default parameters
max iter = 128; gamma = 0.95000; tolerance = 0.000001;
% Precompute static components:
AtA = A'* Ay YtA = ¥’ * Ay Pj
% Specify gradient step sizes:
alphas = [1,3e-1,1le-1,3e-2,1e-2]; num alphas
% Append no—-progress step—size:
alphas plus zero = [alphas 0.0]; no progress = num alphas + 1;
% Apply coordinate descent:
for iter = l:max iter
% Compute the gradient vector:
Y minus Ax t A = YtA — X * AtA;
Qj = Y _minus Ax t A + repmat(Pj, [num _cases,l]) .* X;
Xstar = (Qj + sign(-Qj) * gamma) ./ repmat(Pj, [num cases,l1]);
% Zero out small coefficients:
Xstar(abs(—-Qj) < gamma) = 0;
% Prepare for the line search:
D = Xstar - X; DtAtA = D * AtA’;
av = sum(0.5 * DtAtA .* D,2);
bv = sum(— Y minus Ax t A .* D,2); Performs parallel coordinate descent
® Find the minimizing step size: via the use of element-wise operators.
minHx = gamma * norms(X,2);
% Solve the line—-search equations:
Hx = ones(num_alphas,num cases);
for k = l:num_alphas
Hx(k,:) = av * alphas(k) * alphas(k) + ...
bv * alphas(k) + gamma * norms(X + alphas(k) * D, 2);

t

do pd g0 go

diag(AtA)’;

length(alphas);

end

[Hx, I] = min(Hx, [], 1);

I(~(Hx’ < minHx * (1 - tolerance))) = no progress;
% Terminate loop if no progress:

if all(I == no progress); break; end

Q

% Apply the gradient step update:
X = X + repmat(alphas plus zero(I)’,[l,num bases]) .* D;
end

i

Jacket is a product of AccelerEyes: www.accelereyes.com

Analysis Synthesis Network

-
SISOUIUAS

image (data) +T +T +T +
I ® ® & o ©

David Mumford. Neuronal architectures for pattern-theoretic problems. In
Large Scale Neuronal Theories of the Brain, 125-152. MIT Press, 1994.

Multilayer Perceptron Models

% Contrast Extraction

Input Layer

K. Fukushima. Neocognitron: A self organizing neural network model for a mechanism of pattern
recognition unaffected by shift in position. Biological Cybernetics, 36(4):93—-202, 1980.

Case Study: Deep Networks

Complete Bipartite Hierarchical Structure

I”Nunnu”
0 0 O

Temporal Structure

Oo—0——0

o 0

G. Hinton and R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313(5786):504-507, 2006.

L3 [A] thresh/sat 6 norm strength
normalization
r J | - -\neighborhood

i| number of filters

thresh/sat @ norm strength

TN normalization

neighborhood

r N B 5 % N
number of filters

thresh/sat @ norm strength

normalization
— ==‘-—=Neighborhood

:I number of filters

Nicolas Pinto, David Doukhan, James DiCarlo, and David Cox. A high-throughput screening approach to discovering good

Generate Thousands of
Random Models

4

Unsupervised Learning
of Filter Weights

\ 4

Test all Models with
a Screening
Object Recognition Task

.

Choose the Best Models

\ 4

Validate on Other Tasks

forms of biologically inspired visual representation. PLoS Computational Biology, 5(11):e1000579, November 2009.

Searching for Top Performing
Models in the Long Tall

250 100 top 5 models
22 -
_§ 200 E’ 90 -
E N=2500 S
o 150¢ o 80 -
5 o
= it
€ 100 g 70
c

50t top 5 models/ 60 -

50 -
0 e s 2o 5 4 3 2 1
50 60 70 80 90 100

Percent Correct

Nicolas Pinto, David Doukhan, James DiCarlo, and David Cox. A high-throughput screening approach to discovering good
forms of biologically inspired visual representation. PLoS Computational Biology, 5(11):e1000579, November 2009.

Fast Prototyping Frameworks

[1] O. Breuleux,J. Bergstra, J. Turian, F. Bastien, P. Lamblin, G. Desjardins, R. Pascanu,

O. Delalleau, and Y. Bengio. Theano: A package for efficient computation in python.
Journal of Machine Learning Research, under review, 2010.

[2] A.Kloeckner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov, and A. Fasih. PyCUDA: GPU
run-time code generation for high-performance computing. Technical Report 2009-40,
Scientific Computing Group, Brown University, Providence, RI, USA, November 2009.

[3] Jim Mutch, Ulf Knoblich, and Tomaso Poggio. CNS: A GPU-based framework for simulating
cortically-organized networks. Technical Report MIT-CSAIL-TR-2010-013 / CBCL-286,
Massachusetts Institute of Technology, Cambridge, MA, February 2010.

Fast Prototyping Frameworks

[1] O. Breuleux,J. Bergstra, J. Turian, F. Bastien, P. Lamblin, G. Desjardins, R. Pascanu,

O. Delalleau, and Y. Bengio. Theano: A package for efficient computation in python.
Journal of Machine Learning Research, under review, 2010.

[2] A.Kloeckner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov, and A. Fasih. PyCUDA: GPU
run-time code generation for high-performance computing. Technical Report 2009-40,
Scientific Computing Group, Brown University, Providence, RI, USA, November 2009.

[3] Jim Mutch, Ulf Knoblich, and Tomaso Poggio. CNS: A GPU-based framework for simulating
cortically-organized networks. Technical Report MIT-CSAIL-TR-2010-013 / CBCL-286,
Massachusetts Institute of Technology, Cambridge, MA, February 2010.

Define a network as a MATLAB struct: ‘\

* the number and type of layers,
m = struct;

* the dimensionality and size of layers. m.layers{l}.type = ‘ndp’;

o m.layers{l}.size = {100 100 50};
* the connectivity of layers and cells, and
m.layers{2}.type = ‘max’;

the initial value of layer-specific variables. . layersi2) .size = {30 30 50},

The only procedural code you write (in

C++) is that executed by a single cell. .~
_cjc++

Cell code calls macros to read/write
the cell's variables, find other cells,
and read other cell's variables. int ySize = WEIGHT Y SIZE(WZ);

int xSize = WEIGHT X SIZE (WZ);

* This makes it possible to compile

GET LAYER Y RF NEAR(PZ, ySize, v1, y2);

a network for a CPU or a GPU. GET LAYER X RF NEAR(PZ, xSize, x1, x2);
Details of what cells are connected to float v = 0.0f;

. . for (int j = xSize - 1, x = x1; 7 >= 0

other cells, how memory is organized, for (int i = ySize - 1, y = yl; i >= 0

float p = READ LAYER VAL(PZ, y, X);
J

etc. are all handled by the framework. float w = READ_WEIGHT VAL(WZ, i, 3,

Case Study: Simple Network
pool —7 &

/
filter /

Define and Run a CNS Model

Thkhkhkkhhkhkhhhkhhhkkdhkhdhkdhhkddhhhhrdhhhdhhddrrrdkrddx*

m.layers{l}.type = 'input’;

m.layers{l}.pz = 0;

m.layers{l}.size{l} = 1;

m = cns_mapdim(m, 1, 'y’, ’'pixels’, 256);

m = cns_mapdim(m, 1, ’'x’, ’‘pixels’, 256);
m.layers{2}.type = ’'scale’;

m.layers{2}.pz = 1;

m.layers{2}.size{l} = 1;

m = cns_mapdim(m, 2, 'y’, ’‘scaledpixels’, 256, 2);
m = cns_mapdim(m, 2, ‘x’, ’‘scaledpixels’, 256, 2);
m.layers{3}.type = 'filter’;

m.layers{3}.pz = 2;

m.layers{3}.rfCount = 11;

m.layers{3}.fParams = {’'gabor’, 0.3, 5.6410, 4.5128};
m.layers{3}.size{l} = 4;

m = c¢ns_mapdim(m, 3, ‘y’, ‘int’, 2, 11, 1);

m = cns_mapdim(m, 3, 'x’, ‘int’, 2, 11, 1);

Thkhkhkkhhkhhhhkhdhhkkdhkddhkdhhkddhkhrhrdhhhdhhddrrrdhrddx*

% Instantiate the above model in GPU memory:
cns("init’, m);

% Read test image and load it into the model:
input = imread(’'ketch 0010.jpg’);

% This allows you to SET the value of a layer:
cns('set’, 1, ’val’, input);

% For this model, RUN implies feedforward pass:
cns('run’);

% This allows you to GET the value of a layer:
output = ens(’'get’, 3, 'val’);

% Relinquish hold and free up device memory:
cns('done’);

%9(9(9(9(9(***

A CNS Cell Type: Definition

Ghhkhkhkdhhkdhhdhhdhkdhkdhhkdhhkdhhdhhdhddkdhdhdhdhdhhdhhdhdhdhhdhdhdhdhhhhhhbdhbddbdhdhdhdhhhk

function varargout = demopkg cns_type filter(method, varargin)
[varargout{l : nargout}] = feval([‘'method ' method], varargin{:});
Ghhkhkhkhhkhhkhhkhkhkhhkhhkhhhhhdkhdkdhdhdhhhhhdhhdhhhhhhhhhhhhhhhhhdhdhdhdhdkik*k
function p = method props

p.methods = {’initlayer’};

p.block¥YSize = 16;
p.blockXSize 8;

Ghkdkkkkdhkkkhhkhkhdhkhkhdhhhkhdhdhhkhdhhhhhhdhhhdhdhhhdhhhhdhhkhdhhkhdhdhhhdhdhdhhhhdhhhhhdhk

function d = method_fields
d.fvals = {'ga’, 'private’, ’‘cache’, ...
‘dims’ , {1 2 1
'dparts’, {1 1 2 .
‘dnames’, {'y’ ‘x’ ‘'f£'}};

e

r
r

%9.'9.'9.'9.'9.'9.'9.'9.'9.-)\-)\-)\-)\-7\'7\'7\'7\'7\"k'k'k'k'k'k-.‘r-.‘r-.‘r-.‘r*************************‘k‘k‘k*************
function m = method initlayer(m, z)
c = m.layers{z};

switch c.fParams{1l}
case 'gabor’

c.fvals = GenerateGabor(c.rfCount, c.size{l}, c.fParams{2 : end});
otherwise

error(‘invalid filter type’);

end
for £ =1 : c.size{l}
a =c.fvals(:, :, f);
a =a — mean(a(:));
a = a / sgrt(sum(a(:) .* a(:)));
c.fvals(:, :, f) = a;
end

m.layers{z} = c;

Ghhkhkhkdhhkdhhdhhkdhhkdhkdhhkdhhkdhhdhhdhddkddhdhdhdhdhhdhhdhdhdhdhdhdhdhdhhhhhbdhbdhdhdhdhdhhhk

A CNS Cell Type: Kernel

int y1, y2, x1, x2;

GET LAYER Y RF _NEAR(PZ, FVALS Y SIZE, yl, y2);
GET LAYER X RF NEAR(PZ, FVALS X SIZE, x1, x2);

int f = THIS F;

float res = 0.0f;
float len = 0.0f;
for (int j = 0, x = x1; x <= x2; j++, xt++)
for (int i = 0, y = yl; y <= y2; i++, y++)

// Read the value of the input cell:
float v = READ LAYER VAL(PZ, 0, y, X);

// Read corresponding filter value:
float w = READ FVALS(i, j, f);

res += w * v;
len += v * v;

e

res = fabsf(res);
if (len > 0.0f) res /= sqrtf(len);

// Write out value of this cell.
WRITE VAL(res);

o

int y1, y2, x1, x2;

GET LAYER Y RF NEAR(PZ, FVALS Y SIZE, yl, y2);
GET LAYER X RF NEAR(PZ, FVALS X SIZE, x1, x2);

int £ = THIS F;

float res = 0.0f;
float len = 0.0f;
int j = 0;

#UNROLL START 4 %x X1 <= x2
int i = 0;
#UNROLL START 4 %y yl <= y2

// Read the value of the input cell:
float v = READ LAYER VAL(PZ, 0, %y, %X);

// Read corresponding filter value:
float w = READ FVALS(i, j, £f);

res +=w
v

* v
len += * v

e e

i++;
#UNROLL END
Jt+;
#UNROLL END

res = fabsf(res);
if (len > 0.0f) res /= sqgrtf(len);

// Write out value of this cell.
WRITE VAL(res);

Common Coordinate Space

* Integer indices of cells within layers are not meaningful across layers.

* Under CNS, for topological dimensions, each cell knows its position in
a real-valued coordinate space that is meaningful, e.g., retinal position.

* When a cell executes, it can call CNS macros to find its input cells:
* e.g., find the 4 x 4 cells nearest me in layer 1,

* e.g., find all of the cells within 0.03 units of me.

valid 4x4 convolution, step size 2 valid 10x10 convalution aver scale 1, step size 5
2 output cells O output cells
DDE I * +* * +* * L. p DDE i * * * * +* 4 p
output cell RF output cell RF
rat AT N+ input cells rrr v 1+ nput scale 1
oD Nt &
|:||:|3 L * + * + * * * * * * * * * DD3 L * * * + 4 + input SI:EI|E 2
* +h+ +r P N T T T Y + + + F o e Fe T BT
* +U+ +* * * * * * * * * * * * _P _F tl_ ++ +* ++ _'3 _F q_ ¢+ *
DDd) * +* * +* * * * +* * +* * +* * DDA i * * * +D+ +* * * 0{}0' * *
- o o o o o o - S R e L B At
* +* * +* * * * * * * * * * #* * #* * * * * #* * #* * #* *
+ + + + + 4+ + [+ +
|:| DE | * +* * +* * * * +* * +* * +* * |:| DE | * * * * +* * +* * * * * *
- * *Of *l:::l# ¢D¢ ¢D¢ ¢D¢ ¢D¢ . * * -l_# -k ;l_ ++++¢ +¢ _'; ;'_ f+ *
o Y + « P ¥ o+ et +, o s
DDE' * *Of *l:::l# ¢D¢ ¢D¢ ¢D¢ ¢D¢ DDE_ * * .P + t'.v++ +++ _P _F\Ji‘. 0..'. +*
+* +O+ +O+ 4{}0 +D+ +D+ +D+ * -* _'_+ _F t'_ +++++ ++ _F t" +++
* + * + * * * +* * +* * +* * * * * * +* * +* * * * * * *
I:IDI'I." 1 1 1 1 1 1 I:II:I?' 1 1 1 1 1 1
0.02 0.03 0.04 0.05 0.0& 0.a7 0.02 0.03 0.04 0.05 0.0& 0.07

, X

N-D to 2-D in Cortex

ing

Mapp

Jim Mutch, UlIf Knoblich, and Tomaso Poggio. CNS: A GPU-based Framework for Simulating Cortically-organized Networks.
Technical Report MIT-CSAIL-TR-2010-013 / CBCL-286, Massachusetts Institute of Technology, Cambridge, MA, February 2010.

Case Study: Video Analysis

pooling layer A @ @

A A

ﬁ convolution layer ﬁ ﬁ
t-ks t
é rk 1 érs 1 é t-1
t- ks h t-s-h t-h
L % s = temporal stride
video input layer

TN

AAN

h = temporal span

\\\\\\\\ \\

Case Study: Video Analysis

pooling layer A @ @

A A

ﬁ convolution layer ﬁ ﬁ
t-ks t
é rk 1 érs 1 é t-1
t- ks h t-s-h t-h
L % s = temporal stride
video input layer

TN

AAN

h = temporal span

\\\\\\\\ \\

Define a Temporal CNS Model

R R R R R R R E R EEEEEEEEEEEEEEEEEEEEEEEEEEEEE RS

m.layers{l}.type = ’input’;
m.layers{l}.pz = 0;

m.layers{l}.size{l} = 3;

m = cns_mapdim(m, 1, ‘t’, ‘templ’ , 10);

m = cns_mapdim(m, 1, ‘'y’, ’‘pixels’, 256);

m = cns_mapdim(m, 1, ’'x’, ’‘pixels’, 256);
m.layers{2}.type = ’‘norm’;

m.layers{2}.pz = 1;

m.layers{2}.tCount = 3;

m.layers{2}.xyCount = 7;

m.layers{2}.gain = 1;

m.layers{2}.zero = 1;

m.layers{2}.thres = 0.15;
m.layers{2}.size{l} = m.layers{l}.size{l};
m = cns_mapdim(m, 2, ‘t’, ‘temp2’, 1, 3, 1, 8);
m = cns_mapdim(m, 2, ‘y’, ‘int" , 1, 7, 1);
m = cns_mapdim(m, 2, ‘x’, ‘int’” , 1, 7, 1);

R R R R R R R R R EEEEEEEEE SRR EEEEEEEEEEEEEEEEEEEES

R R R R R R R E R EEEEEEEEEEEEEEEEEEEEEEEEEEEEE RS

m.layers{3}.type = ‘conv’;

m.layers{3}.pz = 23

m.layers{3}.fCount = 4;

m.layers{3}.tCount = 5;

m.layers{3}.xyCount = 11;

m.layers{3}.abs = 1;

m.layers{3}.size{l} = 4;

m = cns_mapdim(m, 3, ‘t’, ‘temp2’, 2, 5, 1, 10);
m = cns_mapdim(m, 3, ‘y’, ‘int” , 2, 11, 1);

m = cns_mapdim(m, 3, ‘x’, ‘int’” , 2, 11, 1);
m.layers{4}.type = 'max’;

m.layers{4}.pz = 3;

m.layers{4}.tCount = 2;

m.layers{4}.xyCount = 10;

m.layers{4}.size{l} = m.layers{3}.size{l};

m = cns_mapdim(m, 4, ‘t’, ‘temp2’, 3, 2, 2, 10);
m = cns_mapdim(m, 4, ‘y’, ‘int” , 3, 10, 5);

m = cns_mapdim(m, 4, ’‘x’, ‘int’” , 3, 10, 5);

R R R R R R R R R EEEEEEEEE SRR EEEEEEEEEEEEEEEEEEEES

Sparse Spatiotemporal Coding

* A good sparse coding basis for video spans frequencies,
orientations, velocities and typically involves hundreds of
basis vectors each of which spans both space and time.

* Running an iterative solver such as coordinate descent on
each 3-D video patch corresponding to the receptive field
of an individual cell is not practical even on modern GPUs.

* Instead of solving for the sparse coefficients, we learn to
predict good approximations of these coefficients using a
method called predictive sparse decomposition (PSD).

Koray Kavukcuoglu, Marc'Aurelio Ranzato, and Yann LeCun. Fast inference in sparse coding algorithms with applications to object
recognition. Technical Report CBLL-TR-2008-12-01, Computational and Biological Learning Lab, Courant Institute, NYU, 2008.

Sparse Spatiotemporal Coding

Sparse Coding Objective Function:

J = ||X-AB|jz + Al Allx

Predictive Sparse Decomposition Function:
FX;W)=F(X,;G,M,B) =G *tanh(MX + B)

Amended Sparse Coding Objective Function:

J = | X = ABI[3 + M| Al + 8 | A~ FOGI)|

uoglu, Marc'Aurelio Ran and Yann LeCun. Fast infer: in spar d ng algorithms with applications to object
echnical Report CBLL- TR 2008 12-01, Computational a d B I ogical L ing Lab, Courant Institute, NYU, 2008.

Sparse Spatiotemporal Coding

* Predictive sparse coding approximates the sparse codes
produced by coordinate descent by substituting simple
convolutions for the more time consuming iterative solver.

* Unfortunately, running hundreds of convolutions involving
large convolution kernels is not practical even on GPUs.

* We could distribute the work over multiple GPUs, e.g.,

GPUO / \ GPU1 / \ GPU?2

L D] ILD)ILD

N A

* Alternatively we could be more selective where we code.

Attention-Gated Sparse Coding

decomposition

|/
— % "33 ”

-

interest
point
kernel

attention

\\\\\\

Attention-Gated Sparse Coding

decomposition

|/
— % "33 ”

-

interest
point
kernel

attention

é o

\\\\\\

Space-Time Interest Points

function response = filter(input, sigma, tau, radius)

% INPUTS

% input — 3-D input data
% sigma — spatial scale
% tau - temporal scale
% radius — filter radius
% OUTPUTS

response - detector response

-]

Generate 2-D Gaussian smoothing filter:

gauss = filterGauss2D(2 * radius + 1, [sigma, sigmal]);
$ Apply the smoothing filter spatially:
smooth = convn(input, gauss, ‘valid’);

% Generate Gabor filter quadrature pair:
[even, odd] = filterGaborlD(2 * tau, 2 * tau, 0.5 / tau);

$ Apply the Gabor filters temporally:
quad_even = convn(smooth, permute(even,[3 1 2]), 'valid’);
quad_odd convn(smooth, permute(odd, [3 1 2]),'valid’);

(=]

% Sum responses for quadrature energy:
response = quad _even.”"2 + quad _odd."2;

Piotr Dollar, Vincent Rabaud, Garrison Cottrell, and Serge Belongie. Behavior recognition via sparse spatio-temporal features. In
Second Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, 2005.

Interest Point Operator Kernel

int x1, %2, vy1, y2;
GET_LAYER X RF NEAR(PZ, GAUSS X SIZE, x1, x2);
GET _LAYER Y RF NEAR(PZ, GAUSS Y SIZE, yl, y2);

float quad_even
float quad_odd

// Dollar et al [2005] interest—-point operator:
for (int t = 0; t < GABOR T SIZE; t++) {

// Spatial smoothing with a Gaussian filter:

float smooth = 0.0f;
for (int j = 0, x = xl; x <= x2; j++, x++) {
for (int i = 0, yv = yl; y <= y2; i++, y++) {

float v = READ LAYER VAL(PZ, 0, t, y, X);
float w = READ GAUSS(j, 1i);
// Smooth the kth frame of the 3-D stack:
smooth += v * w;

+

}

// Temporal filter 1-D Gabor quadrature pair:
quad_even += smooth * READ GABOR(0, t);
quad_odd += smooth * READ GABOR(1l, t);

}

// Write quadrature-energy value for this cell:
WRITE_ VAL (pow(quad_even, 2) + pow(quad_odd, 2));

Piotr Dollar, Vincent Rabaud, Garrison Cottrell, and Serge Belongie. Behavior recognition via sparse spatio-temporal features. In
Second Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, 2005.

Attention-Gated Sparse Coding

| spa rse

~ coding

| L~ / [
| — erne
competition
5 local maximum j
yd
e
e
e
i

/ ; decomposition
a

interest
point
kernel

attention

Winner Take All Kernel

int y1, vy2, x1, x2;
GET_LAYER_Y_RF_NEAR(PZ WTASRCHWIN, y1l, y2);
GET LAYER X RF NEAR(PZ, WTASRCHWIN, x1, X2);

int max_row, max_col;
int radius = MAXSUPRWIN / 2;
float max_resp = CNS_FLTMIN;

for (int x
for (int y

X1, col = 0; x <= x2; col++, x++) {
vl, row = 0; y <= y2; rowt+, y++) {
// Read response from the center of 3 x 3 window:
float ctr_resp = READ LAYER VAL(PZ, 0, 0, y, X);
// Only interested if response exceeds threshold:
if (ctr_resp < WTATHRSH)

continue;
// Determine if the response is a local maximum:
bool max flag = 1;

for (int i = -radius; i <= radius; i++) {
for (int j = -radius; j <= radius; j++) {
if (1 t=0] 3 t=0) {

float nbr resp = READ LAYER VAL(PZ, 0, 0, y+j, x+i);
max_flag = max flag && (nbr _resp < ctr_resp);
}
}
}

// Save if local maximum and greater than current:
if (max flag && (ctr_resp > max resp)) {
max_row = row; max col = col; max resp = ctr_resp;

}
}
}
if (max_resp == CNS_FLTMIN) {
WRITE ROW(-1); // no maxima were found
} else {

WRITE ROW(max row);
WRITE_COL(max_col);

Attention-Gated Sparse Coding

/

/

~
a4

interest

point
kernel

7.
i

spa rse
coding
kernel

decomposition

competition

attention

-

Localized Sparse Coding Kernel

int t1, t2, x1, x2, yl, y2;

GET LAYER T RF NEAR(PZ, FVALS T SIZE, tl, t2)
GET LAYER X RF NEAR(PZ, FVALS X SIZE, x1, x2)
GET LAYER Y RF NEAR(PZ, FVALS X SIZE, yl, y2)

e mE e

// Read in the offsets for the local maximum:
int row offset = READ LAYER ROW(CZ, 0, 0, THIS Y, THIS X);
int col offset = READ LAYER COL(CZ, 0, 0, THIS Y, THIS X);
// If no local maximum found, write zero code:

if (row_offset < 0) { WRITE VAL(0.0f); return; }

// Shift X and Y subscript indices by offset:
x1 += col offset; x2 += col_ offset;
yl += row offset; y2 += row_offset;

// Dot product of basis filter and coding region:
float result = 0.0f;
int £ = THIS F;

for (int k = 0, t = tl; t <= t2; k++, t++) {
for (int j = 0, y = yl; y <= y2; j++, y++) {
for (int i = 0, x = xl; x <= x2; i++, x++) {

I
I
I
float v = READ LAYER VAL(PZ, 0, t, y, X);
float w = READ FVALS(O0, k, j, i, £f);
result += w * v;
}
}
}

// Compute predictive sparse decomposition function:
WRITE VAL(READ GAIN(f) * tanh(result + READ BIAS(f)));

Summary and Conclusions

GPU programming can significantly shorten run time but it
also invariably lengthens development time.

However, CNS models can run automatically on GPUs
without modification. How is this accomplished?

Everything in CNS is defined parametrically except the code a single
kernel thread executes.

Even that code only communicates with its environment via macros.

When compiling for a CPU, kernel macros expand into code that
accesses data structures in host memory.

When compiling for a GPU, those same macros expand into code
that accesses GPU memory.

Summary and Conclusions

* CNS shields the programmer from the details of the GPU
programming API, takes care of thread management, and
handles most details of memory management including:

— selecting the class of memory — global, texture, constant, shared,
— explicitly initiating host-GPU memory transfers,
— memory alignment and addressing, as well as
— dimension mapping — N-D to 2-D, texture packing.
* CNS supports a powerful model of computing particularly
well suited to biologically inspired computer vision:
— Multiple layers encoding neighborhood preserving feature maps.
— Layers consisting of cells defined by the same kernel computations.
— Abstractions that cleanly generalize to handle space, scale and time.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Keypoints & Structure from Motion SIFT, SURF, GLOH, etc
	Slide 7
	Slide 8
	Analysis-Synthesis Iteration
	Slide 10
	Analysis Synthesis Loop
	Multilayer Perceptron Models
	Slide 13
	Slide 14
	Searching for Top Performing Models in the Long Tail
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

