PERVASHE '
PARMLLELSM
LABORATORY

Simplifying Parallel Programming
with Domain Specific Languages

Hassan Chafi, HyoukJoong Lee, Arvind Sujeeth, Kevin Brown,
Anand Atreya, Nathan Bronson, Kunle Olukotun

Stanford University
Pervasive Parallelism Laboratory (PPL)

GPU Technology Conference 2010

PERVASIVE
Era of Power Limited Computmm

m Mobile

= Battery operated
= Passively cooled

m Data center
= Energy costs
s Infrastructure costs

Computing System Power lumP

PERVASIE t"“

1

Power = Energy

-

Op

X

Ops

second

1

PERVASIVE
Heterogeneous Hardware ‘PP

= Heterogeneous HW for energy efficiency
= Multi-core, ILP, threads, data-parallel engines, custom engines

= H.264 encode study

1000

aesmPerformance

«B=Energy Savings

4 cores + ILP + SIMD + custom ASIC
inst

Source: Understanding Sources of Inefficiency in General-Purpose Chips (ISCA10)

PERVASI

DE Shaw Research: Anton ity

Molecular dynamics computer

100 times more power efficient

D. E. Shaw et al. SC 2009, Best Paper and Gordon Bell Prize

Apple A4 in iP{ad|hone}

Contains CPU and GPU and ...

PERVASIE

PARALLELISH 8

LABORATORY

Heterogeneous Parallel)
Computing =

m Uniprocessor

= Sequential programming
= C

m CMP (Multicore)
s Threads and locks
= C + (Pthreads, OpenMP)

= GPU
= Data parallel programming
= C + (Pthreads, OpenMP) + (CUDA, OpenCL)

m Cluster
= Message passing
= C + (Pthreads, OpenMP) + (CUDA, OpenCL) + MPI

Jaguar

Multiple incompatible programming models

PERVASI
PARALLELISM
LABORATORY

PPL

IS IT POSSIBLE TO WRITE ONE

PROGRAM
AND

RUN IT ON ALL THESE

MACHINES?

PERVASI
PARALLELISM
LABORATORY

PPL

HYPOTHESIS: YES, BUT NEED

DOMAIN-SPECIFIC

LIBRARIES AND LANGUAGES

A solution for pervasive PAEWP%
parallelism LIBRATR

= Domain Specific Languages (DSLs)
m Programminig language with restricted expressiveness
for a particular domain
= OpenGL, MATLAB, SQL, VHDL, ..

m Benefit of using DSLs for parallelism

= Productivity
= Shield average programmers from the difficulty of parallel
programming
= Performance

= Match generic parallel execution patterns to high level
domain abstraction

= Restrict expressiveness to more easily and fully extract
available parallelism

= Use domain knowledge for static/dynamic optimizations
= Portability and forward scalability

PERVASIVE
: - FLISM
PPL Goals and Organization mlnlnmﬂv%

m Goal: the parallel computing platform for the
masses

= Parallel applications without parallel programming

m PPL is a collaboration of

= Leading Stanford researchers across multiple domains
« Applications, languages, software systems, architecture

= Leading companies in computer systems and software
= NVIDIA, Oracle(Sun), AMD, IBM, Intel, NEC, HP

= PPL is open

= Any company can join; all results in the public domain

PERVASIE

The PPL Vision i

Applications

Domain
Specific
Languages

DSL
Infrastructure

Heterogeneous
Hardware

Scientific Virtual Personal Data
Engineering Worlds Robotics informatics

Physics
(Liszt)

e Machine
Probabilistic Learning

(RandomT) (OptiML)

Rendering Scripting

Domain Embedding Language (Scala)

Polymorphic Embedding Staging Static Domain Specific Opt.

Parallel Runtime (Delite)

Dynamic Domain Spec. Opt. Task & Data Parallelism Locality Aware Scheduling

Hardware Architecture

OO0 Cores SIMD Cores Threaded Cores Specialized Cores

Programmable Scalable Isolation & On-chip Pervasive
Hierarchies Coherence Atomicity Networks Monitoring

.
Qutline il o

OptiML
= An example DSL for machine learning

Delite
= Runtime and framework for DSL approach

Delite with GPU

= Optimizations and automatic code generation
Experimental Results
Conclusion

PERVASIVE '
Machine Learning PPl

m Learning patterns from data
= Regression
Classification (e.g. SVMs)
Clustering (e.g. K-Means)
Density estimation (e.g. Expectation Maximization)
Inference (e.g. Loopy Belief Propagation)
Adaptive (e.g. Reinforcement Learning)

= A good domain for studying parallelism
= Many applications and datasets are time-bound in practice
= A combination of regular and irregular parallelism at varying
granularities

= At the core of many emerging applications (speech recognition,
robotic control, data mining etc.)

m Characteristics of ML applications
= Iterative algorithms on fixed structures
= Large datasets with potential redundancy
= Trade off between accuracy for performance
= Large amount of data parallelism with varying granularity

Machine Learning Examples

PERVASIE
PARALLELISW
LABORATORY

PPL

NETELIX

Finding movies you'll §9
just got easier...

Rate a few movies you've seen and we can
help you find movies you'll enjoy.

The more you rate, the smarter Netflix becomes... 2 mi
making it easier to find that hidden gem you It just takes 2 MinUteS..

may have missed or forgotten about.

Feport Sparm

PERVASIVE |
OptiML: Motivation HPPL

m Raise the level of abstraction
= Focus on algorithmic description, get parallel performance

Use domain knowledge to identify coarse-grained
parallelism

= Identify parallel and sequential operations in the domain (e.q.
‘batch gradient descent’)

Single source => Multiple heterogeneous targets
= Not possible with today’s MATLAB support

Domain specific optimizations

= Optimize data layout and operations using domain-specific
semantics

A driving example
= Flesh out issues with the common framework, embedding etc.

PERVASIVE
OptiML: Overview HEPPL

= Provides a familiar (MATLAB-like) language and API
for writing ML applications
= Provide an easy syntax for operations
= Ex) valc=a * b (a, b are Matrix[Double])

= Implicitly parallel data structures
= General data types : Vector[T], Matrix[T]
« Independent from the underlying implementation

= Special data types : TrainingSet, TestSet, IndexVector, ..
« Encode semantic information

= Implicitly parallel control structures
= Sum{...}, (0::end) {...}

= Allow anonymous functions to be passed as arguments of the
control structures

Example OptiML / MATLAB code Nggmﬁlsg%
(Gaussian Discriminant Analysis) IBIRTY

// x : TrainingSet[Double]
// mu@, mul : Vector[Double]

val sigma = sum(@,x.numSamples) {
if (x.labels() == false) {
(x(_)-mu@).trans.outer(x(_)-mu®)
¥
else {
(x(_)-mul).trans.outer(x(_)-mul)

}

OptiML code

% X : Matrix, y: Vector
% mud@, mul: Vector

n = size(x,2);
sigma = zeros(n,n);

parfor i=1:length(y)
if (y(i) == o)
sigma = sigma + (x(i,:)-mu@)’*(x(i,:)-mue@);
else
sigma = sigma + (x(i,:)-mul)’*(x(i,:)-mul);
end
end

(parallel) MATLAB code

OptiML vs. MATLAB 2P

OptiML
Statically typed

Implicit parallelization

Automatic GPU data
management via run-

time support

Inherits Scala features
and tool-chain

= Still experimenting with:
“what, if any, Scala
features do we want to
disallow, and how should
we do that?”

MATLAB

Dynamically typed

Applications must
explicitly choose
between vectorization
or parallelization

Explicit GPU data
management

Widely used, efficient

PERVASIVE |
Dynamic Optimizations '“BPL

= Relaxed dependencies

= [terative algorithms with inter-loop dependencies
prohibit task parallelism

= Dependencies can be relaxed at the cost of a marginal
loss in accuracy

= Relaxation percentage is run-time configurable

m Best effort computations

= Some computations can be dropped and still generates
acceptable results

= Provide data structures with “best effort” semantics,
along with policies that can be chosen by DSL users

PERVASIVE
Potential Static Optimizations ﬁ“a“u%ﬂﬁ%ﬂ%

= Efficient data representation

= Same abstract data types can have multiple underlying
optimized implementations

= Matrix[Double] can be implemented as a dense matrix
or a sparse matrix

B Transparent compression

= Use knowledge of ML data types (image, video, audio,
etc) to automatically insert efficient compression
routines before transferring data across address spaces

.
Qutline il o

Delite
= Runtime and framework for DSL approach

Delite with GPU
= Optimizations and automatic code generation

Experimental Results
Conclusion

PERVASIVE
Delite: A DSL Design Framework &Rﬁﬁ”av%

m Delite provides a common infrastructure for
exposing implicit task and data parallelism

= OPs to automate building of execution task graph (task-
level parallelism)

=« Extended to provide implicitly parallelized DSL operations
= OP archetypes that simplify exposing data-parallelism
=« DeliteOP_Map, DeliteOP_Zipwith, DeliteOP_Reduce, etc.

m DSL author free to package work into Delite
OPs however they deem best
= Method call mapped to a deferred OP is a good starting
point
= Sum control structure in OptiML creates two Delite OPs

=« Generate temp results
« Perform final summation

PERVASIVE ‘
Delite OPs HpPL

protected[optiml] case class OP_subtract[A]

(vl: Vector[A], v2: Vector[A])
extends DeliteOP_SingleTask[Vector[A]](vl,v2) {

def task = {
val result = Vector[A](vl.length)

for (k <- @ until vl1.length)
result(k) = vi(k) - v2(k)
result

)

protected[optiml] case class OP_subtract[A]
(val collA: Vector[A], val collB: Vector[A],

val out: Vector[A])
extends DeliteOP_zipWith2[A,A,A,Vector] {

def func = (a,b) => a - b
}

PERVASIE JE el

Delite Execution Flow il P
Application \ / \

def example(a: Matrix[Int], .
b: Matrix[Int], Matrix DSL

o Matrix[Int], — def *(m: Matrix[Int]) =
P Mammmalinel) = : delite.defer (0P _mult (this, m))
Calls Matrix

DSL methods def +(m: Matrix[Int]) =
delite.defer (OF plus(this, m))

val ab a * b
val cd o * d
return ab + cd

} DSL defers OP
k execution to /

Delite R.T.

/ Delite Runtime
b Hardware Schedule

_]

Delite applies

generic & domain []

transformations and
generates mapping /

Delite: A Heterogeneous
Parallel Runtime

PERVASI
PARALLELISM
LABORATORY

poC

m Delite schedules OPs to run from the window of

currently deferred OPs, honoring the

dependencies and anti-dependencies present in

the task graph

OPs are scheduled using a low-cost clustering
heuristic in order to minimize communication
costs among OPs as well as scheduling overhead

Data-parallel OPs are submitted to the runtime
as a single OP and later split into the desired

number of OP chunks.

= The number of chunks is chosen at scheduling time
based on the size of the collection and the availability of

hardware resources in the system

.
Qutline il o

Delite with GPU

= Optimizations and automatic code generation
Experimental Results

Conclusion

Using GPUs with MATLABL:BPL

= MATLAB GPU code

sigma = gpuArray(zeros(n,n));
for i=1:m
if (y(1i) == 0)
sigma = sigma + gpuArray(x(i,:)-mu@)’*gpuArray(x(i,:-mu@);
else
sigma = sigma + gpuArray(x(i,:)-mul)’*gpuArray(x(i,:-mul);
end
end

m Jacket GPU code

sigma = gzeros(n,n);
y = gdouble(y);
x = gdouble(x);
for i=1:m
if (y(i) == o)
sigma = sigma + (x(i,:)-mu@)’* (x(i,:-mu@);
else
sigma = sigma + (x(i,:)-mul)’* (x(i,:-mul);
end

PERVASVE
Using GPUs with Delite PP

= No change in the application source code
= Same application code also runs on systems with GPUs

= Runtime and DSL (not DSL user) dynamically make
scheduling decisions (CPU or GPU)

= Good for portability / productivity

= Performance optimizations under the hood
= Memory transfers between CPU and GPU
= On-chip device memory allocation
= Concurrent kernel executions

PERVASIVE
Runtime Implementation '““BPL

= Portion of the task graph (Delite OPs) scheduled
on GPU is sent to a dedicated GPU executor
s 1 GPU executor thread for 1 GPU device

m GPU executor identifies the OP and launches

corresponding GPU kernel on GPU device
= Use asynchronous calls of CUDA Driver APIs
= Transfer input data from main memory to GPU memory

= Check timestamps to determine kernel termination

=« Pinned host memory is allocated for timestamps, and each
kernel updates the timestamp value after execution

= Copy back the result data when CPU needs it

GPU Runtime Diagram

PERVASIE
PARALLELISH g
lAHﬂRATl]RY

[Application]

v

®
\

(scheduler + \

optimizer

J

Delite main thread

CPU executor threads

(=)

Delite OP.

L Kernel
Delite OP EEEEE]Ca"

GPU executor threads

Input/Output
Transfer

Device
Memory

U

GPU devices

PERVASIVE
GPU Runtime Optimizations PP

= High communication cost between CPU/GPU
= PCI Express 2.0 (x16) bandwidth: 8GB/s max

= Reuse data in GPU device memory

= Keep input/output data of GPU kernels in GPU memory
as long as possible
« Likely to reuse recently touched data in subsequent kernels
= Evict only when needed
« Limited GPU device memory size

= Encourage bulk transfer

= Transfer entire data structures even when only portions
are used

Optimized GPU Runtime
Diagram

PRSI ‘
PARLELH ”"
T g

CPU executor threads

(=)

[Application]
v

(scheduler + \

optimizer

(n) (B)
(<) ()
Delite OP
.9 \

Delite main thread

Delite OP,

cache map

Kernel

OO0 | call
. J

GPU executor threads

Input/Output
Transfer

Device
Memory

M

GPU devices

PERVASIVE
GPU Memory Coherency R‘W%

m Problem: DSL OPs with side effects

= Using GPU device memory as a cache inherently results
in the coherency problem between main memory and
GPU device memory

m Solution: Use runtime information (list of
true/anti dependencies) of OPs to keep correct
order of executions with synchronization

= Generates necessary data transfers
= When GPU mutates the data

=« CPU worker asks GPU for the updated data

= When CPU mutates the data
=« GPU invalidates corresponding cache line

PERVASIVE
GPU Code generation PPC

= GPU kernels for DSL OPs
= DSL OPs have optimized GPU kernels for the task
= DSL author provides the GPU kernels
= Libraries (CUBLAS, CUFFT, ..) can be used

= What about DSL OPs with anonymous functions?

= The task behavior is not determined by OP itself
= Given by DSL user, not DSL author
« Function is passed to the OP as an argument

= Ex) map{..}, sum(0O,n){..}, (0::n){..}

PERVASIVE
GPU Code generation PPC

<Example Code>

val a = Vector.randn(n)
val tau = 3.28
val b = (@::n) { 1 => i * tau / a(i) }

m DSL author cannot provide GPU kernels

= Automatically generate corresponding GPU
kernels at compile time
= Use Scala compiler plugin

= Traverse the application’s AST and generate CUDA
source code

s Transform the AST for runtime information

PERMASNE |
GPU Code Generation Flow *’“““””S”%

LABORATORY

val a = Vector.randn(n)
val tau = 3.28

val b = (@::n) { i1 =>

i * tau / a(i) }
Original Application Code

Scala compiler plugin
(AST traversal / transformation)

__global__ kernel@(double *input, double *output, int length, double *a, double tau){
int i = blockIdx.x*blockDim.x + threadIdx.x;
if(i < length)

output[i] =

input[i] * tau / a[input[i]];

Generated CUDA Code

4

Closure Kernel ID Input List
val a = Vector.randn(n)
val tau = 3.28

val b = (0::n) { DeliteGPUFunc({i =>

i * tau / a(i)}, @, List(a,tau)) }
Transformed Application Code

Qutline

PERVASIE
PARALLELISW
LABORATORY

PP

Experimental Results
Conclusion

PERASNE |
Experiments Setup SPPL

= 4 Different implementations
= OptiML+Delite
= MATLAB (Parallel CPU, GPU, Jacket GPU)

m System 1: Performance Tests
Intel Xeon X5550 (2.67GHz)
2 sockets, 8 cores, 16 threads
24 GB DRAM
GPU: NVIDIA GTX 275 GPU

m System 2: Scalability Tests
= Sun UltraSPARC T2+ (1.16GHz)

s 4 sockets, 32 cores, 256 threads
= 128 GB DRAM

PERVASIVE
Applications for Experiments P&““%ﬁ”m%

m 6 machine learning domain applications
s Gaussian Discriminant Analysis (GDA)

=« Generative learning algorithm for probability distribution
Loopy Belief Propagation (LBP)

=« Graph based inference algorithm
Naive Bayes (NB)

= Supervised learning algorithm for classification
K-means Clustering (K-means)

=« Unsupervised learning algorithm for clustering
Support Vector Machine (SVM)

« Optimal margin classifier using SMO algorithm

Restricted Boltzmann Machine (RBM)
= Stochastic recurrent neural network

Performance Study (CPU)

PERVASIVE

PARALLELISW

LABORATORY

M DELITE m Parallelized MATLAB

[+)]
£
-

c
2
=}

=]

(S}

(]

x
w
©

()
N
©

£

f=

[e]
2

1CPU

2 CPU

Naive Bayes

1CPU 2CPU 4 CPU

1CpPU

2 CPU

4 CPU

Normalized Execution Time

SVM

1CPU

2 CPU

LBP

=
o

RBM

1CPU

2 CPU

4 CPU

PERVASIYE i

Performance Study (GPU) PP

M DELITE = MATLAB (GPU) = MATLAB (Jacket GPU)

o
S
©
@
)
Qo
)
©
)
N
©
£
S
o
2

Scalability Study

PERVASIE T
PARALLELISW
LABORATORY

8 16

32

64

Threads

=-=GDA
-=-NB
=>=K-means
=3=SVM
=0-LBP
RBM

PERVASIVE I
PARALLELISH

Domain Specific Optimizations ummkk

= Best Effort Computation = Relaxed Dependencies

=
N

[y

o
()

Normalized Execution Time
=] o
N L))

o
N

12.7x

0 -

B K-means m Best-effort (1.2% error) W SVM = Relaxed SVM (+ 1% error)

I Best-effort (4.2% error) W Best-effort (7.4% error)

PERVASIVE '
Conclusion E=pPL

= Using Domain Specific Languages (DSLs) is a
potential solution for heterogeneous parallelism

OptiML, an example DSL for ML demonstrates
productivity, portability and performance

Delite, as a framework, simplifies developing implicitly

parallel DSLs that target heterogeneous platforms

Delite, as a runtime, maximizes performance through
dynamic optimizations and scheduling decisions

GPU specific optimizations and automatic CUDA code
generation allows efficient use of GPU devices with
Delite runtime

Experimental results show that OptiML+Delite
outperforms various MATLAB implementations

PERVASIE N
PARALLELISW *" Y .
LABORATORY

THANK YOU

