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Motivation

• Why does cooperation evolve?

• Goal: Create computational model to test 
role of behavioral strategies and related 
variables

http://gohealed.com/
http://kentsimmons.uwinnipeg.ca/16cm05/1116/16behave.htm

http://teritoday.thegrocerygame.com/con_Money.cfm?dc=1012&dsc=20235

Behavior Biology Economics
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Contributions

• Heterogenous pipeline

• Enabled the study of behavioral strategies 
based on many historical steps

• Achieved 209x speedup on 4 Tesla GPU cluster

• Successfully scaled to 72 racks of Blue Gene/P

• Achiever linear scaling up to 262,144 
processors
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Game Theory 101
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Prisoner’s Dilemma
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Prisoner’s Dilemma
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Tit-for-Tat

• Direct reciprocity

• Unless provoked, the agent will always 
cooperate

• When provoked, the agent will retaliate

• The agent does not hold grudges

• Iterated PD

Monday, September 27, 2010



Tit-for-Tat Example
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Win-Stay-Lose-Shift
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R,R S,T

T,S P,P

• For R&S, TFT and WSLS 
behave the same

• For T & P, opposite

• TFT promotes adaptation by 
teaching a lesson, WSLS gets 
the lesson as well
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Problem Size

P1 P2
C C
C D
D C
D D

1
2
3
4

States

Monday, September 27, 2010



Problem Size

P1 P2
C C
C D
D C
D D

1
2
3
4

States Strategies

C or D
C or D
C or D
C or D

Monday, September 27, 2010



Problem Size

P1 P2
C C
C D
D C
D D

1
2
3
4

States Strategies

C or D
C or D
C or D
C or D

C C D
C D D
C C D
C C D

Monday, September 27, 2010



Problem Size

P1 P2
C C
C D
D C
D D

1
2
3
4

States Strategies

C or D
C or D
C or D
C or D

C C D
C D D
C C D
C C D

Monday, September 27, 2010



Problem Size

P1 P2
C C
C D
D C
D D

1
2
3
4

States Strategies

C or D
C or D
C or D
C or D

C C D
C D D
C C D
C C D

Monday, September 27, 2010



Problem Size

P1 P2
C C
C D
D C
D D

1
2
3
4

States Strategies

C or D
C or D
C or D
C or D

C C D
C D D
C C D
C C D

Monday, September 27, 2010



Problem Size

P1 P2
C C
C D
D C
D D

1
2
3
4

States Strategies

C or D
C or D
C or D
C or D

Number of States = 2^2*memSteps

C C D
C D D
C C D
C C D

Monday, September 27, 2010



Problem Size
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Problem Size cont.

Memory Steps Number of 
Strategies

1 16

2 65536

3 1.84*10^19

4 1.15*10^77
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Population Model

• Selection at the individual level

• Replace organism with an individual of 
differing strategy

• Temperature of selection

• Random mutation

• Zero population growth

Monday, September 27, 2010



Parallel Evolutionary
Biology Suite (PEBS)
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Why Parallelize it?

• Reduce computational time

• Enable trials of more behavioral 
strategies

• Enable analysis of different variables:

• Punishment

• Kin selection

• Reciprocity

•Longer historical recall
Monday, September 27, 2010



Pipeline
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GPU ModelSUPERCOMPUTING 2010 SUBMISSION 3

based on recall of the moves from one previous period [3].
More recently, an interactive simulation has been developed by
Wayne Davis that shows how a population of agents can evolve
over time. In this case, the model starts with a set number of
agents that engage in a game of repeated Prisoner’s Dilemma
with all other agents. After a set number of iterations, each
agent will mutate to adopt the strongest strategy of any of its
eight neighbors. This model leverages pairwise comparison to
study the evolution of a population of agents over time [28]

Similar work can be found in the study of cellular automata.
An early example is John Conway’s game of life [29]. In
cellular automation, there is a discrete model of regular grid
cells with a defined state. For each generation, the cells change
state based on a fixed rule governing it’s ’neighborhood’ of
cells. This work is similar to the research in game dynamics
as it emphasizes the relationship between the cells or ’agents’
and assesses their interaction to determine the state (or in our
case strategy) assigned to the next generation. The method of
analysis and interaction differs, but the underlying computa-
tional scaffold is strikingly similar. Recently, this method has
been used for a parallel model of facility evacuation design
[19].

Social Dynamics: More complex simulations have been
developed to study particular problems and expand on the
initial work. Much of this arose out of economics and political
science where the focus has been to expand the number
of players in the games. Axelrod and Hammond used an
agent-based model based on the repeated Prisoner’s Dilemma
looking at one historical interaction to show that ethnocentric
behavior can emerge from a simple evolutionary model. They
demonstrated that ethnocentric behavior could evolve when
direct reciprocity is impossible. [15] This method of studying
social dynamics through an evolutionary game dynamics view
is often based on the evolution of individual and group
priorities, technological advances, and direct social contact. In
one example, Christiansen and Altweel created a multi-model
simulation of Bronze Age Mespotamian settlement system
dynamics. In their work, they addressed factors ranging from
crop growth to kinship-driven behaviors [17]. Recently, large-
scale parallel models have been used for urban simulation to
enable modeling of large geographically complex regions such
as the Pearl River Delta. [14]

Economics: McFadzean et al. have developed and extensive
framework for studying the formation and evolution of trade
networks under varying market conditions. In this work the
interacting agents (Buyers, Sellers, and Dealers) operate under
specified market protocols. This model combines game theory
with matching theory as each agent both has to determine who
to interact with and what behavioral strategy to follow in that
interaction. Each interaction itself is modeled as a repeated
Prisoner’s Dilemma with one step memory recall [18].

Biology: FLAME, a flexible large-scale agent modelling
environment, being developed at the University of Sheffield
provides a example of large-scale agent modelling. They
provide a simulation of cellular tissue growth and the resulting
tissue formulation from model based on the individual cells
as the agents. Through optimizing the code for the GPU, they
achieved a 250x speedup [16].

agent 

Nature Node

Sset 1

Population

Sset 2 Sset N

Fig. 1. Schematic representation of a Strategy set. This diagram shows the
relationships between the Strategy Sets (Ssets), agents, and Nature Node. The
population of agents is divided into Ssets that are each assigned an specific
behavioral strategy. The Nature Node interacts with each of these Ssets to both
keep track of the strategies at each generation but to also invoke mutations.

Evolutionary game dynamics plays a strong role in a wide
variety of fields, however, the current state of simulations
are still limited. Each of the aforementioned projects address
situations in which the action decision is based only on
one previous historical step. By utilizing large-scale parallel
platforms, we are able to build on this body of work and
provide a framework for future study of more realistic models.

II. MODEL

OUR method is based on a multi-level paradigm consisting
of four major entities: the population, the Nature Node,

Strategy sets (Ssets), and agents. The population consists
of a large set of autonomous agents or players. At each
generation, all agents interact with all other agents. The agents
are grouped into discrete Ssets. Each Sset is assigned one
specific behavioral strategy that is in turn given to every
agent in that set. A strategy refers to the move an agent will
take given a game with one other agent. For example, if we
were looking at a memory-1 system, or a system with one
step of historical recall, each agent would look at both his
previous move as well as his opponent’s previous move. Given
this distinct combination, the agent’s behavioral strategy will
define the agent’s next move. The Nature Node not only acts as
a master, keeping track of the current world view and alerting
all Ssets to any change, it also controls the rate of mutations
and determines which agents are impacted.

As in traditional game dynamics, every agent i will play
a game against all of the other agents in each generation
and track its accumulated payoff πi. A game would be
defined as the pairwise conflict between two players. Each

• Each Sset assigned to a block on the GPU

• Each thread handled the interaction between an 
agent with that strategy and another agent

Monday, September 27, 2010



GPU Process

• Phase 1: GPU kernel call per game

• Phase 2: Multiple Block Implementation

• Phase 3: All Data processing on the 
Device

• Phase 4: Fine Tuning

• Phase 5: Expand to the GPU cluster
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MPI ModelSUPERCOMPUTING 2010 SUBMISSION 3

based on recall of the moves from one previous period [3].
More recently, an interactive simulation has been developed by
Wayne Davis that shows how a population of agents can evolve
over time. In this case, the model starts with a set number of
agents that engage in a game of repeated Prisoner’s Dilemma
with all other agents. After a set number of iterations, each
agent will mutate to adopt the strongest strategy of any of its
eight neighbors. This model leverages pairwise comparison to
study the evolution of a population of agents over time [28]

Similar work can be found in the study of cellular automata.
An early example is John Conway’s game of life [29]. In
cellular automation, there is a discrete model of regular grid
cells with a defined state. For each generation, the cells change
state based on a fixed rule governing it’s ’neighborhood’ of
cells. This work is similar to the research in game dynamics
as it emphasizes the relationship between the cells or ’agents’
and assesses their interaction to determine the state (or in our
case strategy) assigned to the next generation. The method of
analysis and interaction differs, but the underlying computa-
tional scaffold is strikingly similar. Recently, this method has
been used for a parallel model of facility evacuation design
[19].

Social Dynamics: More complex simulations have been
developed to study particular problems and expand on the
initial work. Much of this arose out of economics and political
science where the focus has been to expand the number
of players in the games. Axelrod and Hammond used an
agent-based model based on the repeated Prisoner’s Dilemma
looking at one historical interaction to show that ethnocentric
behavior can emerge from a simple evolutionary model. They
demonstrated that ethnocentric behavior could evolve when
direct reciprocity is impossible. [15] This method of studying
social dynamics through an evolutionary game dynamics view
is often based on the evolution of individual and group
priorities, technological advances, and direct social contact. In
one example, Christiansen and Altweel created a multi-model
simulation of Bronze Age Mespotamian settlement system
dynamics. In their work, they addressed factors ranging from
crop growth to kinship-driven behaviors [17]. Recently, large-
scale parallel models have been used for urban simulation to
enable modeling of large geographically complex regions such
as the Pearl River Delta. [14]

Economics: McFadzean et al. have developed and extensive
framework for studying the formation and evolution of trade
networks under varying market conditions. In this work the
interacting agents (Buyers, Sellers, and Dealers) operate under
specified market protocols. This model combines game theory
with matching theory as each agent both has to determine who
to interact with and what behavioral strategy to follow in that
interaction. Each interaction itself is modeled as a repeated
Prisoner’s Dilemma with one step memory recall [18].

Biology: FLAME, a flexible large-scale agent modelling
environment, being developed at the University of Sheffield
provides a example of large-scale agent modelling. They
provide a simulation of cellular tissue growth and the resulting
tissue formulation from model based on the individual cells
as the agents. Through optimizing the code for the GPU, they
achieved a 250x speedup [16].

agent 

Nature Node

Sset 1

Population

Sset 2 Sset N

Fig. 1. Schematic representation of a Strategy set. This diagram shows the
relationships between the Strategy Sets (Ssets), agents, and Nature Node. The
population of agents is divided into Ssets that are each assigned an specific
behavioral strategy. The Nature Node interacts with each of these Ssets to both
keep track of the strategies at each generation but to also invoke mutations.

Evolutionary game dynamics plays a strong role in a wide
variety of fields, however, the current state of simulations
are still limited. Each of the aforementioned projects address
situations in which the action decision is based only on
one previous historical step. By utilizing large-scale parallel
platforms, we are able to build on this body of work and
provide a framework for future study of more realistic models.

II. MODEL

OUR method is based on a multi-level paradigm consisting
of four major entities: the population, the Nature Node,

Strategy sets (Ssets), and agents. The population consists
of a large set of autonomous agents or players. At each
generation, all agents interact with all other agents. The agents
are grouped into discrete Ssets. Each Sset is assigned one
specific behavioral strategy that is in turn given to every
agent in that set. A strategy refers to the move an agent will
take given a game with one other agent. For example, if we
were looking at a memory-1 system, or a system with one
step of historical recall, each agent would look at both his
previous move as well as his opponent’s previous move. Given
this distinct combination, the agent’s behavioral strategy will
define the agent’s next move. The Nature Node not only acts as
a master, keeping track of the current world view and alerting
all Ssets to any change, it also controls the rate of mutations
and determines which agents are impacted.

As in traditional game dynamics, every agent i will play
a game against all of the other agents in each generation
and track its accumulated payoff πi. A game would be
defined as the pairwise conflict between two players. Each

• Large-scale population model

• Mutations,  Learning, and Errors

• Heavy communication
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MPI Version

• Large-scale population model

• Mutations 

• Errors

• Heavy communication
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Runtime Minimization

• 97% time reduction
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Weak Scaling
SUPERCOMPUTING 2010 SUBMISSION 9

Fig. 5. Weak Scaling Results on GPU cluster. Shown here are the weak
scaling results for the preliminary phase of our simulation. In this phase,
a GPU cluster was utilized to allow the problem space to be grown to
encapsulate 70,000 strategies. The problem space is able to be increased
with the system size while maintaining a basic overall runtime of about 100
seconds.
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Fig. 6. Weak Scaling for the full-scale run on Jugene. Shown here are the
weak scaling results for the full-scale phase of our simulation. In this phase,
a Blue Gene/P supercomputer was used to grow the population size, strategy
space, and number of generations modeled. The simulation scaled linearly to
64 racks (262,144 processors) and showed a small drop in performance at the
full 72 rack system size.

a power of 2, which could account for some of the decline.
Furthermore, the size of each Sset grows as the system grows.
This leads to increased nearest neighbor communication as
the problem size grows that increases at a rate greater than
the growth of the system.

The coupled GPU/MPI pipeline enabled us to grow the
problem space from strategies looking only at one historical
step to those looking at up to six. For memory-6, the pure
strategy space is O(1019) which required the size of the

population and the number of generations to be increased by
several orders of magnitude. The probabilistic strategy space
is infinite,clearly necessitating the use of large-scale parallel
systems. Using the full-scale MPI phase, we were able to
complete a memory-6 simulation that encapsulated both the
potential for Ssets to adopt randomly mutated strategies and
for agent’s to make errors in their moves.

A. Conclusions and Future Work
Does memory increase the predilection for cooperation?

This question has broad impact on fields from social dynamics
to trade networks to international policy. In this work, we
were able to simulate a population and strategy space at
an unprecedented scale of 5 memory steps. This will not
only allow us to assess the role memory plays but also to
determine if there are more complex strategies that lead to
cooperation. Currently, WSLS has been shown to outperform
other predominant strategies. Our work enables us to search for
more successful strategies from the extended strategy space.
We were able to grow the strategy space from the traditional
memory-1 to the highly intensive memory-6 simulation. This
has the potential to bring a whole new era to the development
of game theory and the fields in which it is used.

We have presented the methods for the parallelization and
computational pipelining of our game dynamics solver on a
variety of systems. The preliminary phase demonstrated an
excellent speedup on the GPU cluster of 209x and the full-
scale simulation exhibited near perfect weak scaling of 99%
up to 262,144 processors. This was achieved by specifically
adapting the simulation to each architectural environment
without compromise or concession in the overall goal of the
simulation. Specifically, the careful development of this code
through the awareness of each system’s abilities and limita-
tions resulted in large speedups and linear scaling which finally
allowed an even more complex computational analysis to be
performed. Thus, in addition to the framework supplied by
this work for large-scale game dynamic studies we have also
supplied valuable pedagogic information on how to develop
a parallel implementation of a simulation across platforms.
This could potentially be applied to any number of other
parallel simulations in order for developers and investigators
alike to fully utilize the computational resources available. It is
important that investigators make informed and wise choices
when developing their simulations, not only addressing which
system is suited to their needs but also when and at which
point in their investigation.

Our result shows the impact that large-scale systems such
as the Blue Gene supercomputer have on the computational
sciences. The weak scaling results indicate that further im-
provement of state of the art supercomputers will make
realtime simulation of perfect memory interactions accessible.
Our hope is that with careful analysis of our simulation results,
we will be able to address the impact longer historical recall
has on the emergence of cooperative behaviors, determine the
optimal number of steps to be recalled, and uncover novel
strategies that are stronger promoters of cooperation. Armed
with this information, we intend to study the implications for
fields such as evolutionary biology.
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Strong Scaling
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Jugene

• 72 racks of Blue 
Gene/P

• 294,912 cores

• Peak Performance: 
1 Petaflop

• Memory: 2 Gb per 
core

35
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Blue Gene Results

SUPERCOMPUTING 2010 SUBMISSION 9

Fig. 5. Weak Scaling Results on GPU cluster. Shown here are the weak
scaling results for the preliminary phase of our simulation. In this phase,
a GPU cluster was utilized to allow the problem space to be grown to
encapsulate 70,000 strategies. The problem space is able to be increased
with the system size while maintaining a basic overall runtime of about 100
seconds.
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Fig. 6. Weak Scaling for the full-scale run on Jugene. Shown here are the
weak scaling results for the full-scale phase of our simulation. In this phase,
a Blue Gene/P supercomputer was used to grow the population size, strategy
space, and number of generations modeled. The simulation scaled linearly to
64 racks (262,144 processors) and showed a small drop in performance at the
full 72 rack system size.

a power of 2, which could account for some of the decline.
Furthermore, the size of each Sset grows as the system grows.
This leads to increased nearest neighbor communication as
the problem size grows that increases at a rate greater than
the growth of the system.

The coupled GPU/MPI pipeline enabled us to grow the
problem space from strategies looking only at one historical
step to those looking at up to six. For memory-6, the pure
strategy space is O(1019) which required the size of the

population and the number of generations to be increased by
several orders of magnitude. The probabilistic strategy space
is infinite,clearly necessitating the use of large-scale parallel
systems. Using the full-scale MPI phase, we were able to
complete a memory-6 simulation that encapsulated both the
potential for Ssets to adopt randomly mutated strategies and
for agent’s to make errors in their moves.

A. Conclusions and Future Work
Does memory increase the predilection for cooperation?

This question has broad impact on fields from social dynamics
to trade networks to international policy. In this work, we
were able to simulate a population and strategy space at
an unprecedented scale of 5 memory steps. This will not
only allow us to assess the role memory plays but also to
determine if there are more complex strategies that lead to
cooperation. Currently, WSLS has been shown to outperform
other predominant strategies. Our work enables us to search for
more successful strategies from the extended strategy space.
We were able to grow the strategy space from the traditional
memory-1 to the highly intensive memory-6 simulation. This
has the potential to bring a whole new era to the development
of game theory and the fields in which it is used.

We have presented the methods for the parallelization and
computational pipelining of our game dynamics solver on a
variety of systems. The preliminary phase demonstrated an
excellent speedup on the GPU cluster of 209x and the full-
scale simulation exhibited near perfect weak scaling of 99%
up to 262,144 processors. This was achieved by specifically
adapting the simulation to each architectural environment
without compromise or concession in the overall goal of the
simulation. Specifically, the careful development of this code
through the awareness of each system’s abilities and limita-
tions resulted in large speedups and linear scaling which finally
allowed an even more complex computational analysis to be
performed. Thus, in addition to the framework supplied by
this work for large-scale game dynamic studies we have also
supplied valuable pedagogic information on how to develop
a parallel implementation of a simulation across platforms.
This could potentially be applied to any number of other
parallel simulations in order for developers and investigators
alike to fully utilize the computational resources available. It is
important that investigators make informed and wise choices
when developing their simulations, not only addressing which
system is suited to their needs but also when and at which
point in their investigation.

Our result shows the impact that large-scale systems such
as the Blue Gene supercomputer have on the computational
sciences. The weak scaling results indicate that further im-
provement of state of the art supercomputers will make
realtime simulation of perfect memory interactions accessible.
Our hope is that with careful analysis of our simulation results,
we will be able to address the impact longer historical recall
has on the emergence of cooperative behaviors, determine the
optimal number of steps to be recalled, and uncover novel
strategies that are stronger promoters of cooperation. Armed
with this information, we intend to study the implications for
fields such as evolutionary biology.
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Results WSLS
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Summary

• Heterogenous data pipeline

• Enabled the study of behavioral strategies 
based on many historical steps

• Achieved 209x speedup on 4 Tesla GPU 
cluster

• Successfully scaled to 72 racks of BG/P

• Achiever linear scaling up to 262,144 
processors
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Future Work

• Move large run to GPU cluster

• Study greater number of memory steps

• Look at biological implications 

• Probabilistic strategies
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Thank you

• David Rand, Harvard University

• Christopher Lee, Harvard University

• Martin Nowak, Harvard University

• Greg Morrisett, Harvard University

• Hanspeter Pfister, Harvard University

• Joy Sircar, Harvard University
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Questions?
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