

Massively Parallel Random Number Generators

Overview

Applications for Pseudo-Random Numbers

- ▶ Monte Carlo Simulation, Integration
- ▶ Test and Content Generation
- ▶ These applications are often easily parallelizable
 - ▶ MRIP paradigm: multiple replications in parallel

Generating Pseudo-Random Numbers

- ▶ Generate i.i.d. uniform random numbers (for example 32bit)
- ▶ Transform into $(0,1)$
- ▶ Additional transformation to target distribution (for example, normal distributed)

Structure of a RNG

Formal Definition [L'E06]

$$(S, \mu, f, U, g)$$

- ▶ S state space
- ▶ μ prob. distr. on S to select initial state (seed) $s_0 \in S$
- ▶ $f : S \rightarrow S$ transition function
- ▶ $g : S \rightarrow U$ output function
- ▶ $U = (0, 1)$ output space
- ▶ $s_i = f(s_{i-1}), i \geq 1$ and $u_i = g(s_i)$

Structure of a RNG

In a parallel Implementation

$$(S, \mu, f, U, g)$$

- ▶ S needed per generating stream (usually per thread)
- ▶ S if possible hold in fast memory
- ▶ S store in global memory after finishing for multiple calls
- ▶ f and g are device functions (usually in a single function)
- ▶ output space often `unsigned int` → transform needed

Example: Linear Congruence Generator LCG [Knu81]

- ▶ $s_i \in S$ is an integer (for example 32bit), $U = S, g = id$
- ▶ $f : s_i = (as_{i-1} + c) \bmod m$
- ▶ Needs well chosen a, c and m

Structure of a RNG

Required properties of a RNG

- ▶ Speed
- ▶ Repeatability
- ▶ Minimal statistical bias

Additional properties

- ▶ Random access on u_i
- ▶ Independent number streams
- ▶ Long period

Structure of a RNG

Why is a long period important?

From [SPM05]: for a cycle length of n a single simulation should use at most

$$16\sqrt[3]{n}$$

random numbers (to trust the results of statistical simulation).

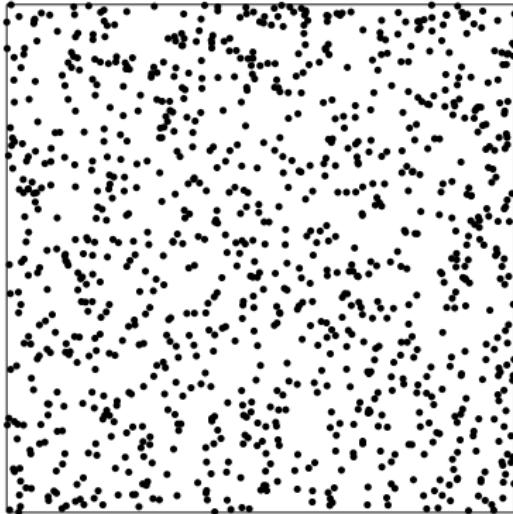
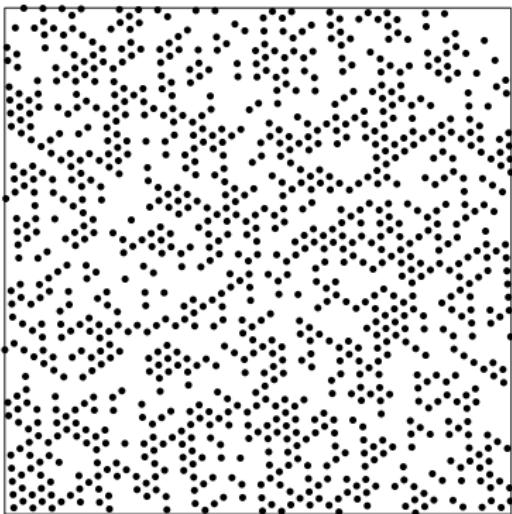
Assume period of 2^{48} and simple parallel cuda app with 4096 threads:

$$\frac{16\sqrt[3]{2^{48}}}{4096} \approx 256$$

random numbers per thread.

Choice of RNG parameters are important

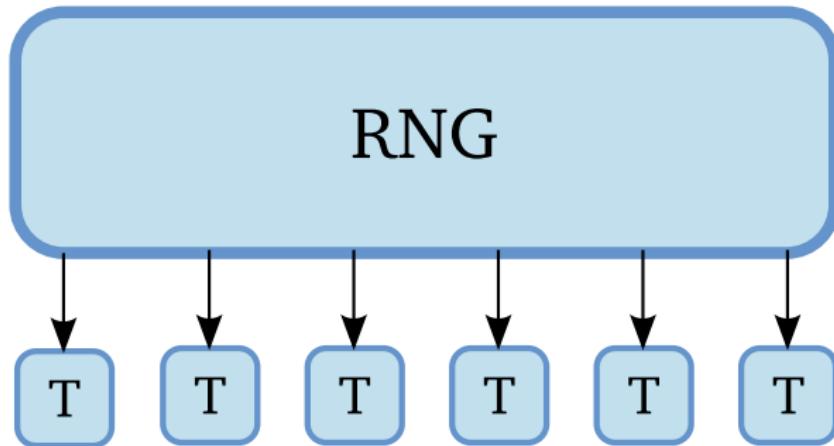
Simple LCG, $2^{10} - 3$ points



Two different views on parallel random numbers

1) Single Stream for all Threads

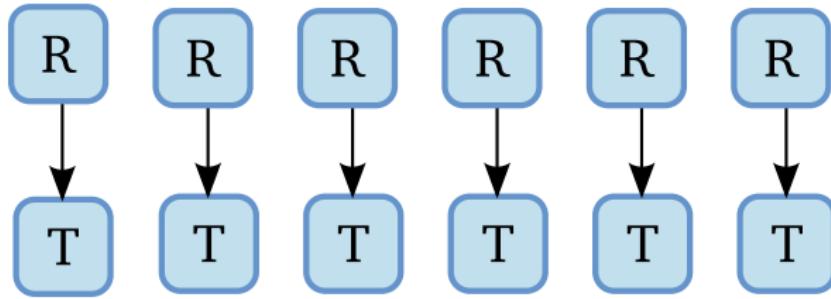
- ▶ Each thread computes parts of one problem
- ▶ Result should not depend on number of threads and should be repeatable
- ▶ Ideally RNG update is also parallel (→ speed)



Two different views on parallel random numbers

2) Each Thread uses it's own RNG

- ▶ Each thread computes individual solutions
- ▶ Need to guarantee independence of streams



- ▶ If you could have a true RNG both methods would behave exactly the same (but repeatability would be lost).
- ▶ Using Pseudo RNGs this needs to be explicitly designed in the program

Parallelizing RNGs

Random Seeding

- ▶ Easy to implement
- ▶ Generally very bad parallelization method
 - ▶ Need to seed valid states
 - ▶ No guarantee of independence
- ▶ Can work for generators with a long period
- ▶ Better alternative: well chosen seeds (per thread)
 - ▶ For example: Mersenne Twister dcmt library
 - ▶ New GPU Mersenne Twister (MTGP) provides seed tables

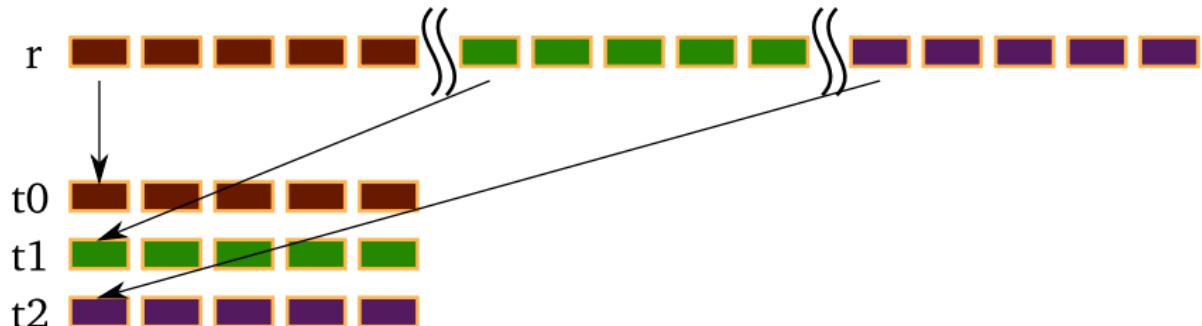
Parametrization

- ▶ n different RNG configurations for n threads
- ▶ Needs to be especially developed and tested
- ▶ Often restricted to specific n

Parallelizing RNGs

Block Splitting

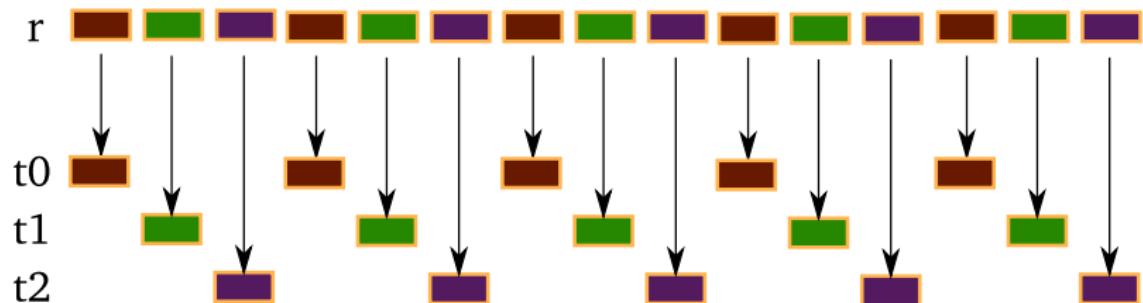
- ▶ Can guarantee non overlapping sequences of length m
- ▶ m needs to be known in advance
- ▶ Starting states need to be known or computed



Parallelizing RNGs

Leap-Frogging

- ▶ Needs RNG to be able to skip n numbers (or else quite inefficient)



Application Design Considerations

On the fly Computation

Compute RN when needed in kernel

- ▶ State needs to be stored per stream
- ▶ RNG uses additional resources (registers and memory)
- ▶ Needs properly parallelized implementation

Pre-computation

Store RN in main memory

- ▶ Only memory access per RN
- ▶ Easily parallelizable (same access as leap frog)
- ▶ Memory requirements can be huge
- ▶ Bandwidth need to be considered

Upload vs. Computation Example

Intel(R) Xeon(R) E5420 @ 2.50GHz, GTX 480, 256MB random numbers,
Mersenne Twister: MTGP/SFMT, 2^{14} threads, blocksize 256

Precomputation

- ▶ Upload CPU-computed RN
 - ▶ Precompute on CPU (SFMT): 180ms
 - ▶ Upload: 44ms
- ▶ Precompute on GPU
 - ▶ Precompute on GPU (MTGP): 9.18ms
- ▶ Consume (Asian Options): 783.5ms

Produce and consume (MTGP)

- ▶ Single Kernel: 1058.1ms

Overview of some RNGs

LCGs

$$s_i = (as_{i-1} + c) \bmod m$$

- ▶ Combining multiple LCGs can give longer period
- ▶ Independent streams: Wichmann-Hill (273 threads)

Multiple Recursive Generator

$$s_i = \left(\sum_{\xi=1}^k a_\xi s_{i-\xi} \right) \bmod m$$

- ▶ Larger period (for k=1 equal to LCG)
- ▶ Blocking: MRG32k3a [LSCK02]

Overview of some RNGs

RNGs based on Cryptographic functions

- ▶ Creates white noise from input
- ▶ MD5 [TW08]: hash function
- ▶ Tiny Encryption Algorithm (TEA) [ZOC10]
- ▶ Different configuration per thread (parametrization)
 - ▶ Transform counter and thread id
- ▶ Random Access in the sequence

Mersenne Twister

- ▶ New GPU version [Sai10]
- ▶ Long period: 32bit version provides $2^{11213} - 1, 2^{23209} - 1, 2^{44497} - 1$
- ▶ Good seeding strategies (see MTGPDC)

Testing RNGs

Why use tests

- ▶ Implementation of RNGs is very sensitive
- ▶ Before using any RNG implementation it should be tested
- ▶ Failed tests: very likely bad sequence
- ▶ Passed tests: guarantees nothing

Test Suits

- ▶ Use statistical tests to find flaws
- ▶ DIEHARD + NIST (both integrated in DIEHARDER [Bro09])
- ▶ TestU01 [LS07]

Collection of Parallel Random Number Generators

Selecting suitable RNGs

- ▶ Domain specific problem
- ▶ Depends on current compiler and hardware

Our Collection

- ▶ CUDA implementation of several different RNGs
- ▶ Easy to use
- ▶ Currently tested on Linux
- ▶ Most of the code: MIT License
- ▶ Copy-paste ready code

Available at

<http://mprng.sf.net>

Collection of Parallel Random Number Generators

Integrated Benchmark

- ▶ Benchmarks compiles and runs on your machine
- ▶ Configure threads and blocks according to your target application

Integrated Test Suits

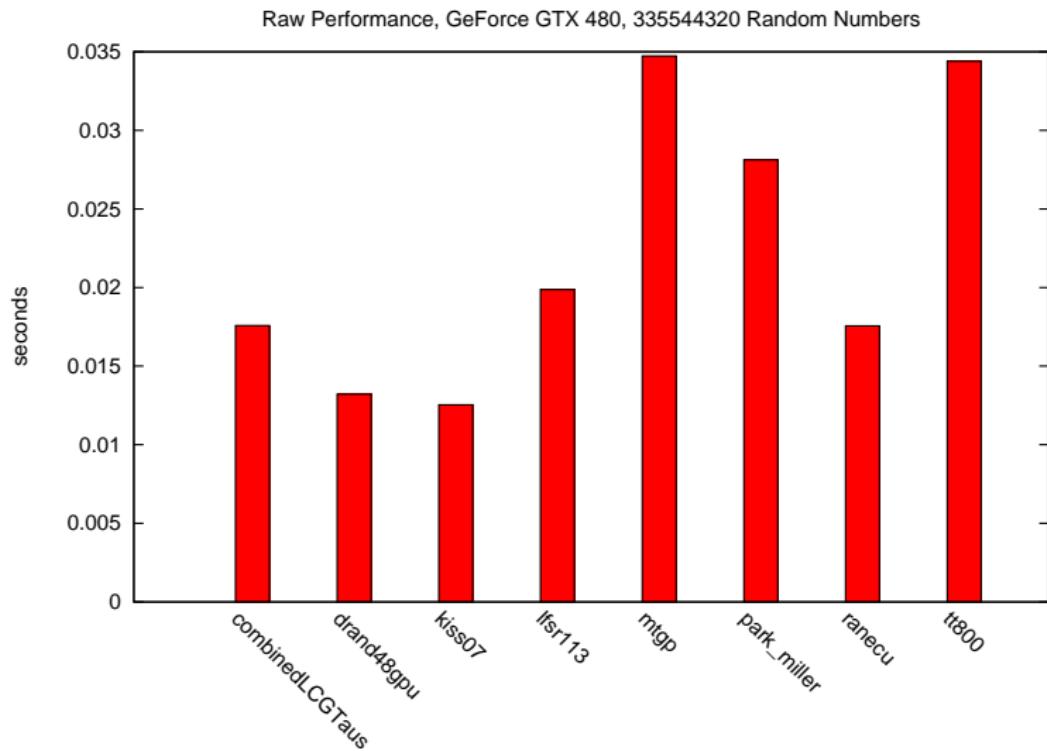
- ▶ DIEHARDER and TestU01
- ▶ Automatic report generation

Easy to extend

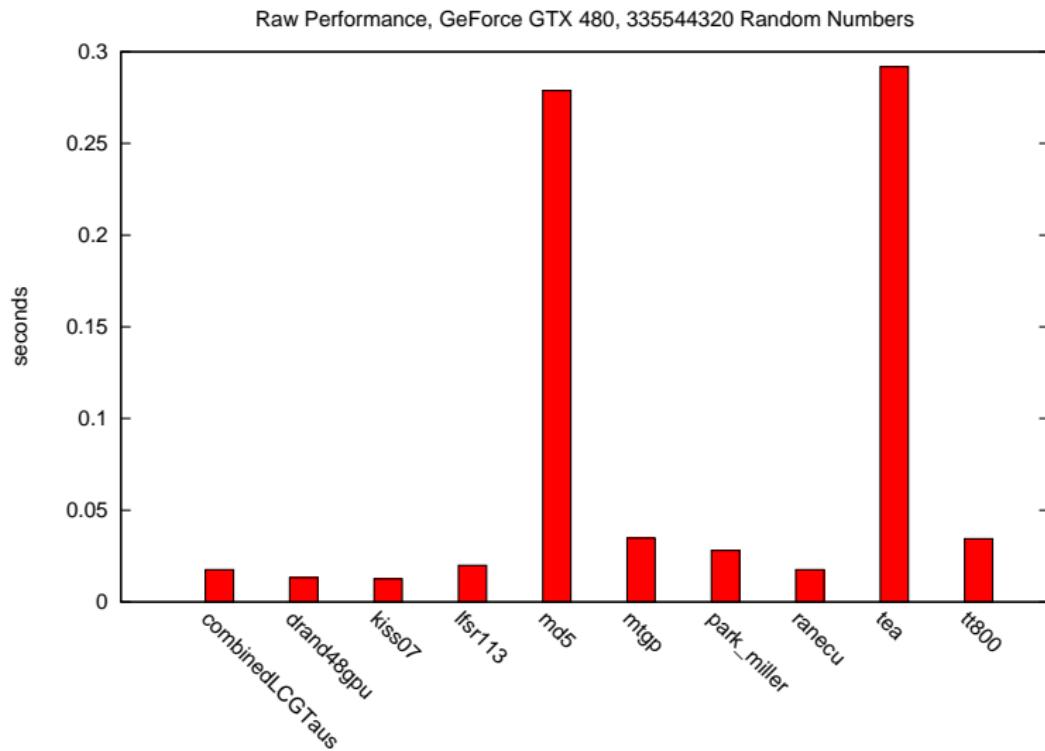
- ▶ Integrate your own RNG
- ▶ Integrate your own tests

Comparisons: TestU01 SmallCrush Battery

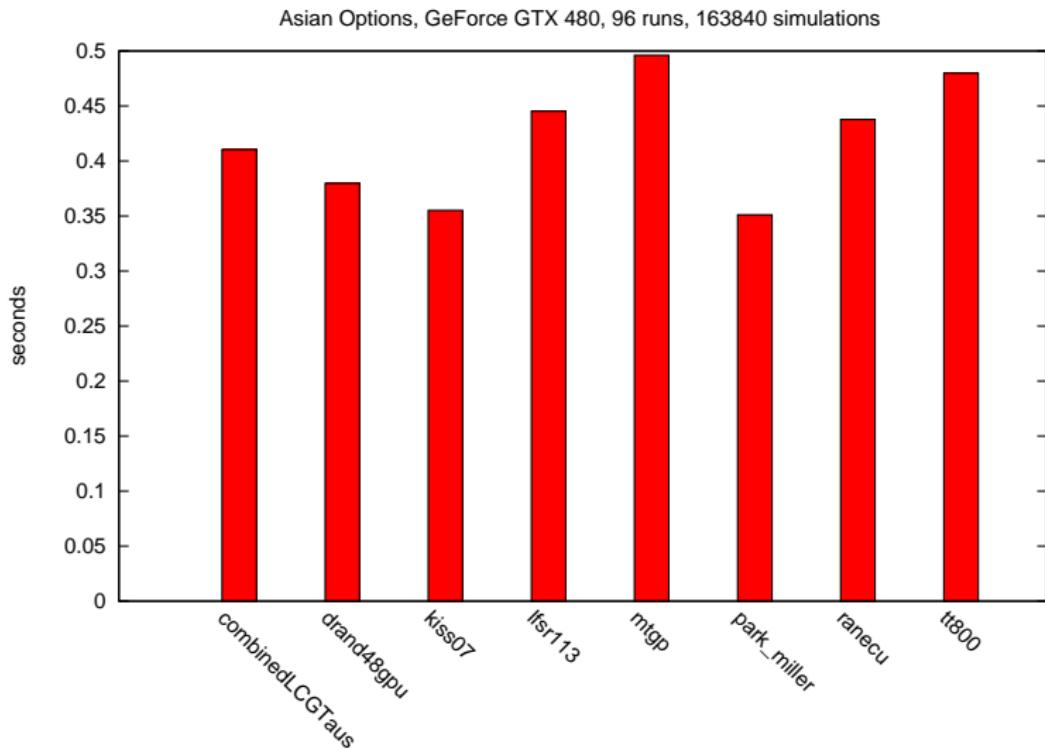
Raw Performance Test



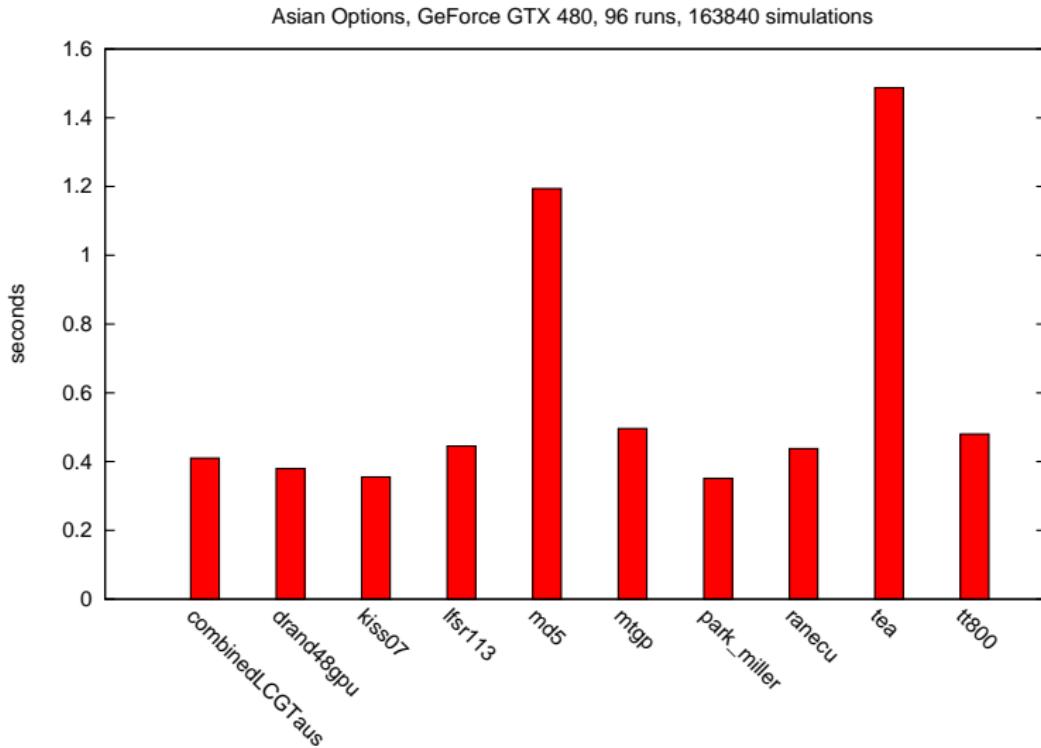
Raw Performance Test



Performance Test: Asian Option Example from [HT07]



Performance Test: Asian Option Example from [HT07]

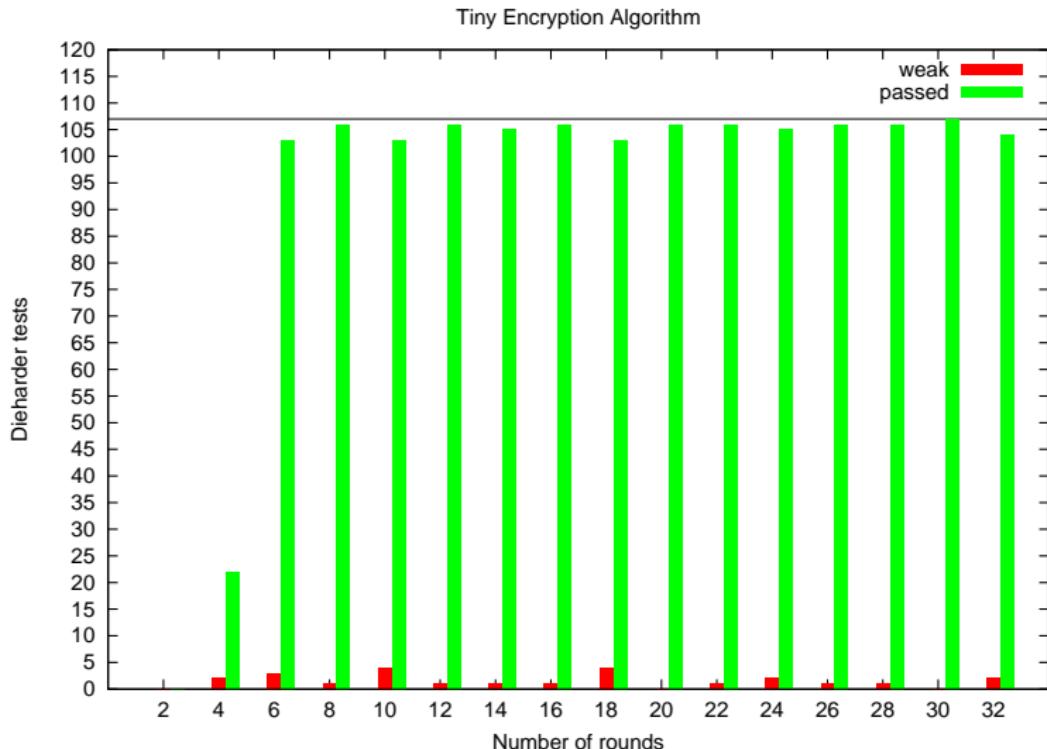


Quality vs. Speed

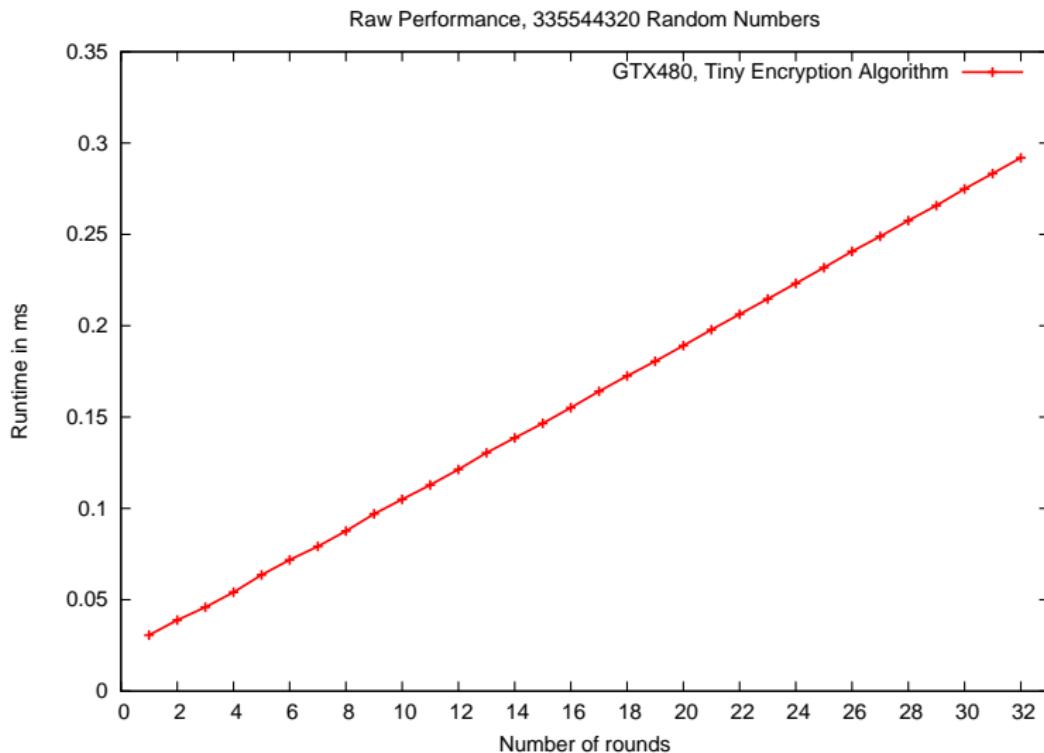
Reduced rounds of MD5/TEA RNG

- ▶ For some applications speed more important than quality
- ▶ MD5 and TEA allow to reduce number of iterations
 - ▶ Quality of random numbers may degrade
 - ▶ Avalanche effect
- ▶ MD5: passes most of the DIEHARDER tests after 16 rounds

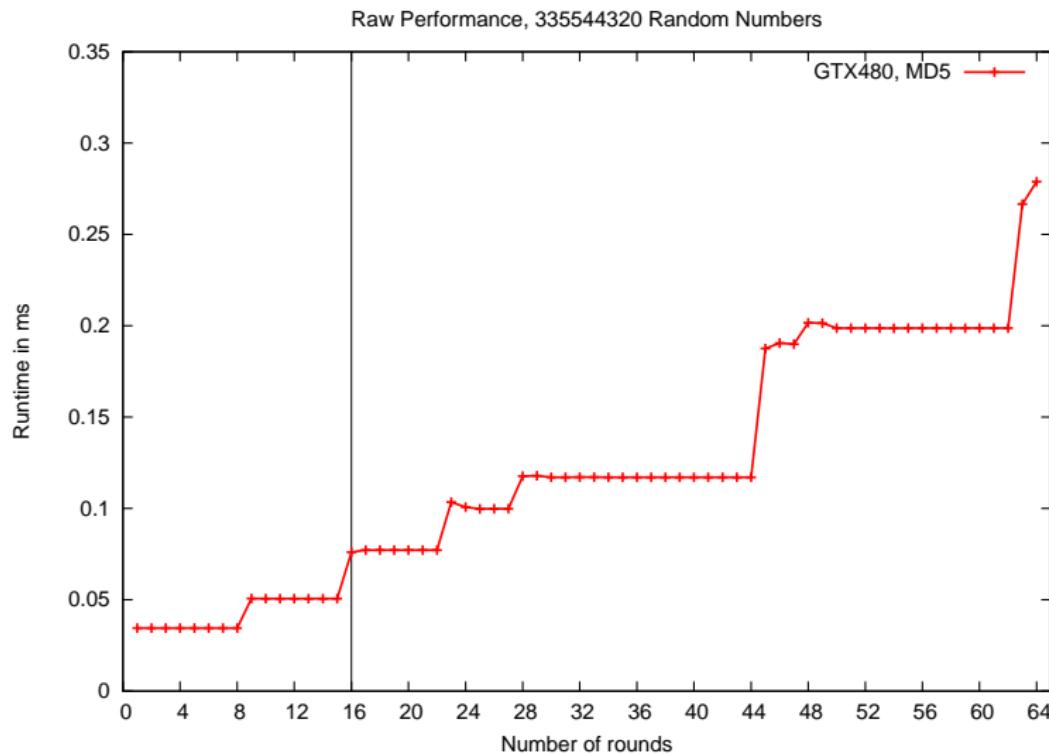
Quality vs. Speed, TEA, DIEHARDER tests



Quality vs. Speed, TEA performance



Quality vs. Speed, MD5 performance



Conclusion

- ▶ Many good (parallel) RNGs exist
- ▶ Several different properties
- ▶ Choice of fitting RNG application dependent

Some Picks

- ▶ KISS
 - + Simple code and state management
 - Random seeding: may be ok for non-critical applications
- ▶ MTGPU
 - + Very good quality and sophisticated seeding
 - + Long period
 - Relatively complex code
 - Fixed block/thread layout
- ▶ MD5, TEA
 - + Random access
 - + No Seeding
 - Slow

Conclusion

Precomputing on GPU

- ▶ May be an alternative to in kernel computation

RNG Collection

- ▶ Always evaluate your RNG choice and implementation
- ▶ Our framework provides an easy platform for testing
<http://mprng.sf.net>

Conclusion

Precomputing on GPU

- ▶ May be an alternative to in kernel computation

RNG Collection

- ▶ Always evaluate your RNG choice and implementation
- ▶ Our framework provides an easy platform for testing
<http://mprng.sf.net>

Questions?

Acknowledgements

- ▶ Framework: *Christoph Schied*
- ▶ This work was supported by a NVIDIA Professor Partnership Award with Hendrik P.A. Lenzsch

- Robert G. Brown.
Dieharder: A random number test suite.
<http://www.phy.duke.edu/~rgb/General/dieharder.php>, 2009.
- Lee Howes and David Thomas.
Efficient Random Number Generation and Application Using CUDA.
In *GPU Gems 3*, pages 805–830, 2007.
- D.E. Knuth.
The art of computer programming: Seminumerical algorithms, volume 2, 1981.
- P. L'Ecuyer.
Uniform random number generation.
Handbooks in Operations Research and Management Science, 13:55–81, 2006.
- P. L'Ecuyer and R. Simard.
TestU01: AC library for empirical testing of random number generators.
ACM Transactions on Mathematical Software (TOMS), 33(4):22, 2007.
- Pierre L'Ecuyer, Richard Simard, E. Jack Chen, and W. David Kelton.
An object-oriented random-number package with many long streams and substreams.

Oper. Res., 50(6):1073–1075, 2002.

Mutsuo Saito.

A variant of mersenne twister suitable for graphic processors.

CoRR, abs/1005.4973, 2010.

Marcus Schoo, Krzysztof Pawlikowski, and Donald C. Mcnickle.

A survey and empirical comparison of modern pseudo-random number generators for distributed stochastic simulations, 2005.

S. Tzeng and L.Y. Wei.

Parallel white noise generation on a GPU via cryptographic hash.

In *Proceedings of the 2008 symposium on Interactive 3D graphics and games*, pages 79–87. ACM, 2008.

F. Zafar, M. Olano, and A. Curtis.

GPU Random Numbers via the Tiny Encryption Algorithm.
2010.