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Overview “cellular
electrophysiological modelling”

 Basic phenomenon in excitable cells is the propagation of
action potential (AP)

e 1948-1952: Hodgkin-Huxley model (squid axon)
e 3 ionic currents: Na+, K+, Cl-
 1962: Noble model (Purkinje fibre)

4 jonic currents: Na+, | K1, 1 K2
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Overview “cellular
electrophysiological modelling”
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e 1975: McAllister-Noble-Tsien model (Purkinje fibre)

 Qionic currents: | Na, | K2, 1 si (Ca) I x1(fast) | X2 (slow)
| gr, | K1,1 Na.b, | Cl.b - ‘ ‘ .
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http://www.biomedicalphysics.org/PhysCircCourse/chapter_3. htm



Overview “cellular
electrophysiological modelling”

1977 1985 1991 1994

Beeler-Reuter model  DiFrancesco-Noble model | uo-Rudy-1 model ALUQ-RUdy-g model
(ventricular myocyte) (Purkinje fibre) (ventricular myo.) (vent. myo.)

[1972, Bassingthwaighte & Reuter]: "influx of Ca from extracellular is not high enoughjto triger the contractile”

1993 Cheng et al. : [Ca] spark is the result of Ca release from SR
due to the opening of one or more RyRs in a diadic subspace (local)

1998 1999 2001

Jafri-Rice-Winslow model Rice-]afri-Winslow model Sobie et al. model
(wvent., myo.) (vent. myo.) (calcium spark termination)
CICR mechanism graded-response
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Project: understanding Ca-
dependent cardiac arrhythimias

« Cardiac arrhythmias:

« Symptoms: Patients with irregular pulse may lead to sudden death

« Reentry arrhythmias: “from a single impulse, a single cardiac cell may give rises to two or
more propagated response”

« Ancient times: diagnosis based on aertial pulse
« Mid-20" century: ECG to record cardiac rate + rhythm — Knowledge on clincal symptoms

« End-20" century: single channel kinetics, whole-cell recording — help understand
arrhythmogenic mechanism

« Early-21" century: structure and functional changes of specific ion channels — system
biology approach

» Facts:

« genetic defect of proteins link to disease phenotype

« kinetic properties of ion channels related to protein structure (ion channels, buffers)
» defects in Ca dynamics is believed lead to cardiac arrhythmias

« defects in Ca-requlating proteins have been linked to cardiac arrhythmias

« patients with these defects can live (for years/decades) and die suddenly
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Project: understanding Ca-
dependent cardiac arrhythimias

« Challenge:
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Rarity of the events (in weeks in physiological time) ~ months/years in simulation time
Detailed whole-cell model
[Ca] spark --[triger/non-trigger]----> [Ca] waves ---> affect conduction system

To understand reentry arrythmias, we need to understand the basic electrochemical
phenomena

- [Ca] spark has small time-duration event — underlying physiological events can be
easily skipped by approximate methods

- Itis necessary to look at networks of cells to study cardiac arrhythmias
[Ca] spark = generated by local cluster of RyR+DHPR — follow stochastic manner

Stochastic model (with Monte Carlo simulation) are very computationally expensive due
to (1) very small time step, (2) large state space



Project: understanding Ca-
dependent cardiac arrhythimias

 Motivation:

* Adances in genetic engineering: point mutation (RyR2,
CASQ2) — kinetics model can be built (Markov-chain)

« Boom in computational power (multicore, many-core)
« High-capacity and fast-access speed data storage

 Availability of computational algorithm

- Probability Density Method
- Moment Closure Method

- Ultra-fast Monte Carlo Simulation method — stochastic, exact method
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Computational algorithm

* Probability-distribution model [Williams et al, 2007]
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Deterministic formulasim

Diadic subspace [Ca] is NOT in quasi-equilibrium with
myoplasm [Ca] or NSR [Ca]

A functional release unit (FSU): RyR + DHPR
[Ca],, = f(FSU state)
[Ca]jsr = f(FSU state)

Valid when there are a large number of release units
650x faster than original Monte Carlo



Computational algorithm

 Moment-Closure [Williams et al. 2008]

« Approximated probability densities by a beta-distribution
« Describe the probability density by its first two moments.

* Close the distribution by estimating the third moment is a
function of the first 2 moments

* 1000x faster than original Monte Carlo

Deterministic Stochastic 2D Probability Density | D Probability Density Moment Closure
"Common Pool" Monte Carlo Approach Approach Technique
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(Hinch et. al. 2004)

/GEORGE
MAS Review: Williams et al. (2010)
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Ultra-fast Markov-Chain Monte-
Carlo algorithm

« [Unpublished]
* Property:
» Stochastic

« Exact method
« Low memory usage
 How GPU fit to our problem & algorithm

* Highly independent of release site computation

 Low memory demands makes it fit to the limited device
memory (4GB in Tesla 1060, 3GB in Fermi)
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Ultra-fast Markov-Chain Monte-
Carlo algorithm

« Kinetic of a single ion channel:

« Model as a Markov-chain with a number of states nGa+
P ﬁ‘ ki P
Mode 3N @Y i () G\ b4 O2
“"“3“'\’_/' T kFl T *Eﬂ r@r‘ P x_.-f 5"‘»‘2}' :a\P ‘/kib-
m“ {T b { m'bH m:’hﬁ“'fal b l'rn" 01 mCa? +
Smith-Keizer (1998)
Ci “““: 1 . 2[1 . 1] IE 4 . @ k-‘tlIkE
Jafri et. al ( 1998)
- rate transition = constant (can multiply with a gating variable) P02

- continuous-time discrete state — infinitesimal generating matrix a(i,j), b(i,j)
« A cluster of ion channels:

« Arate transition matrix A(i,j), B(i,j)
e How???
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Ultra-fast Markov-Chain Monte-
Carlo algorithm
. RyR kl * x

~.
« M=2 states minimal model C — O
k2 *y

« k1=1f(Ca, RyR ) : Ca-dependent: C — O

open

o k2= f(RyROpen) . Ca-independent: O — C
* Sinale-channel rate-transition matrix
C O C @)
-X X C 0 0 C
aR bR
= | B0 y | v | o
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Ultra-fast Markov-Chain Monte-
Carlo algorithm

* A cluster of RyR
o State: (x1, x2) with

- x1 = number of RyR in state 1 (N+M—1)!
- X2 = number of RyR in state 2 (N —=1)! x M
« E.g:N=5RyR - =
=3 0
2 4 1
o 3 2
4 2 3
[ 4
6 0 5

e Cluster rate-transition matrix
- ARC(:,:), BR(:,:) of size 6x6
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Ultra-fast Markov-Chain Monte-
Carlo algorithm

« Exact simulation:

* |In a small time-step, only a SINGLE channel can change

state /
(4:1)%
(2,2)
» Law of conversation; rate out + rate in = v
(4,1) (3,2) (0,5)
(5,0)lalajojojojo

= ¢ =5 xaR(C.0)
rl =1 x aR(0,C)

A R r2 =4 x aR(C.,0)
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Ultra-fast Markov-Chain Monte-
Carlo algorithm

A Calcium release site:

« Each with 50-300 stochastically gating Ca** channels
» [Bers & Stiffel, 1993] RyR:DHPR=7.3:1
« Species to species: RyR:LCC ~4:1 — 8:1
« Single cell:
» Calcium release sites: 10,000-20,000

DHPR's . (cut section)
(L-type :
Ca*
Channels)
il

RyR's

7 |
| &
g

(cut section)
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Ultra-fast Markov-Chain Monte-
Carlo algorithm

e Model a release site:

» Kronecker sum of matrices from 2 clusters: RyR &

DHPR
K=A%B :AH ®Im _\_I;r@Bm
 RyR:
- 2 matrices: [Ca] -dependent, [Ca] -independent
+ DHPR:

- 4 matrices: V1-dependent, V2-dependent, [Ca], -dependent, (V,
[Ca], )-independent
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Ultra-fast MCMC

« Complexity
« 50 2-state RyR: cluster of 51 states
« 7 6-state DHPR: cluster of 924 states
 Release site: 47,124 states
« Memory demand: 16GB

o K matrix:
« Highly sparse
e Question???

« Use an existing package for sparse matrix? - still need a full matrix
first

 How to handle computation with such sparse matrix in GPU?
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Ultra-fast MCMC

 Compact form for K:

« Use two separate matrices:

- Kcomp(i,j) = keep ONLY non-zero rate transition

~ Kidx(i,j) = true column index of Kcomp(i,j)

I N N 21
PAcomp T2k

- A
Keomp = F(Acomp Boomp)  + Aigx RN

Kii: = 9(Aigz, Bigz)
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Case study: computational model
to study Ca leak

« RyR o v,
e Minimal model with 2 states - v oA /‘\ %
. Release site: { g . )
« 10,000 JT” N
 Each site has 50 RyR o * .

* Whole-cell model
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load parameters

Algorithm on GPU I

compact matrices

|

« Each release site — single core (SP) copy ST matrix
)

4

)| copy generated RN
to GPU

kernel; estimate
next state

N/

compute adaptive
time step

kernel: update
new state + data

)

write data out
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Algorithm on GPU

decimal point

nilation =etti

(triggered voltage)

initial condition

.4d5 la o (ion concentration)
.02d4 '

.8d3

. 0d0

congtant
.6485d4
.314d3
.lod2

. 2d0 =ta (hill coefficient)
.07d0 '
fcE =0 .89d0

—-0.89d0

0.
0.
1.
0.
0.
1.
il
il
il
1
1
il
9
8
3
2
0




Algorithm on GPU

11 Compute random transition number.
CALL DRANDUNIFORM (noutincr * NSFU, LE, UB,STATE,H,INFO)

¥ odewvw = X

DO iinner=l,noutin
CALL getComdet
[HEFu,
EJ,
cukrr =

CALL updateCalclumJ-
U, dt, maxnklm
*{iinner-1)+1:NSFU*%iinner), &

F
r refill, Ca nsr,

cuBrr ~uda = vhnchronize | )




Benchmark

o System:
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PGl Fortran 10.5 + CUDA Fortran
NVIDIA CUDA 2.3 SDK

Tesla C1060

Intel Nehalem i7

12GB RAM

Double-precision computing



Benchmark

« Why GPU?
« Large amount of computation can be done in parallel

« State space is reused at every computational step — compact form
make it fit to GPU device space

 Programming issue:

« Kernel configuration
— Block size = 32x?7?7? (128, 160, 192, 256, 512)
- Grid=1D
— Occupancy 7?7

« Data alignment
- 10112 or 10028 or 10240 release sites

« Memory access latency:.
- Registers (16K)
- Shared memory

MT\S - Global device memory
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Benchmark

Method Original MATLAB Fortran GPU

Runtime 11000 110 min 20 min 45 sec
min
Speedup 1x 100x 550x  14,667x

10,000 release units
50 RyRs

1 second simulation time
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Benchmark

e GPU benchmark

"[Don't edit anything below this ling)

aphs: 3.) GPU Occupancy Data is displayed here and in the graphs:
Active Threads per Multiprocessor

Active Warps per Multiprocessor
Active Thread Blocks per Multiprocessor

Occupancy of each Multiprocessor

(Don't edit anything below this line) \
Jraphs

3.) GPU Occupancy Data is displayed here and in the graphs:
Active Threads per Multiprocessor
Active Warps per Multiprocessor

Active Thread Blocks per Multiprocessor

Occupancy of each Multiprocessor
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Conclusion

» Simulations suggest a mechanism for the basis of
calcium leak from the SR in cardiac myocytes.

 Qur Ultrafast Monte Carlo Method make stochastic
simulation of calcium dynamics possible.

* The efficiency is such that these methods can be
applied to (1) whole-cell detailed model, (2) networks
of cardiac myocytes to study calcium dysfunction
leading to arrythmia.

UUUUUUUUUU



Ongoing research

 Temporospatial whole-cell model on GPU
e 1D, 2D and 3D
* Tissue level (multiple GPU)

« A network of multiple cells

« Studying the pathogenesis of cardiac arrhythmias using this
model, and compare with experimental data
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