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Three Trends 



Trend #1: 

Technology 

Transistor 
Personal 

Computing 
Internet Search 

Wireless 
Comm. 

Embedded 
Consumer 

Elec. 

Smart 
phones 

•Internet (Web 2.0) 

•Music 

•Video 

•Games 

•Cell phones 

•GPS navigation 

Embedded/Mobile & Entertainment 

Mobile + Convergence 



Trend #2: 

User Interface 

Switches Keypads Mice 
Scroll 
Wheel 

Touch Gestures Speech 

•Eyes free 

•Hands free 
•Eyes free 

•Eyes required 

•Hands required 

10 years 

User Interface has proven to be a key enabler 



? 

Trend #3(a): 

Processor Architecture (Desktop) 

CPU 

•Scalar •SMT •Multi-core 

•Fixed-function 

•Semi programmable 

•GPGPU 

•Parallel (many-core) 

•App independent (prog.) 

G

P

U 

CPUs doing graphics and GPUs doing GPP! 

•CPU to run Aero-class graphics on Windows 

•GPU evolving from “kernels” to “applications” 



•Parallel (many-core) 

•App independent (prog.) 

Trend #3(b): 

Processor Architecture (Embedded) 

CPU EPU 

•Scalar •SMT •Multi-core 

•Fixed-function 

•Semi programmable 

•GPGPU 

Atom 

Tegra 

OMAP 

•CPU •DSP •Si •GPU 

G

P

U 

•Parallel (many-core) 

•App independent (prog.) 

•Graphics/Visual 

Computing Platforms 



Looking Ahead… 

 

Mobile 

+ 

UI 

+ 

Parallel, programmable 



Introduction 

Motivation 

Overview & Characterization 

Design Goals & Principles 

Acoustic Modeling Lookahead 

Future Directions 

Outline 



Why so hard? 

 The Holy Grail… 

 accurate 

 real-time 

 continuous 

 naturally spoken 

 noisy conditions 

 large set of words 

 speaker-independent 

 real-time! 

Hard limit: Real-time response 

Soft(er) limit: Accuracy! 



A few examples of „continuous‟ speech 

 thisnewdistplaywillrecognizespeech 
 This new display will recognize speech 

 This nudist play will wreck a nice beach 

 greytape 
 Grey tape 

 Great ape 

 hesgone 
 He‟s gone. 

 He‟s gone? 

 Lets not go, ummm, ok, errr, fine, lets do this! 
 Was that a „yes‟ or a „no‟? 

 What‟s the context here? 



Variability, variability, v-a-r-i-a-b-l-i-t-y! 

male female 

child 

10-19 

20-29 

30-49 

40-69 

70+ 

Cheetah 

Jaguar 

Panther 

Tiger 

Leopard 

/AE/ 

/ER/ 

/HH/ 

/NG/ 

/SH/ 

/ZH/ 

Dialect 

Gender 

Words 

Phonemes 

Good speech models are BIG! 

Age 

southern western penn. 

model 



Automatic Speech Recognition: 

A high-level view 

Training 

Speech 

•Text 

•Action 

Knowledge 

Base 

Decoder 
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•Text 

•Action 
Decoder 

Acoustics Semantic 









 )(*)/(maxarg WPWOPW Wbest



Acoustics 

ASR: 

Knowledge-Base View 

Language 

Words W 
A

H 
N 

Phonemes S0 S1 S2 

One 

Three 

Two 

Five 

Three 

Seven 

s 
/s 

P(1/s) 

P(2/1,s) 

P(3/1,s) 

P(3/2,1) 

P(5/3,1) 

P(7/3,1) 

P(s/3,2) 

P(s/5,3) 

P(s/7,3) 

> 1M 

> 100k 

> 50k 

4k-8k 

inner-most loop 



ASR: 

Knowledge-Base View (GMM) 

Acoustics 4k-8k 

2M – 80M 

Mixtures 8-128 

* 

Dimensions 39 

* 

Equation 2 

* 



ASR: 

Block Diagram View 

 

 

 

 

 

 

 

 

 

 

 

 

 

Backend 

Feature 

Extraction 

Acoustic 

Modeling 

 

 

 

 

(GMM) 

Phonetic 

Modeling 

 

 

 

 

(HMM) 

Word 

Modeling 

 

 

 

 

(Lexicon) 

Language 

Modeling 

 

 

 

 

(Syn/Sem) 

Application 

Knowledge Base 

Input 

SIMD-friendly Thread-friendly 
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ASR: 

State-of-the-art, Today 

 Offload processing to the „cloud‟ 

 Drawbacks: Latency, Accuracy, Power 

NSR/DSR are the only solution today for supporting ASR on embedded devices 

 

 

 

 

 

 

 

 

 

 

 

 

 

Backend 

Feature 

Extraction 

Acoustic 

Modeling 
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(HMM) 

Word 

Modeling 

 

 

 

 

(Lexicon) 

Language 

Modeling 

 

 

 

 

(Syn/Sem) 

Application 
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Characterization of ASR algorithms 

Frontend Backend 

Feature Extraction Acoustic Modeling Language Modeling 

Core kernels FFT, DCT 
GMM computation & 

HMM state traversal 
Layered graph search 

Memory 

Footprint Very small ++ Medium + Very large - - 

Bandwidth Low ++ Very high - - Medium + 

Access 

pattern 
N/A 

Spatial locality 

(for mini-datasets) 
+ 

Temporal locality 

(non-sequential) 
+ 

Compute Very low ++ Very High - - Low ++ 

Data-structure N/A 
Regular:  

Dense 
+ 

H. irregular: 

Sparse 
- - 

Time System < 1% 50-90% 10-50% 

Bottleneck Focus of this talk 



Application Domains for ASR 

Server Desktop Embedded* 

Off-line & On-line On-line & Off-line On-line 

Real-Time constraint N/A & Soft Soft Hard 

Application domain 

Transcription Desktop control Search 

Data mining Dictation Dictation 

Customer support Game consoles SMS/Chatting 

Distributed Speech 

Recognition 

Home automation (multi-

stream) 
Command & Control 

Data mining Automotive 

Hardware 

# 10s-1,000s + CPU/GPU CPU + GPU CPU + GPU + acc. Si 

Compute PFLOP TFLOP GFLOP 

Memory ~ (TB/PB)/s ~ GB/s ~ (GB/MB)/s 

Vocabulary size 1M + ~ 50k 10+ 

*anything not plugged into the power socket 



The Challenge 

Server Desktop Embedded* 

Off-line & On-line On-line & Off-line On-line 

Real-Time constraint N/A & Soft Soft Hard 

Application domain 

Transcription Desktop control Search 

Data mining Dictation Dictation 

Customer support Game consoles SMS/Chatting 

Distributed Speech 

Recognition 

Home automation 

(multi-stream) 
Command & Control 

Data mining Automotive 

Hardware 

# 10s-1,000s + CPU/GPU CPU + GPU CPU + GPU + acc. Si 

Compute PFLOP TFLOP GFLOP/MFLOP 

Memory ~ (TB/PB)/s ~ GB/s ~ (GB/MB)/s 

Vocabulary size 1M + ~ 50k 10+ 

  

“Desktop-class ASR on Embedded devices” 

*anything not plugged into the power socket 



The Challenge: 

Desktop v/s Embedded System Architectures 

North 

Bridge 

CPU 

GPU 

Mem 

Desktop System Architecture Embedded System Architecture 

C

T

R

L 

CPU 

GPU 

Mem 

Processor 

Cache 

Memory 

Vastly different architectures & constraints: Memory & Compute resources are limited 

UMA 

DSP 

Desktop (480GTX) Embedded (9400M) 

# of SMs 16 x 32 2 x 8 

Compute TFLOP GFLOP 

Memory 
~ 100‟s of GB/s < 10 GB/s 

Discrete Integrated 



Design Goals 

 Target    : GeForce 9400M 
 # of SMs: 2 

 Shared memory: 16kB/SM 

 Registers file: 8k/SM 

 Compute Capability 1.1 

 Stringent memory coalescing constraints 

 OpenCL-capable 

 Speed    : Faster than real-time 

 Accuracy: Any optimizations should impact accuracy 
„marginally‟ 

 

 HOW? 
 Re-visit traditional ASR pipeline 

 Extract intra-module parallelism! 



Design Principles: 

CPU v/s GPU (1) 

 #1 

 CPU: Dynamisim is fine; remove every state that is not needed 

 GPU: Regular structure, consistency important; extra work OK 

 Compute is cheap, main memory accesses are expensive 

 Static; memory allocation/de-allocation user-managed 

 

 #2 

 CPU: Branches are fine; HW support 

 GPU: Branches may lead to serialization 

 Carefully organize your data-structures 

 Avoid branches and reduce access to branch-able code 



Design Principles: 

CPU v/s GPU (2) 

 #3 

 CPU: Repetitive computation over time is OK 

 GPU: Repetitive computation staggered over time has a 

huge cost 

 Small/non-existant on-chip memories 

 Increase „arithmetic intensity‟ of computations 

 

 #4 

 CPU: Multiple optimization layers are fine 

 GPU: Hand-pick few optimizations that map well to the 

arch. 



Task List: Brute Force 

Feed-forward Loop 

Feature Extraction 

Compute Acoustics 

Compute Phonemes 

Compute Words 

Compute Language 

1 frame 

Score 

Hypothesized words 

Speech input 



Bottleneck 

Task List: Prune, prune, p-r-u-n-e 

Feedback Loop 

Feature Extraction 

Activate Words 

Activate Phonemes 

Activate Acoustics 

Compute Acoustics 

Compute Phonemes 

Compute Words 

Compute Language 

Generate active lists 

Score 

Initialization 

Hypothesized words 

Speech input 

1 frame 



Active Acoustics 

Frame 
Time 

G
M

M
 I

D
s

 

Memory bandwidth intensive 



Active Acoustics: 

Observation (1) 

“show locations and c-ratings for all deployed subs that were in their home ports april five" 



Active Acoustics: 

Observation (2) 



Solution:  

Feedback (w/ intra-module parallelism) 

Feature Extraction 

Activate Words 

Activate Phonemes 

Activate Acoustics 

Compute Acoustics 

Compute Phonemes 

Compute Words 

Compute Language 

Compute Acoustics … Compute Acoustics … 

Generate active lists 

Score 

Initialization 

Hypothesized words 

Speech input 

N frames 



Acoustic Model Look-ahead: 

Frame #1 

Frame Chunk 
Time 

G
M

M
 I

D
s

 



Acoustic Model Look-ahead: 
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Acoustic Model Look-ahead: 

Frame #2 

Frame Chunk 
Time 

G
M

M
 I

D
s

 



Acoustic Model Look-ahead: 

Frame #3 

Frame Chunk 
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Acoustic Model Look-ahead: 

Frame #4 (do nothing) 

Frame Chunk 
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Acoustic Model Look-ahead: 

Frame #5 

Frame Chunk 
Time 

G
M

M
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D
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Acoustic Model Look-ahead: 

All Frames 

Frame Chunk 
Time 

G
M

M
 I

D
s

 



Result: 

Significant savings in Memory Bandwidth 



Acoustic Model Look-ahead (#1) 

Activate Acoustics 

Compute Acoustics 

Compute Phonemes 

Activate Acoustics 

Compute Phonemes 

GMM Compute 

Activate Acoustics 

Compute Phonemes 

in 

AML 

Scan & Compact 

buf 

GMM Compute 

new 

new = in AND (NOT(buf)) 

Activate Acoustics 

Compute Phonemes 

in 

Scan & Compact 

GMM Compute 

buf = new OR (buf) 



Results 

Chunk WER 
Comp. 

Ovrd (%) 

BW 

Saved (%) 

RTF 260 

GTX 

RTF 9400 

M (ION) 

1 

6.86 

0 0 14.38 1.50 

2 3.46 43.76 20.30 2.70 

4 9.76 67.46 25.34 3.27 

8 20.64 79.90 32.36 3.96 

360 MB 

70 MB 



Context-Independent Acoustics 
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Context-Independent Acoustics: 

Lifetime 

Time 

C
I-

G
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Context-Independent Acoustics: 

Chunk-based processing 
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Context-Independent Acoustics: 

Chunk-based processing 
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Context-Independent Acoustics: 

Chunk-based processing 
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Acoustic Model Look-ahead (#2) 

Activate Acoustics 

Compute Phonemes 

in 

AML(b) 

Compact 

GMM Compute (CI) 

AML(c) 

Compact 

buf 

CI-GMM Process 

GMM Comp. Back-off 

new 

buf 

CI-phase only 

at chunk 

boundary 

Computed 

every frame 

• Compute CI-GMMs 

• Compute Maximum for beam pruning 

 

• If (CI-GMM > CIGMM Threshold) { 

        score corresponding GMMs 

     } 



Results 

Chunk 
CI-GMM 

Thresh 
WER 

Comp. 

Saved 

(%) 

BW 

Saved 

(%) 

RTF 260 

GTX 

RTF 9400 

M (ION) 

4 1 7.27 24.04 79.47 23.52 4.32 

4 2 7.72 36.81 82.95 24.93 4.85 

4 3 8.67 48.81 86.21 26.58 5.40 

8 1 7.23 11.78 86.05 33.23 4.95 

8 2 7.31 23.57 87.75 34.68 5.37 

8 3 7.81 34.05 89.27 36.25 6.18 

Faster than real-time; with savings in both compute & memory bandwidth 

36 MB 



In Summary 

 High-end & Low-end systems vastly different in 
 Architectures 

 Constraints 

 Re-visit traditional application pipeline 

 Memory is a key bottleneck 
 Extraction of temporal locality is critical 

 

 Acoustic Modeling Look-ahead is „critical‟ in …  
 Enabling faster than real-time performance 

 Saving bandwidth 

 Saving compute 

 … at a marginal loss in accuracy 



Future Directions 



We‟re just getting started… 

 Multi-stream Speech Recognition 
 Home automation 

 

 Transcription 
 Minutes of meetings 

 

 Language Translation 
 Tour guides 

 

 Today‟s killer-app 
 Dictation! 

 

 … 



The Final Frontier in Speech Recognition... 

 The Holy Grail 

 accurate 

 real-time 

 continuous 

 naturally spoken 

 noisy conditions 

 large set of words 

 speaker-independent 

 

 Using speech recognition not just for a few selective, 
non-critical tasks, but for all tasks, including „mission-
critical‟ ones. 



HAL 9000 

“Perfect” voice-driven interfaces are not possible with today‟s algorithms 



Switches Keypads Mice 
Scroll 
Wheel 

      

Speech 

Gest
ures 

Touch 

The Future: „Complimentary‟ UIs! 



Thank You 


