
Hello GPU: High-Quality, Real-Time Speech

Recognition on Embedded GPUs

Kshitij Gupta

UC Davis

[/shi/ /tij/]

www.KshitijGupta.com

http://www.kshitijgupta.com/

Three Trends

Trend #1:

Technology

Transistor
Personal

Computing
Internet Search

Wireless
Comm.

Embedded
Consumer

Elec.

Smart
phones

•Internet (Web 2.0)

•Music

•Video

•Games

•Cell phones

•GPS navigation

Embedded/Mobile & Entertainment

Mobile + Convergence

Trend #2:

User Interface

Switches Keypads Mice
Scroll
Wheel

Touch Gestures Speech

•Eyes free

•Hands free
•Eyes free

•Eyes required

•Hands required

10 years

User Interface has proven to be a key enabler

?

Trend #3(a):

Processor Architecture (Desktop)

CPU

•Scalar •SMT •Multi-core

•Fixed-function

•Semi programmable

•GPGPU

•Parallel (many-core)

•App independent (prog.)

G

P

U

CPUs doing graphics and GPUs doing GPP!

•CPU to run Aero-class graphics on Windows

•GPU evolving from “kernels” to “applications”

•Parallel (many-core)

•App independent (prog.)

Trend #3(b):

Processor Architecture (Embedded)

CPU EPU

•Scalar •SMT •Multi-core

•Fixed-function

•Semi programmable

•GPGPU

Atom

Tegra

OMAP

•CPU •DSP •Si •GPU

G

P

U

•Parallel (many-core)

•App independent (prog.)

•Graphics/Visual

Computing Platforms

Looking Ahead…

Mobile

+

UI

+

Parallel, programmable

Introduction

Motivation

Overview & Characterization

Design Goals & Principles

Acoustic Modeling Lookahead

Future Directions

Outline

Why so hard?

 The Holy Grail…

 accurate

 real-time

 continuous

 naturally spoken

 noisy conditions

 large set of words

 speaker-independent

 real-time!

Hard limit: Real-time response

Soft(er) limit: Accuracy!

A few examples of „continuous‟ speech

 thisnewdistplaywillrecognizespeech
 This new display will recognize speech

 This nudist play will wreck a nice beach

 greytape
 Grey tape

 Great ape

 hesgone
 He‟s gone.

 He‟s gone?

 Lets not go, ummm, ok, errr, fine, lets do this!
 Was that a „yes‟ or a „no‟?

 What‟s the context here?

Variability, variability, v-a-r-i-a-b-l-i-t-y!

male female

child

10-19

20-29

30-49

40-69

70+

Cheetah

Jaguar

Panther

Tiger

Leopard

/AE/

/ER/

/HH/

/NG/

/SH/

/ZH/

Dialect

Gender

Words

Phonemes

Good speech models are BIG!

Age

southern western penn.

model

Automatic Speech Recognition:

A high-level view

Training

Speech

•Text

•Action

Knowledge

Base

Decoder

Speech

•Text

•Action
Decoder

Acoustics Semantic









)(*)/(maxarg WPWOPW Wbest

Acoustics

ASR:

Knowledge-Base View

Language

Words W
A

H
N

Phonemes S0 S1 S2

One

Three

Two

Five

Three

Seven

s
/s

P(1/s)

P(2/1,s)

P(3/1,s)

P(3/2,1)

P(5/3,1)

P(7/3,1)

P(s/3,2)

P(s/5,3)

P(s/7,3)

> 1M

> 100k

> 50k

4k-8k

inner-most loop

ASR:

Knowledge-Base View (GMM)

Acoustics 4k-8k

2M – 80M

Mixtures 8-128

*

Dimensions 39

*

Equation 2

*

ASR:

Block Diagram View

Backend

Feature

Extraction

Acoustic

Modeling

(GMM)

Phonetic

Modeling

(HMM)

Word

Modeling

(Lexicon)

Language

Modeling

(Syn/Sem)

Application

Knowledge Base

Input

SIMD-friendly Thread-friendly

w

0

w

1

w

2

w

N

w0,0

w0,3

w0,4

w1,0

w1,1

w0,0,0

w0,0,1

w0,0,3

w1,0,0

w1,0,4

w1,1,0

w1,1,4

K

AE

AE

AE

N

L IX D OW N IY AY

L AX F AO R N Y AX

N AX DX AX

M B AX

L

L Z

M D AX

N

N Z

CALEDONIA

CALIFORNIA

CAMDEN’S

CAMDEN

CAMPBELL

CAMPBELL’S

CAN

CANADA

K

AE

AE

AE

N

L IX D OW N IY AY

L AX F AO R N Y AX

N AX DX AX

M B AX

L

L Z

M D AX

N

N Z

CALEDONIA

CALIFORNIA

CAMDEN’S

CAMDEN

CAMPBELL

CAMPBELL’S

CAN

CANADA

S0 S1 S2

16 kHz 100 Hz

ASR:

State-of-the-art, Today

 Offload processing to the „cloud‟

 Drawbacks: Latency, Accuracy, Power

NSR/DSR are the only solution today for supporting ASR on embedded devices

Backend

Feature

Extraction

Acoustic

Modeling

(GMM)

Phonetic

Modeling

(HMM)

Word

Modeling

(Lexicon)

Language

Modeling

(Syn/Sem)

Application

Knowledge Base

Input

SIMD-friendly Thread-friendly

w

0

w

1

w

2

w

N

w0,0

w0,3

w0,4

w1,0

w1,1

w0,0,0

w0,0,1

w0,0,3

w1,0,0

w1,0,4

w1,1,0

w1,1,4

K

AE

AE

AE

N

L IX D OW N IY AY

L AX F AO R N Y AX

N AX DX AX

M B AX

L

L Z

M D AX

N

N Z

CALEDONIA

CALIFORNIA

CAMDEN’S

CAMDEN

CAMPBELL

CAMPBELL’S

CAN

CANADA

K

AE

AE

AE

N

L IX D OW N IY AY

L AX F AO R N Y AX

N AX DX AX

M B AX

L

L Z

M D AX

N

N Z

CALEDONIA

CALIFORNIA

CAMDEN’S

CAMDEN

CAMPBELL

CAMPBELL’S

CAN

CANADA

S0 S1 S2

NSR DSR

ESR The Challenge

Characterization of ASR algorithms

Frontend Backend

Feature Extraction Acoustic Modeling Language Modeling

Core kernels FFT, DCT
GMM computation &

HMM state traversal
Layered graph search

Memory

Footprint Very small ++ Medium + Very large - -

Bandwidth Low ++ Very high - - Medium +

Access

pattern
N/A

Spatial locality

(for mini-datasets)
+

Temporal locality

(non-sequential)
+

Compute Very low ++ Very High - - Low ++

Data-structure N/A
Regular:

Dense
+

H. irregular:

Sparse
- -

Time System < 1% 50-90% 10-50%

Bottleneck Focus of this talk

Application Domains for ASR

Server Desktop Embedded*

Off-line & On-line On-line & Off-line On-line

Real-Time constraint N/A & Soft Soft Hard

Application domain

Transcription Desktop control Search

Data mining Dictation Dictation

Customer support Game consoles SMS/Chatting

Distributed Speech

Recognition

Home automation (multi-

stream)
Command & Control

Data mining Automotive

Hardware

10s-1,000s + CPU/GPU CPU + GPU CPU + GPU + acc. Si

Compute PFLOP TFLOP GFLOP

Memory ~ (TB/PB)/s ~ GB/s ~ (GB/MB)/s

Vocabulary size 1M + ~ 50k 10+

*anything not plugged into the power socket

The Challenge

Server Desktop Embedded*

Off-line & On-line On-line & Off-line On-line

Real-Time constraint N/A & Soft Soft Hard

Application domain

Transcription Desktop control Search

Data mining Dictation Dictation

Customer support Game consoles SMS/Chatting

Distributed Speech

Recognition

Home automation

(multi-stream)
Command & Control

Data mining Automotive

Hardware

10s-1,000s + CPU/GPU CPU + GPU CPU + GPU + acc. Si

Compute PFLOP TFLOP GFLOP/MFLOP

Memory ~ (TB/PB)/s ~ GB/s ~ (GB/MB)/s

Vocabulary size 1M + ~ 50k 10+

“Desktop-class ASR on Embedded devices”

*anything not plugged into the power socket

The Challenge:

Desktop v/s Embedded System Architectures

North

Bridge

CPU

GPU

Mem

Desktop System Architecture Embedded System Architecture

C

T

R

L

CPU

GPU

Mem

Processor

Cache

Memory

Vastly different architectures & constraints: Memory & Compute resources are limited

UMA

DSP

Desktop (480GTX) Embedded (9400M)

of SMs 16 x 32 2 x 8

Compute TFLOP GFLOP

Memory
~ 100‟s of GB/s < 10 GB/s

Discrete Integrated

Design Goals

 Target : GeForce 9400M
 # of SMs: 2

 Shared memory: 16kB/SM

 Registers file: 8k/SM

 Compute Capability 1.1

 Stringent memory coalescing constraints

 OpenCL-capable

 Speed : Faster than real-time

 Accuracy: Any optimizations should impact accuracy
„marginally‟

 HOW?
 Re-visit traditional ASR pipeline

 Extract intra-module parallelism!

Design Principles:

CPU v/s GPU (1)

 #1

 CPU: Dynamisim is fine; remove every state that is not needed

 GPU: Regular structure, consistency important; extra work OK

 Compute is cheap, main memory accesses are expensive

 Static; memory allocation/de-allocation user-managed

 #2

 CPU: Branches are fine; HW support

 GPU: Branches may lead to serialization

 Carefully organize your data-structures

 Avoid branches and reduce access to branch-able code

Design Principles:

CPU v/s GPU (2)

 #3

 CPU: Repetitive computation over time is OK

 GPU: Repetitive computation staggered over time has a

huge cost

 Small/non-existant on-chip memories

 Increase „arithmetic intensity‟ of computations

 #4

 CPU: Multiple optimization layers are fine

 GPU: Hand-pick few optimizations that map well to the

arch.

Task List: Brute Force

Feed-forward Loop

Feature Extraction

Compute Acoustics

Compute Phonemes

Compute Words

Compute Language

1 frame

Score

Hypothesized words

Speech input

Bottleneck

Task List: Prune, prune, p-r-u-n-e

Feedback Loop

Feature Extraction

Activate Words

Activate Phonemes

Activate Acoustics

Compute Acoustics

Compute Phonemes

Compute Words

Compute Language

Generate active lists

Score

Initialization

Hypothesized words

Speech input

1 frame

Active Acoustics

Frame
Time

G
M

M
 I

D
s

Memory bandwidth intensive

Active Acoustics:

Observation (1)

“show locations and c-ratings for all deployed subs that were in their home ports april five"

Active Acoustics:

Observation (2)

Solution:

Feedback (w/ intra-module parallelism)

Feature Extraction

Activate Words

Activate Phonemes

Activate Acoustics

Compute Acoustics

Compute Phonemes

Compute Words

Compute Language

Compute Acoustics … Compute Acoustics …

Generate active lists

Score

Initialization

Hypothesized words

Speech input

N frames

Acoustic Model Look-ahead:

Frame #1

Frame Chunk
Time

G
M

M
 I

D
s

Acoustic Model Look-ahead:

Frame #1

Frame Chunk
Time

G
M

M
 I

D
s

Acoustic Model Look-ahead:

Frame #2

Frame Chunk
Time

G
M

M
 I

D
s

Acoustic Model Look-ahead:

Frame #3

Frame Chunk
Time

G
M

M
 I

D
s

Acoustic Model Look-ahead:

Frame #4 (do nothing)

Frame Chunk
Time

G
M

M
 I

D
s

Acoustic Model Look-ahead:

Frame #5

Frame Chunk
Time

G
M

M
 I

D
s

Acoustic Model Look-ahead:

All Frames

Frame Chunk
Time

G
M

M
 I

D
s

Result:

Significant savings in Memory Bandwidth

Acoustic Model Look-ahead (#1)

Activate Acoustics

Compute Acoustics

Compute Phonemes

Activate Acoustics

Compute Phonemes

GMM Compute

Activate Acoustics

Compute Phonemes

in

AML

Scan & Compact

buf

GMM Compute

new

new = in AND (NOT(buf))

Activate Acoustics

Compute Phonemes

in

Scan & Compact

GMM Compute

buf = new OR (buf)

Results

Chunk WER
Comp.

Ovrd (%)

BW

Saved (%)

RTF 260

GTX

RTF 9400

M (ION)

1

6.86

0 0 14.38 1.50

2 3.46 43.76 20.30 2.70

4 9.76 67.46 25.34 3.27

8 20.64 79.90 32.36 3.96

360 MB

70 MB

Context-Independent Acoustics

C
I-

G
M

M

G
M

M

Context-Independent Acoustics:

Lifetime

Time

C
I-

G
M

M
 I

D
s

Context-Independent Acoustics:

Chunk-based processing

Time

C
I-

G
M

M
 I

D
s

1

2

2

1

3

Context-Independent Acoustics:

Chunk-based processing

Time

C
I-

G
M

M
 I

D
s

Context-Independent Acoustics:

Chunk-based processing

Time

G
M

M
 I

D
s

C

I-
G

M
M

 I
D

s

Acoustic Model Look-ahead (#2)

Activate Acoustics

Compute Phonemes

in

AML(b)

Compact

GMM Compute (CI)

AML(c)

Compact

buf

CI-GMM Process

GMM Comp. Back-off

new

buf

CI-phase only

at chunk

boundary

Computed

every frame

• Compute CI-GMMs

• Compute Maximum for beam pruning

• If (CI-GMM > CIGMM Threshold) {

 score corresponding GMMs

 }

Results

Chunk
CI-GMM

Thresh
WER

Comp.

Saved

(%)

BW

Saved

(%)

RTF 260

GTX

RTF 9400

M (ION)

4 1 7.27 24.04 79.47 23.52 4.32

4 2 7.72 36.81 82.95 24.93 4.85

4 3 8.67 48.81 86.21 26.58 5.40

8 1 7.23 11.78 86.05 33.23 4.95

8 2 7.31 23.57 87.75 34.68 5.37

8 3 7.81 34.05 89.27 36.25 6.18

Faster than real-time; with savings in both compute & memory bandwidth

36 MB

In Summary

 High-end & Low-end systems vastly different in
 Architectures

 Constraints

 Re-visit traditional application pipeline

 Memory is a key bottleneck
 Extraction of temporal locality is critical

 Acoustic Modeling Look-ahead is „critical‟ in …
 Enabling faster than real-time performance

 Saving bandwidth

 Saving compute

 … at a marginal loss in accuracy

Future Directions

We‟re just getting started…

 Multi-stream Speech Recognition
 Home automation

 Transcription
 Minutes of meetings

 Language Translation
 Tour guides

 Today‟s killer-app
 Dictation!

 …

The Final Frontier in Speech Recognition...

 The Holy Grail

 accurate

 real-time

 continuous

 naturally spoken

 noisy conditions

 large set of words

 speaker-independent

 Using speech recognition not just for a few selective,
non-critical tasks, but for all tasks, including „mission-
critical‟ ones.

HAL 9000

“Perfect” voice-driven interfaces are not possible with today‟s algorithms

Switches Keypads Mice
Scroll
Wheel

Speech

Gest
ures

Touch

The Future: „Complimentary‟ UIs!

Thank You

