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Overview

Applications for Pseudo-Random Numbers
I Monte Carlo Simulation, Integration

I Test and Content Generation

I These applications are often easily parallelizable
I MRIP paradigm: multiple replications in parallel

Generating Pseudo-Random Numbers
I Generate i.i.d. uniform random numbers (for example 32bit)

I Transform into (0,1)

I Additional transformation to target distribution (for example, normal
distributed)



Page 3 Massively Parallel Random Number Generators | Overview | September 15, 2010

Structure of a RNG

Formal Definition [L’E06]

(S ,µ, f ,U,g)

I S state space

I µ prob. distr. on S to select initial state (seed) s0 ∈ S

I f : S → S transition function

I g : S → U output function

I U = (0,1) output space

I si = f (si−1), i ≥ 1 and ui = g(si )
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Structure of a RNG

In a parallel Implementation

(S ,µ, f ,U,g)

I S needed per generating stream (usually per thread)

I S if possible hold in fast memory

I S store in global memory after finishing for multiple calls

I f and g are device functions (usually in a single function)

I output space often unsigned int → transform needed

Example: Linear Congruence Generator LCG [Knu81]

I si ∈ S is an integer (for example 32bit), U = S ,g = id

I f : si = (asi−1 + c) mod m

I Needs well chosen a, c and m
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Structure of a RNG

Required properties of a RNG
I Speed

I Repeatability

I Minimal statistical bias

Additional properties
I Random access on ui
I Independent number streams

I Long period
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Structure of a RNG

Why is a long period important?

From [SPM05]: for a cycle length of n a single simulation should use at most

16 3
√
n

random numbers (to trust the results of statistical simulation).
Assume period of 248 and simple parallel cuda app with 4096 threads:

16
3
√

248

4096
≈ 256

random numbers per thread.
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Choice of RNG parameters are important

Simple LCG, 210−3 points
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Two different views on parallel random numbers

1) Single Stream for all Threads
I Each thread computes parts of one problem

I Result should not depend on number of threads and should be repeatable

I Ideally RNG update is also parallel (→ speed)



Page 9 Massively Parallel Random Number Generators | Parallelization Techniques | September 15, 2010

Two different views on parallel random numbers

2) Each Thread uses it’s own RNG
I Each thread computes individual solutions

I Need to guarantee independence of streams

I If you could have a true RNG both methods would behave exactly the same
(but repeatability would be lost).

I Using Pseudo RNGs this needs to be explicitly designed in the program
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Parallelizing RNGs

Random Seeding
I Easy to implement

I Generally very bad parallelization method
I Need to seed valid states
I No guarantee of independence

I Can work for generators with a long period

I Better alternative: well chosen seeds (per thread)
I For example: Mersenne Twister dcmt library
I New GPU Mersenne Twister (MTGP) provides seed tables

Parametrization
I n different RNG configurations for n threads

I Needs to be especially developed and tested

I Often restricted to specific n
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Parallelizing RNGs

Block Splitting
I Can guarantee non overlapping sequences of length m

I m needs to be known in advance

I Starting states need to be known or computed
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Parallelizing RNGs

Leap-Frogging
I Needs RNG to be able to skip n numbers (or else quite inefficient)
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Application Design Considerations

On the fly Computation

Compute RN when needed in kernel

I State needs to be stored per stream

I RNG uses additional resources (registers and memory)

I Needs properly parallelized implementation

Pre-computation

Store RN in main memory

I Only memory access per RN

I Easily parallelizable (same access as leap frog)

I Memory requirements can be huge

I Bandwidth need to be considered
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Upload vs. Computation Example

Intel(R) Xeon(R) E5420 @ 2.50GHz, GTX 480, 256MB random numbers,
Mersenne Twister: MTGP/SFMT, 214 threads, blocksize 256

Precomputation
I Upload CPU-computed RN

I Precompute on CPU (SFMT): 180ms
I Upload: 44ms

I Precompute on GPU
I Precompute on GPU (MTGP): 9.18ms

I Consume (Asian Options): 783.5ms

Produce and consume (MTGP)
I Single Kernel: 1058.1ms
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Overview of some RNGs

LCGs

si = (asi−1 + c) mod m

I Combining multiple LCGs can give longer period

I Independent streams: Wichmann-Hill (273 threads)

Multiple Recursive Generator

si =

(
k

∑
ξ=1

aξ si−ξ

)
mod m

I Larger period (for k=1 equal to LCG)

I Blocking: MRG32k3a [LSCK02]
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Overview of some RNGs

RNGs based on Cryptographic functions
I Creates white noise from input

I MD5 [TW08]: hash function

I Tiny Encryption Algorithm (TEA) [ZOC10]

I Different configuration per thread (parametrization)
I Transform counter and thread id

I Random Access in the sequence

Mersenne Twister
I New GPU version [Sai10]

I Long period: 32bit version provides 211213−1,223209−1,244497−1

I Good seeding strategies (see MTGPDC)
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Testing RNGs

Why use tests
I Implementation of RNGs is very sensitive

I Before using any RNG implementation it should be tested

I Failed tests: very likely bad sequence

I Passed tests: guarantees nothing

Test Suits
I Use statistical tests to find flaws

I DIEHARD + NIST (both integrated in DIEHARDER [Bro09])

I TestU01 [LS07]
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Collection of Parallel Random Number Generators

Selecting suitable RNGs
I Domain specific problem

I Depends on current compiler and hardware

Our Collection
I CUDA implementation of several different RNGs

I Easy to use

I Currently tested on Linux

I Most of the code: MIT License

I Copy-paste ready code

Available at
http://mprng.sf.net

http://mprng.sf.net
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Collection of Parallel Random Number Generators

Integrated Benchmark
I Benchmarks compiles and runs on your machine

I Configure threads and blocks according to your target application

Integrated Test Suits
I DIEHARDER and TestU01

I Automatic report generation

Easy to extend
I Integrate your own RNG

I Integrate your own tests
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Comparisons: TestU01 SmallCrush Battery
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Raw Performance Test
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Raw Performance Test
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Performance Test: Asian Option Example from [HT07]
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Performance Test: Asian Option Example from [HT07]
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Quality vs. Speed

Reduced rounds of MD5/TEA RNG
I For some applications speed more important than quality

I MD5 and TEA allow to reduce number of iterations
I Quality of random numbers may degrade
I Avalanche effect

I MD5: passes most of the DIEHARDER tests after 16 rounds
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Quality vs. Speed, TEA, DIEHARDER tests
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Quality vs. Speed, TEA performance
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Quality vs. Speed, MD5 performance
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Conclusion

I Many good (parallel) RNGs exist

I Several different properties

I Choice of fitting RNG application dependent

Some Picks
I KISS

+ Simple code and state management
− Random seeding: may be ok for non-critical applications

I MTGPU

+ Very good quality and sophisticated seeding
+ Long period
− Relatively complex code
− Fixed block/thread layout

I MD5, TEA

+ Random access
+ No Seeding
− Slow
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Conclusion

Precomputing on GPU
I May be an alternative to in kernel computation

RNG Collection
I Always evaluate your RNG choice and implementation

I Our framework provides an easy platform for testing
http://mprng.sf.net

Questions?

Acknowledgements
I Framework: Christoph Schied

I This work was supported by a NVIDIA Professor Partnership Award with Hendrik P.A.
Lensch

http://mprng.sf.net
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