

Scaling Biologically Inspired
Computer Vision Algorithms
for Video Content Analysis

Tom Dean Jim Mutch

Principles of Biological Vision

Principles of Computer Vision

Principles of Computer Vision I

• Localized, oriented, band-pass filters
– e.g., Gabor functions, Haar wavelets

• Adaptive extrema-seeking attention maps
– e.g., Harris corners, Laplacian operator

• Neighborhood preserving topographic maps
– e.g., retinotopy and subspace pooling

Case Study: Bag of Words
• Detect local feature coordinates:

– random, regular grid, find interest points
• Compute feature descriptors:

– histograms of gradients of local patches
• Vector quantize the descriptors:

– k-means to map descriptors to clusters
• Summarize as term-frequency vector:

– relationships among descriptors are lost

SIFT, SURF, GLOH, etc.
• Resize the image if necessary ‡

• Generate scale-space pyramid ‡

• Laplacian differential operator ‡

• Find local extrema in scale space ‡

• Orient the interest-point frame
• Gabor-wavelet decomposition ‡

• Compress resulting descriptors

‡ Operations that can be accelerated by using either CuBLAS or CuFFT.

Principles of Computer Vision II

• Local generalized-contrast normalization
– e.g., luminance gain control in the retina

• Saturating non-linear transfer functions
– e.g., thresholding, half-wave rectification

• Efficient-distributed representations
– e.g., sparse coding, vector quantization

Case Study: Sparse Coding

where
• X is a matrix whose columns are flattened patches,

• B is a matrix of basis vectors with same dimension,

• A is a matrix of reconstruction coefficients, and

• S is a penalty function that encourages sparsity.

Reconstruct X as a linear combination of B

Analysis-Synthesis Iteration
Analysis step: solve for B holding A constant

Synthesis step: solve for A holding B constant

subject to

David Mumford. Neuronal architectures for pattern-theoretic problems. In
Large Scale Neuronal Theories of the Brain, pages 125-152. MIT Press, 1994.

Coordinate Descent in Jacket ‡

Performs parallel coordinate descent
via the use of element-wise operators.

Exploits data parallelism via matrix multiplication.

‡ Jacket is a product of AccelerEyes: www.accelereyes.com

 David Mumford. Neuronal architectures for pattern-theoretic problems. In
Large Scale Neuronal Theories of the Brain, 125-152. MIT Press, 1994.

Analysis Synthesis Network

Multilayer Perceptron Models

K. Fukushima. Neocognitron: A self organizing neural network model for a mechanism of pattern
recognition unaffected by shift in position. Biological Cybernetics, 36(4):93–202, 1980.

Case Study: Deep Networks
Complete Bipartite Hierarchical Structure

Temporal StructureSpatial Structure

G. Hinton and R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313(5786):504–507, 2006.

Nicolas Pinto, David Doukhan, James DiCarlo, and David Cox. A high-throughput screening approach to discovering good
forms of biologically inspired visual representation. PLoS Computational Biology, 5(11):e1000579, November 2009.

Searching for Top Performing
Models in the Long Tail

Nicolas Pinto, David Doukhan, James DiCarlo, and David Cox. A high-throughput screening approach to discovering good
forms of biologically inspired visual representation. PLoS Computational Biology, 5(11):e1000579, November 2009.

Fast Prototyping Frameworks

[1] O. Breuleux, J. Bergstra, J. Turian, F. Bastien, P. Lamblin, G. Desjardins, R. Pascanu,
 O. Delalleau, and Y. Bengio. Theano: A package for efficient computation in python.
 Journal of Machine Learning Research, under review, 2010.

[2] A. Klöeckner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov, and A. Fasih. PyCUDA: GPU
 run-time code generation for high-performance computing. Technical Report 2009-40,
 Scientific Computing Group, Brown University, Providence, RI, USA, November 2009.

[3] Jim Mutch, Ulf Knoblich, and Tomaso Poggio. CNS: A GPU-based framework for simulating
 cortically-organized networks. Technical Report MIT-CSAIL-TR-2010-013 / CBCL-286,
 Massachusetts Institute of Technology, Cambridge, MA, February 2010.

Fast Prototyping Frameworks

[1] O. Breuleux, J. Bergstra, J. Turian, F. Bastien, P. Lamblin, G. Desjardins, R. Pascanu,
 O. Delalleau, and Y. Bengio. Theano: A package for efficient computation in python.
 Journal of Machine Learning Research, under review, 2010.

[2] A. Klöeckner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov, and A. Fasih. PyCUDA: GPU
 run-time code generation for high-performance computing. Technical Report 2009-40,
 Scientific Computing Group, Brown University, Providence, RI, USA, November 2009.

[3] Jim Mutch, Ulf Knoblich, and Tomaso Poggio. CNS: A GPU-based framework for simulating
 cortically-organized networks. Technical Report MIT-CSAIL-TR-2010-013 / CBCL-286,
 Massachusetts Institute of Technology, Cambridge, MA, February 2010.

• Define a network as a MATLAB struct:
• the number and type of layers,

• the dimensionality and size of layers.

• the connectivity of layers and cells, and

• the initial value of layer-specific variables.

• The only procedural code you write (in
C++) is that executed by a single cell.

• Cell code calls macros to read/write
the cell's variables, find other cells,
and read other cell's variables.

• This makes it possible to compile
a network for a CPU or a GPU.

• Details of what cells are connected to
other cells, how memory is organized,
etc. are all handled by the framework.

m = struct;
m.layers{1}.type = ‘ndp’;
m.layers{1}.size = {100 100 50};
…
m.layers{2}.type = ‘max’;
m.layers{2}.size = {30 30 50};
…

// Code to compute one cell's response.

// Retrieve the filter size.
int ySize = WEIGHT_Y_SIZE(WZ);
int xSize = WEIGHT_X_SIZE(WZ);

// Find cell's RF in the previous layer.
GET_LAYER_Y_RF_NEAR(PZ, ySize, y1, y2);
GET_LAYER_X_RF_NEAR(PZ, xSize, x1, x2);

// Compute RF's response to the filter.
float v = 0.0f;
for (int j = xSize - 1, x = x1; j >= 0
for (int i = ySize - 1, y = y1; i >= 0
 float p = READ_LAYER_VAL(PZ, y, x);
 float w = READ_WEIGHT_VAL(WZ, i, j,
...

Case Study: Simple Network

input

scale

filter

pool

Define and Run a CNS Model

A CNS Cell Type: Definition

A CNS Cell Type: Kernel

• Integer indices of cells within layers are not meaningful across layers.

• Under CNS, for topological dimensions, each cell knows its position in
a real-valued coordinate space that is meaningful, e.g., retinal position.

• When a cell executes, it can call CNS macros to find its input cells:
• e.g., find the 4 x 4 cells nearest me in layer 1,

• e.g., find all of the cells within 0.03 units of me.

Common Coordinate Space

Mapping N-D to 2-D in Cortex

Jim Mutch, Ulf Knoblich, and Tomaso Poggio. CNS: A GPU-based Framework for Simulating Cortically-organized Networks.
Technical Report MIT-CSAIL-TR-2010-013 / CBCL-286, Massachusetts Institute of Technology, Cambridge, MA, February 2010.

Case Study: Video Analysis

Case Study: Video Analysis

Define a Temporal CNS Model

• A good sparse coding basis for video spans frequencies,
orientations, velocities and typically involves hundreds of
basis vectors each of which spans both space and time.

• Running an iterative solver such as coordinate descent on
each 3-D video patch corresponding to the receptive field
of an individual cell is not practical even on modern GPUs.

• Instead of solving for the sparse coefficients, we learn to
predict good approximations of these coefficients using a
method called predictive sparse decomposition (PSD).

Sparse Spatiotemporal Coding

Koray Kavukcuoglu, Marc'Aurelio Ranzato, and Yann LeCun. Fast inference in sparse coding algorithms with applications to object
recognition. Technical Report CBLL-TR-2008-12-01, Computational and Biological Learning Lab, Courant Institute, NYU, 2008.

Sparse Spatiotemporal Coding

Koray Kavukcuoglu, Marc'Aurelio Ranzato, and Yann LeCun. Fast inference in sparse coding algorithms with applications to object
recognition. Technical Report CBLL-TR-2008-12-01, Computational and Biological Learning Lab, Courant Institute, NYU, 2008.

Sparse Coding Objective Function:

Amended Sparse Coding Objective Function:

Predictive Sparse Decomposition Function:

• Predictive sparse coding approximates the sparse codes
produced by coordinate descent by substituting simple
convolutions for the more time consuming iterative solver.

• Unfortunately, running hundreds of convolutions involving
large convolution kernels is not practical even on GPUs.

• We could distribute the work over multiple GPUs, e.g.,

Sparse Spatiotemporal Coding

• Alternatively we could be more selective where we code.

Attention-Gated Sparse Coding

Attention-Gated Sparse Coding

Space-Time Interest Points

Piotr Dollár, Vincent Rabaud, Garrison Cottrell, and Serge Belongie. Behavior recognition via sparse spatio-temporal features. In
Second Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, 2005.

Interest Point Operator Kernel

Piotr Dollár, Vincent Rabaud, Garrison Cottrell, and Serge Belongie. Behavior recognition via sparse spatio-temporal features. In
Second Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, 2005.

Attention-Gated Sparse Coding

Winner Take All Kernel

Attention-Gated Sparse Coding

Localized Sparse Coding Kernel

• GPU programming can significantly shorten run time but it
also invariably lengthens development time.

• However, CNS models can run automatically on GPUs
without modification. How is this accomplished?
– Everything in CNS is defined parametrically except the code a single

kernel thread executes.
– Even that code only communicates with its environment via macros.
– When compiling for a CPU, kernel macros expand into code that

accesses data structures in host memory.
– When compiling for a GPU, those same macros expand into code

that accesses GPU memory.

Summary and Conclusions

Summary and Conclusions
• CNS shields the programmer from the details of the GPU

programming API, takes care of thread management, and
handles most details of memory management including:
– selecting the class of memory — global, texture, constant, shared,
– explicitly initiating host-GPU memory transfers,
– memory alignment and addressing, as well as
– dimension mapping — N-D to 2-D, texture packing.

• CNS supports a powerful model of computing particularly
well suited to biologically inspired computer vision:
– Multiple layers encoding neighborhood preserving feature maps.
– Layers consisting of cells defined by the same kernel computations.
– Abstractions that cleanly generalize to handle space, scale and time.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Keypoints & Structure from Motion SIFT, SURF, GLOH, etc
	Slide 7
	Slide 8
	Analysis-Synthesis Iteration
	Slide 10
	Analysis Synthesis Loop
	Multilayer Perceptron Models
	Slide 13
	Slide 14
	Searching for Top Performing Models in the Long Tail
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

