

Unveiling Cellular & Molecular Events of Cardiac Arrhythmias

Hoang-Trong Minh Tuan¹, George S. William¹, Greg D. Smith², M. Saleet Jafri^{1,3,4}

1 - Department of Bioinformatics and Computational Biology George Mason University

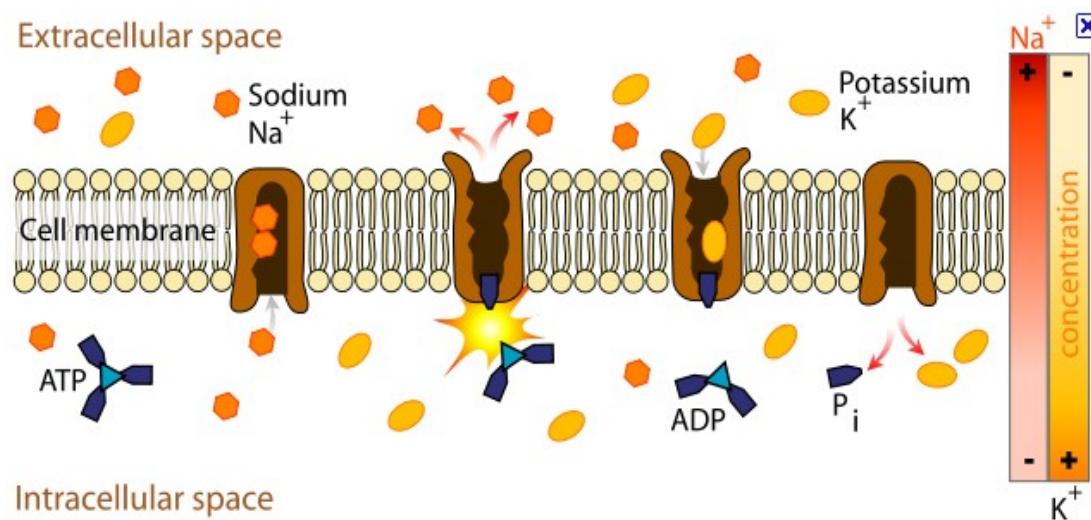
2- Department of Applied Science, William & Mary College

3 - Institute of Computational Medicine, The Johns Hopkins University

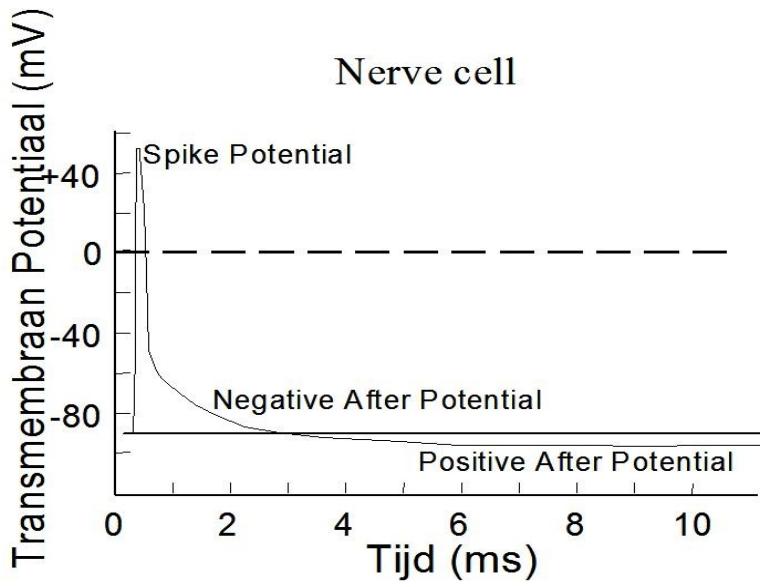
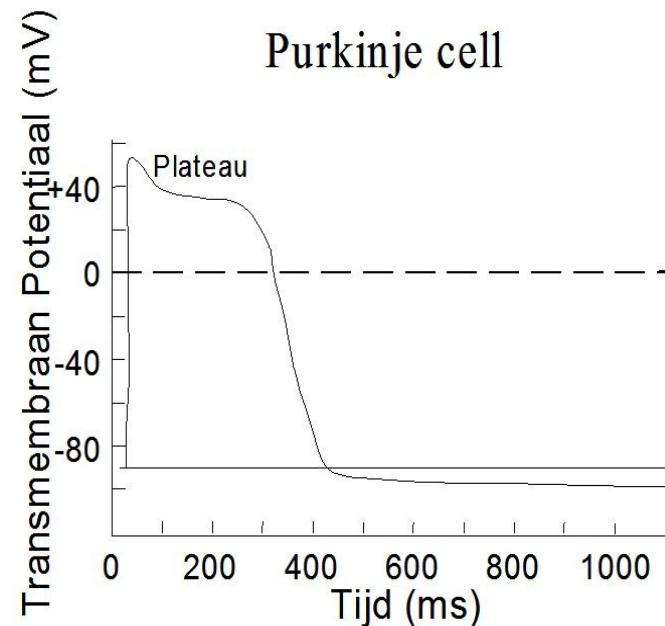
4 - Department of Biomedical Engineering and Technology The University of Maryland Baltimore

Overview “cellular electrophysiological modelling”

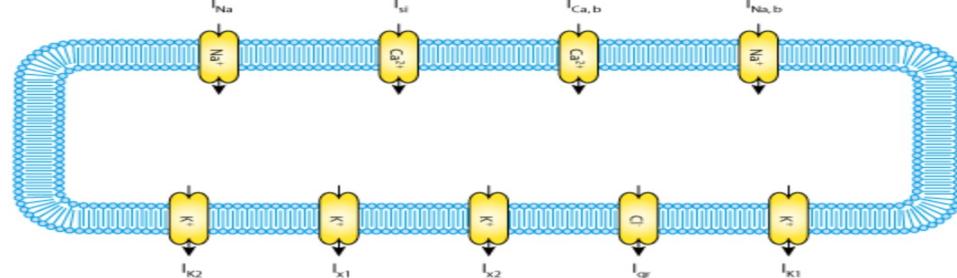
- Basic phenomenon in excitable cells is the propagation of **action potential (AP)**
- 1948-1952: Hodgkin-Huxley model (squid axon)
 - 3 ionic currents: Na^+ , K^+ , Cl^-
- 1962: Noble model (Purkinje fibre)
 - 4 ionic currents: Na^+ , $\text{I}_{\text{K}1}$, $\text{I}_{\text{K}2}$



Overview “cellular electrophysiological modelling”



- 1975: McAllister-Noble-Tsien model (Purkinje fibre)
 - 9 ionic currents: I_{Na} , I_{K2} , I_{si} (Ca), I_{x1} (fast), I_{x2} (slow), I_{qr} , I_{K1} , $I_{Na.b}$, $I_{Cl.b}$



Overview “cellular electrophysiological modelling”

[1975, 79, 83] Fabiato & Fabiato: confirm "Ca-induced Ca-release (CICR)"

1977

1985

1991

1994

Beeler-Reuter model
(ventricular myocyte)

DiFrancesco-Noble mode
(Purkinje fibre)

Luo-Rudy-1 model (ventricular myo.)

↑ Luo-Rudy-2 model
(vent. myo.)

[1972, Bassingthwaite & Reuter]: "influx of Ca from extracellular is not high enough to trigger the contractile"

1993 Cheng et al. : [Ca] spark is the result of Ca release from SR due to the opening of one or more RyRs in a diadic subspace (local)

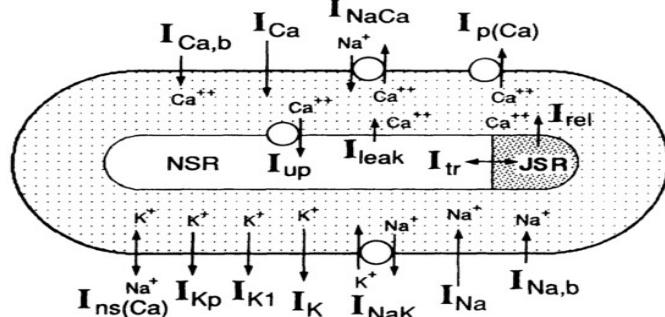
1998

1999

2001

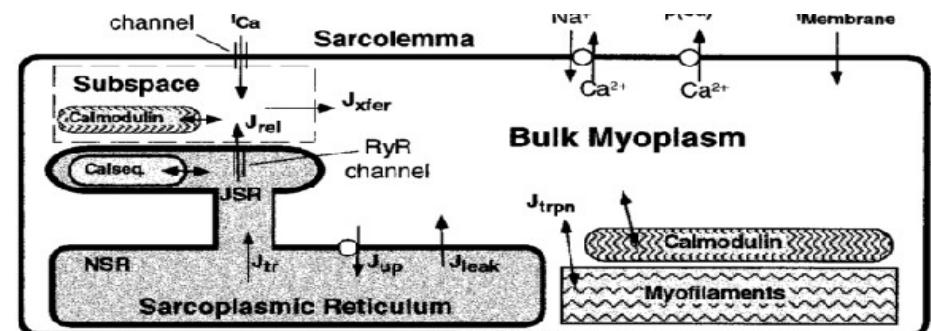
Jafri-Rice-Winslow model (vent. myo.)

CICR mechanism



Rice-Jafri-Winslow model
(vent. myo.)

graded-response



Review: Cheng-Lederer (2007)

Project: understanding Ca-dependent cardiac arrhythmias

- Cardiac arrhythmias:
 - *Symptoms: Patients with irregular pulse may lead to sudden death*
 - ***Reentry arrhythmias:*** *"from a single impulse, a single cardiac cell may give rises to two or more propagated response"*
 - Ancient times: diagnosis based on aetial pulse
 - Mid-20th century: ECG to record cardiac rate + rhythm → Knowledge on clinical symptoms
 - End-20th century: single channel kinetics, whole-cell recording → help understand arrhythmogenic mechanism
 - Early-21th century: structure and functional changes of specific ion channels → system biology approach
- Facts:
 - genetic defect of proteins link to disease phenotype
 - kinetic properties of ion channels related to protein structure (ion channels, buffers)
 - *defects in Ca dynamics is believed lead to cardiac arrhythmias*
 - *defects in Ca-regulating proteins have been linked to cardiac arrhythmias*
 - patients with these defects can live (for years/decades) and die suddenly

Project: understanding Ca-dependent cardiac arrhythmias

- Challenge:
 - Rarity of the events (in weeks in physiological time) ~ months/years in simulation time
 - Detailed whole-cell model

[Ca] spark --[triger/non-trigger]--> [Ca] waves ---> affect conduction system
 - To understand reentry arrhythmias, we need to understand the basic electrochemical phenomena
 - [Ca] spark has small time-duration event → *underlying physiological events can be easily skipped by approximate methods*
 - It is necessary to look at networks of cells to study cardiac arrhythmias
 - [Ca] spark = generated by local cluster of RyR+DHPR → **follow stochastic manner**
 - Stochastic model (with Monte Carlo simulation) are very computationally expensive due to (1) very small time step, (2) large state space

Project: understanding Ca-dependent cardiac arrhythmias

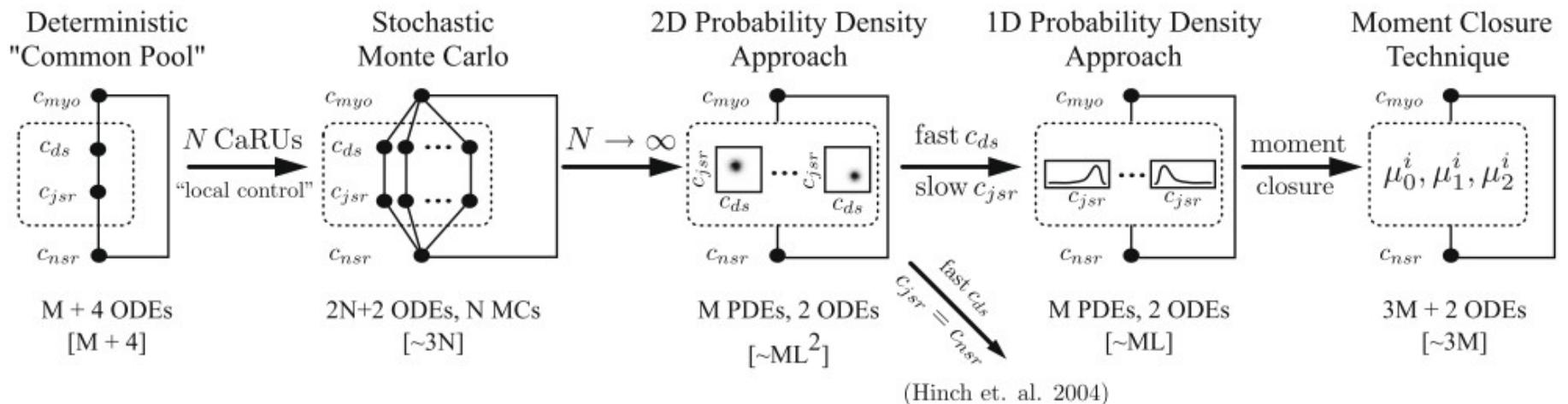
- Motivation:
 - Advances in genetic engineering: point mutation (RyR2, CASQ2) → *kinetics model can be built (Markov-chain)*
 - Boom in computational power (multicore, many-core)
 - High-capacity and fast-access speed data storage
 - Availability of computational algorithm
 - Probability Density Method
 - Moment Closure Method
 - Ultra-fast Monte Carlo Simulation method – stochastic, exact method

Computational algorithm

- Probability-distribution model [Williams et al, 2007]
 - Deterministic formulasim
 - Diadic subspace [Ca] is NOT in quasi-equilibrium with myoplasm [Ca] or NSR [Ca]
 - A functional release unit (FSU): RyR + DHPR
 - $[Ca]_{ds} = f(\text{FSU state})$
 - $[Ca]_{jsr} = f(\text{FSU state})$
 - Valid when there are a large number of release units
 - 650x faster than original Monte Carlo

Computational algorithm

- Moment-Closure [Williams et al. 2008]
 - Approximated probability densities by a beta-distribution
 - Describe the probability density by its first two moments.
 - Close the distribution by estimating the third moment is a function of the first 2 moments
 - 1000x faster than original Monte Carlo

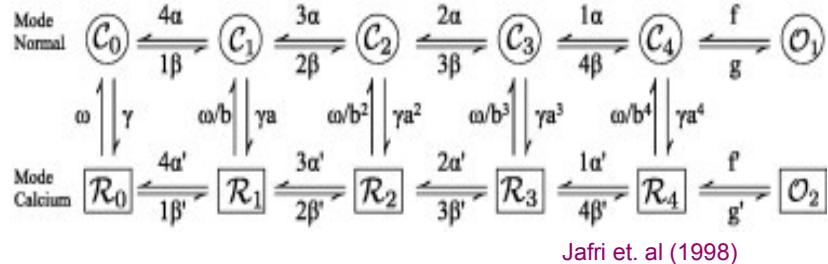
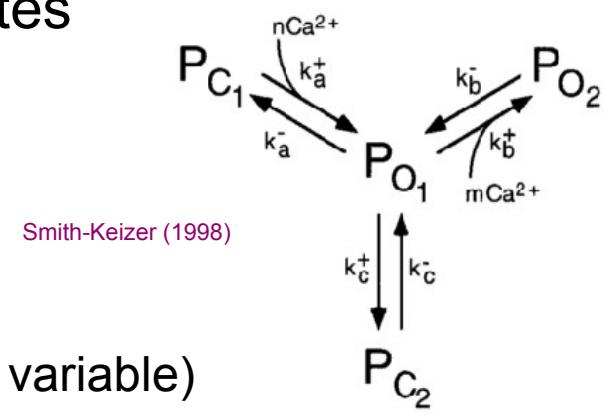


Ultra-fast Markov-Chain Monte-Carlo algorithm

- [Unpublished]
- Property:
 - Stochastic
 - Exact method
 - Low memory usage
- How GPU fit to our problem & algorithm
 - Highly independent of release site computation
 - Low memory demands makes it fit to the limited device memory (4GB in Tesla 1060, 3GB in Fermi)

Ultra-fast Markov-Chain Monte-Carlo algorithm

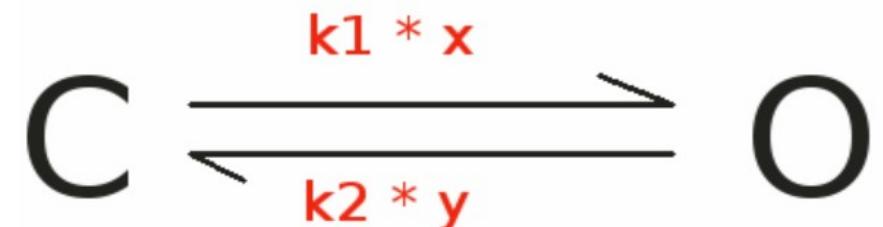
- Kinetic of a single ion channel:
 - Model as a Markov-chain with a number of states



- A cluster of ion channels:
 - A rate transition matrix $A(i,j), B(i,j)$
 - How???

Ultra-fast Markov-Chain Monte-Carlo algorithm

- RyR
 - M=2 states minimal model



- $k1 = f(Ca, RyR_{open})$: Ca-dependent: $C \rightarrow O$
- $k2 = f(RyR_{open})$: Ca-independent: $O \rightarrow C$
- Single-channel rate-transition matrix

	C	O
C	$-x$	x
O	0	0
aR		

	C	O
C	0	0
O	y	$-y$
bR		

Ultra-fast Markov-Chain Monte-Carlo algorithm

- A cluster of RyR

- State: (x_1, x_2) with
 - x_1 = number of RyR in state 1
 - x_2 = number of RyR in state 2
- E.g: N=5 RyR

$$\frac{(N + M - 1)!}{(N - 1)! \times M!}$$

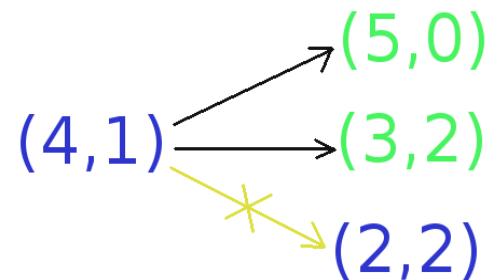
	C	O
1	5	0
2	4	1
3	3	2
4	2	3
5	1	4
6	0	5

- Cluster rate-transition matrix
 - AR(:,:,), BR(:,:,) of size 6x6

Ultra-fast Markov-Chain Monte-Carlo algorithm

- Exact simulation:

- In a small time-step, only a SINGLE channel can change state



- Law of conservation: rate out + rate in = 0

AR

		$(4,1)$	$(3,2)$	$(0,5)$		
$(5,0)$	$-q$	q	0	0	0	0
	r_1	$-(r_1 + r_2)$	r_2			

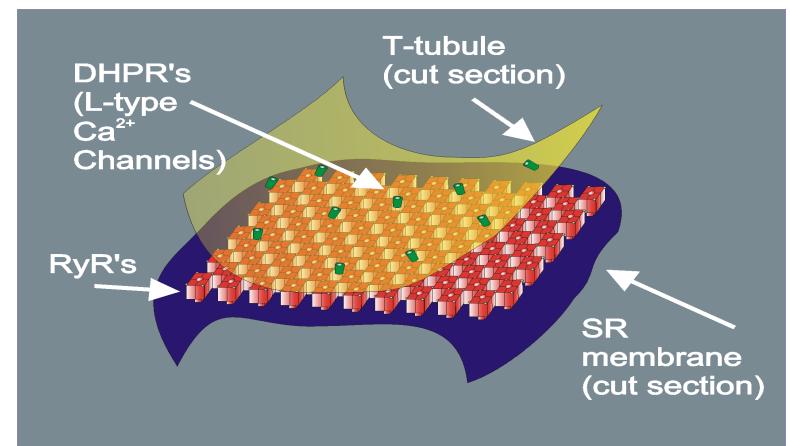
$$q = 5 \times aR(C,O)$$

$$r_1 = 1 \times aR(O,C)$$

$$r_2 = 4 \times aR(C,O)$$

Ultra-fast Markov-Chain Monte-Carlo algorithm

- A Calcium release site:
 - Each with 50-300 stochastically gating Ca^{2+} channels
 - *[Bers & Stiffel, 1993]* RyR:DHPR=7.3:1
 - Species to species: RyR:LCC $\sim 4:1 \rightarrow 8:1$
- Single cell:
 - Calcium release sites: 10,000-20,000



Ultra-fast Markov-Chain Monte-Carlo algorithm

- Model a release site:
 - Kronecker sum of matrices from 2 clusters: RyR & DHPR

$$K = A \oplus B = A_n \otimes I_m + I_n \otimes B_m$$

- RyR:
 - 2 matrices: $[Ca]_{ds}$ -dependent, $[Ca]_{ds}$ -independent
- DHPR:
 - 4 matrices: V1-dependent, V2-dependent, $[Ca]_{ds}$ -dependent, (V, $[Ca]_{ds}$)-independent

Ultra-fast MCMC

- Complexity
 - 50 2-state RyR: cluster of 51 states
 - 7 6-state DHPR: cluster of 924 states
 - Release site: 47,124 states
 - Memory demand: 16GB
- K matrix:
 - Highly sparse
- Question???
 - *Use an existing package for sparse matrix?* - still need a full matrix first
 - *How to handle computation with such sparse matrix in GPU?*

Ultra-fast MCMC

- Compact form for K:
 - Use two separate matrices:
 - $K_{comp}(i,j) = \text{keep ONLY non-zero rate transition}$
 - $K_{idx}(i,j) = \text{true column index of } K_{comp}(i,j)$

0	12	0	1
0	0	0	2

- A

$$K_{comp} = f(A_{comp}, B_{comp})$$
$$K_{idx} = g(A_{idx}, B_{idx})$$

- Acomp

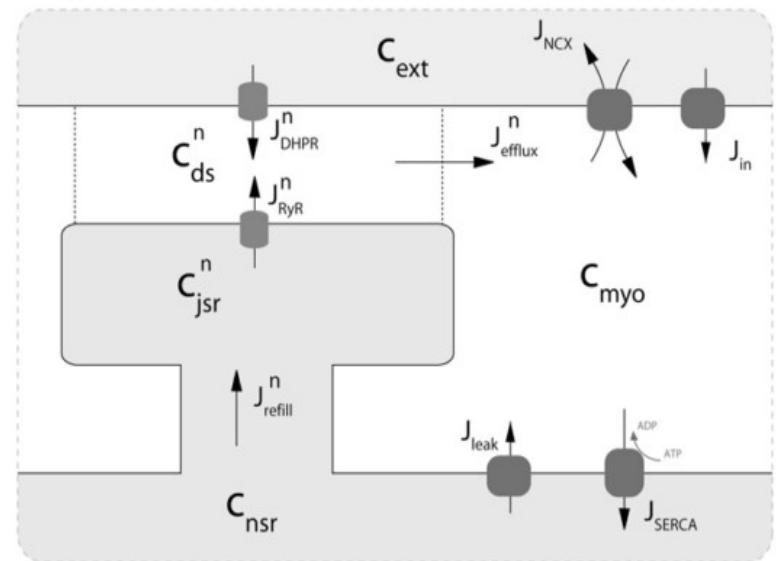
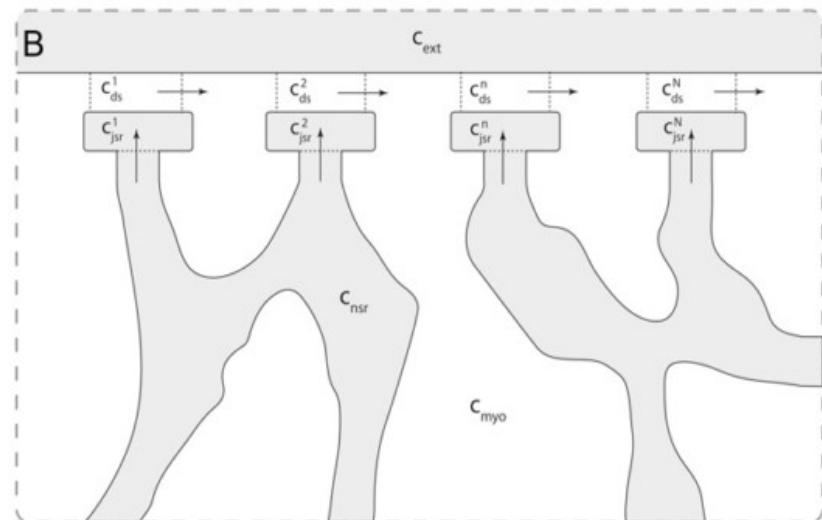
	12	1
	2	x

- Aidx

2	2	4
1	4	x

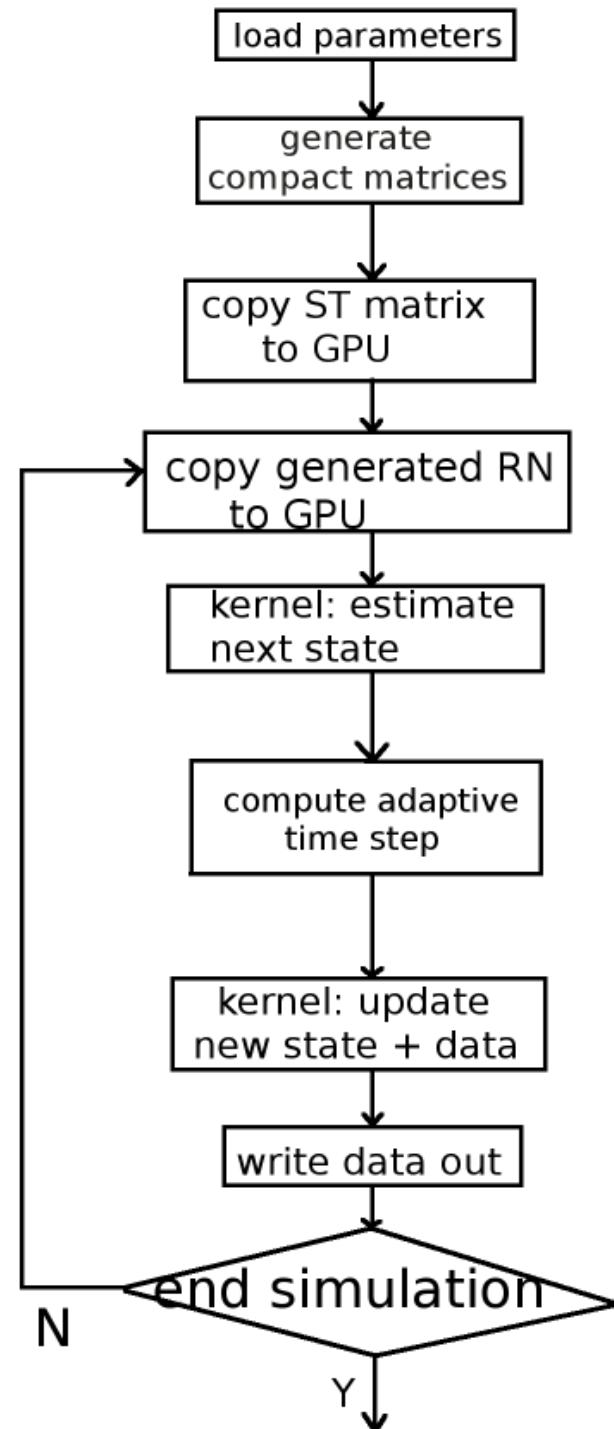
Case study: computational model to study Ca leak

- RyR
 - Minimal model with 2 states
- Release site:
 - 10,000
 - Each site has 50 RyR
- Whole-cell model



Algorithm on GPU

- Each release site → single core (SP)



Algorithm on GPU

```
value      description
# NOTE: Only a single digit before decimal point
# First 14 columns are for numbers

# release site configuration
5.0d2      N (number of release site)
5.0d1      nR (number of RyR/release site)
7.0d0      nL (number of DHPR/release site)
6.0d0      mL (number of DHPR state)
2.0d0      mR (number of RyR state)

# simulation settings
#-8.7d1      V_rest
-8.0d1      V_rest
-1.0d1      V_step (-20, 0 (0.0001), 20) mV (triggered voltage)
0.0d0      t_start (time start)
0.5d0      t_end (time end)
1.0d-7      t_step (time step)
0.3d0      t_start_V_clamp
0.4d0      t_end_V_clamp
1.0d1      output_interval (how often to write data out)

# initial condition
1.4d5      Na_o (ion concentration)
1.02d4      Na_i
1.8d3      Ca_o
1.0d0      Cm (membrane capacitance) uF/cm^2

# constant
9.6485d4      F (Faraday) C/mol
8.314d3      R (universal gas) mJ mol-1 K-1
3.10d2      T (temperature) K

2.2d0      eta (hill coefficient)
0.07d0      Ej
-0.89d0      Ecc
-0.89d0      Eoo
```

Algorithm on GPU

```
!!          Compute random transition number.
CALL DRANDUNIFORM(noutincr * NSFU, LB, UB, STATE, X, INFO)
X_dev = X

DO iinner=1,noutincr ! inner loop
  CALL getCompPdt<<<NSFU/blockszie, blockszie>>> &
    (NSFU, N_R, maxnklm, maxnklp, irow_R, &
     Ej, Ecc, Eoo, eta)
  cuErr = cudaThreadSynchronize()
```

```
CALL updateCalcium<<<NSFU/blockszie, blockszie>>> &
  (NSFU, dt, maxnklm, maxnklp, &
   X_dev(NSFU*(iinner-1)+1:NSFU*iinner), &
   lambda2, v_ryr, v_refill, v_efflux, Ca_nsr, Ca_myo)
cuErr = cudaThreadSynchronize()

***** Update time will be commented out *****
```

Benchmark

- System:
 - PGI Fortran 10.5 + CUDA Fortran
 - NVIDIA CUDA 2.3 SDK
 - Tesla C1060
 - Intel Nehalem i7
 - 12GB RAM
 - Double-precision computing

Benchmark

- Why GPU?
 - Large amount of computation can be done in parallel
 - State space is reused at every computational step → compact form make it fit to GPU device space
- Programming issue:
 - Kernel configuration
 - Block size = 32x??? (128, 160, 192, 256, 512)
 - Grid = 1D
 - Occupancy ???
 - Data alignment
 - 10112 or 10028 or 10240 release sites
 - Memory access latency:
 - Registers (16K)
 - Shared memory
 - Global device memory

Benchmark

Method	Original	MATLAB	Fortran	GPU
Runtime	11000 min	110 min	20 min	45 sec
Speedup	1x	100x	550x	14,667x

- 10,000 release units
- 50 RyRs
- 1 second simulation time

Benchmark

- GPU benchmark

128-10112	160-10080	192-10176	256-10240	512-10240	configuration
179.93	45.65	40.56	44.38	44.21	time (sec)

2.) Enter your resource usage:

256	Threads Per Block	256
24	Registers Per Thread	28
1024	Shared Memory Per Block (bytes)	1024

(Don't edit anything below this line)

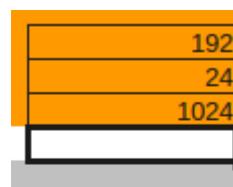
3.) GPU Occupancy Data is displayed here and in the graphs:

512	Active Threads per Multiprocessor	512
16	Active Warps per Multiprocessor	16
2	Active Thread Blocks per Multiprocessor	2
50%	Occupancy of each Multiprocessor	50%

2.) Enter your resource usage:

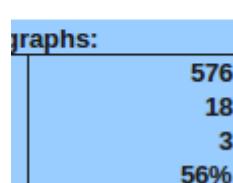
192
28
1024

(Don't edit anything below this line)



3.) GPU Occupancy Data is displayed here and in the graphs:

384
12
2
38%



Conclusion

- Simulations suggest a mechanism for the basis of calcium leak from the SR in cardiac myocytes.
- Our Ultrafast Monte Carlo Method make stochastic simulation of calcium dynamics possible.
- The efficiency is such that these methods can be applied to (1) whole-cell detailed model, (2) networks of cardiac myocytes to study calcium dysfunction leading to arrhythmia.

Ongoing research

- Temporospatial whole-cell model on GPU
 - 1D, 2D and 3D
- Tissue level (multiple GPU)
 - A network of multiple cells
 - Studying the pathogenesis of cardiac arrhythmias using this model, and compare with experimental data