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Overview “cellular 
electrophysiological modelling”

● Basic phenomenon in excitable cells is the propagation of 
action potential (AP)

● 1948-1952: Hodgkin-Huxley model (squid axon)
● 3 ionic currents: Na+, K+, Cl- 

● 1962: Noble model (Purkinje fibre)

● 4 ionic currents: Na+, I_K1, I_K2



  

http://www.biomedicalphysics.org/PhysCircCourse/chapter_3.htm

Overview “cellular 
electrophysiological modelling”

● 1975: McAllister-Noble-Tsien model (Purkinje fibre)

● 9 ionic currents: I_Na, I_K2, I_si (Ca), I_x1(fast), I_x2 (slow), 
I_qr, I_K1, I_Na.b, I_Cl.b



  

Overview “cellular 
electrophysiological modelling”

Review: Cheng-Lederer (2007)



  

Project: understanding Ca-
dependent cardiac arrhythimias

● Cardiac arrhythmias:

● Symptoms: Patients with irregular pulse may lead to sudden death

● Reentry arrhythmias: ”from a single impulse, a single cardiac cell may give rises to two or 
more propagated response”

● Ancient times: diagnosis based on aertial pulse

● Mid-20th century: ECG to record cardiac rate + rhythm → Knowledge on clincal symptoms 

● End-20th century: single channel kinetics, whole-cell recording → help understand 
arrhythmogenic mechanism

● Early-21th century: structure and functional changes of specific ion channels → system 
biology approach

● Facts:

● genetic defect of proteins link to disease phenotype 

● kinetic properties of ion channels related to protein structure (ion channels, buffers)

● defects in Ca dynamics is believed lead to cardiac arrhythmias

● defects in Ca-regulating proteins have been linked to cardiac arrhythmias

● patients with these defects can live (for years/decades) and die suddenly



  

Project: understanding Ca-
dependent cardiac arrhythimias

● Challenge:

● Rarity of the events (in weeks in physiological time) ~ months/years in simulation time 

● Detailed whole-cell model

● To understand reentry arrythmias, we need to understand the basic electrochemical 
phenomena

– [Ca] spark has small time-duration event → underlying physiological events can be 
easily skipped by approximate methods

– It is necessary to look at networks of cells to study cardiac arrhythmias
● [Ca] spark = generated by local cluster of RyR+DHPR → follow stochastic manner

● Stochastic model (with Monte Carlo simulation) are very computationally expensive due 
to (1) very small time step, (2) large state space



  

Project: understanding Ca-
dependent cardiac arrhythimias

● Motivation:

● Adances in genetic engineering: point mutation (RyR2, 
CASQ2)  → kinetics model can be built (Markov-chain)

● Boom in computational power (multicore, many-core)
● High-capacity and fast-access speed data storage
● Availability of computational algorithm 

– Probability Density Method

– Moment Closure Method

– Ultra-fast Monte Carlo Simulation method – stochastic, exact method



  

Computational algorithm

● Probability-distribution model [Williams et al, 2007]

● Deterministic formulasim 
● Diadic subspace [Ca] is NOT in quasi-equilibrium with 

myoplasm [Ca] or NSR [Ca]
● A functional release unit (FSU): RyR + DHPR

● [Ca]
d s

 = f(FSU state)

● [Ca]
j s r

 = f(FSU state)

● Valid when there are a large number of release units
● 650x faster than original Monte Carlo



  

Computational algorithm

● Moment-Closure [Williams et al. 2008]

● Approximated probability densities by a beta-distribution
● Describe the probability density by its first two moments.
● Close the distribution by estimating the third moment is a 

function of the first 2 moments 
● 1000x faster than original Monte Carlo

Review: Williams et al. (2010)



  

Ultra-fast Markov-Chain Monte-
Carlo algorithm

● [Unpublished]

● Property:

● Stochastic

● Exact method 

● Low memory usage

● How GPU fit to our problem & algorithm

● Highly independent of release site computation
● Low memory demands makes it fit to the limited device 

memory (4GB in Tesla 1060, 3GB in Fermi)



  

Ultra-fast Markov-Chain Monte-
Carlo algorithm

● Kinetic of a single ion channel:

● Model as a Markov-chain with a number of states

– rate transition = constant (can multiply with a gating variable)

– continuous-time discrete state → infinitesimal generating matrix a(i,j), b(i,j)

● A cluster of ion channels:

● A rate transition matrix A(i,j), B(i,j) 

● How???

Jafri et. al (1998)

Smith-Keizer (1998)



  

Ultra-fast Markov-Chain Monte-
Carlo algorithm

● RyR 

● M=2 states minimal model

● k1 = f(Ca, RyR
o p e n

)       : Ca-dependent: C → O

● k2 = f(RyR
o p e n

)              : Ca-independent: O → C

● Single-channel rate-transition matrix



  

Ultra-fast Markov-Chain Monte-
Carlo algorithm

● A cluster of RyR

● State: (x1, x2) with 
– x1 = number of RyR in state 1

– x2 = number of RyR in state 2

● E.g: N=5 RyR

● Cluster rate-transition matrix
– AR(:,:), BR(:,:) of size 6x6



  

Ultra-fast Markov-Chain Monte-
Carlo algorithm

● Exact simulation:

● In a small time-step, only a SINGLE channel can change 
state

● Law of conversation: rate out + rate in = 0



  

Ultra-fast Markov-Chain Monte-
Carlo algorithm

● A Calcium release site:

● Each with 50-300 stochastically gating Ca2 +  channels
● [Bers & Stiffel, 1993]              RyR:DHPR=7.3:1
● Species to species: RyR:LCC ~ 4:1 →  8:1

● Single cell:

● Calcium release sites: 10,000-20,000



  

Ultra-fast Markov-Chain Monte-
Carlo algorithm

● Model a release site:

● Kronecker sum of matrices from 2 clusters: RyR & 
DHPR

● RyR:

– 2 matrices: [Ca]
ds
-dependent, [Ca]

ds
-independent

● DHPR:

– 4 matrices: V1-dependent, V2-dependent, [Ca]
d s

-dependent, (V,

[Ca]
d s

)-independent



  

Ultra-fast MCMC

● Complexity

● 50 2-state RyR: cluster of 51 states

● 7 6-state DHPR: cluster of 924 states

● Release site: 47,124 states

● Memory demand: 16GB

● K matrix:

● Highly sparse

● Question???

● Use an existing package for sparse matrix? - still need a full matrix 
first

● How to handle computation with such sparse matrix in GPU?



  

Ultra-fast MCMC

● Compact form for K:

● Use two separate matrices: 
– Kcomp(i,j) = keep ONLY non-zero rate transition

– Kidx(i,j) = true column index of Kcomp(i,j)

0 12 0 1

0 0 0 2

12 1

2 x

2 2 4

1 4 x

 Acomp

 Aidx

 A



  

Case study: computational model 
to study Ca leak

● RyR

● Minimal model with 2 states

● Release site:

● 10,000
● Each site has 50 RyR

● Whole-cell model



  

Algorithm on GPU

● Each release site → single core (SP)



  

Algorithm on GPU



  

Algorithm on GPU



  

Benchmark

● System:

● PGI Fortran 10.5 + CUDA Fortran
● NVIDIA CUDA 2.3 SDK
● Tesla C1060
● Intel Nehalem i7
● 12GB RAM
● Double-precision computing



  

Benchmark

● Why GPU?

● Large amount of computation can be done in parallel

● State space is reused at every computational step → compact form  
make it fit to GPU device space

● Programming issue:

● Kernel configuration
– Block size = 32x??? (128, 160, 192, 256, 512)

– Grid = 1D

– Occupancy ???

● Data alignment
– 10112 or 10028 or 10240 release sites

● Memory access latency:
– Registers (16K) 

– Shared memory

– Global device memory



  

Benchmark

• 10,000 release units
• 50 RyRs
• 1 second simulation time

Method Original MATLAB Fortran GPU

Runtime 11000 
min

110 min 20 min  45 sec

Speedup 1x 100x 550x 14,667x



  

Benchmark

● GPU benchmark
128-10112 160-10080 192-10176 256-10240 512-10240 configuration

179.93 45.65 40.56 44.38 44.21 time (sec)



  

Conclusion

● Simulations suggest a mechanism for the basis of 
calcium leak from the SR in cardiac myocytes.

● Our Ultrafast Monte Carlo Method make stochastic 
simulation of calcium dynamics possible.

● The efficiency is such that these methods can be 
applied to (1) whole-cell detailed model, (2) networks 
of cardiac myocytes to study calcium dysfunction 
leading to arrythmia.



  

Ongoing research

● Temporospatial whole-cell model on GPU

● 1D, 2D and 3D

● Tissue level (multiple GPU)

● A network of multiple cells 
● Studying the pathogenesis of cardiac arrhythmias using this 

model, and compare with experimental data
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