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Era of Power Limited Computing 

 Mobile 

 Battery operated 

 Passively cooled 

 Data center 

 Energy costs 

 Infrastructure costs 



Computing System Power 



Power  EnergyOp 
Ops

second



Heterogeneous Hardware 

 Heterogeneous HW for energy efficiency 
 Multi-core, ILP, threads, data-parallel engines, custom engines 

 

 H.264 encode study 
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DE Shaw Research: Anton 

D. E. Shaw et al. SC 2009, Best Paper and Gordon Bell Prize 

100 times more power efficient  

Molecular dynamics computer 



Apple A4 in iP{ad|hone} 

Contains CPU and GPU and … 



Heterogeneous Parallel 
Computing 
 Uniprocessor 

 Sequential programming 

 C 
 

 CMP (Multicore) 

 Threads and locks 

 C + (Pthreads, OpenMP) 

 

 GPU 

 Data parallel programming 

 C + (Pthreads, OpenMP) + (CUDA, OpenCL) 

 

 Cluster 

 Message passing 

 C + (Pthreads, OpenMP) + (CUDA, OpenCL) + MPI 

Intel   

Pentium 4 

Multiple incompatible programming models 

Sun   

T2 

Nvidia  
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A solution for pervasive 
parallelism 

 Domain Specific Languages (DSLs)  
 Programming language with restricted expressiveness 

for a particular domain 
 OpenGL, MATLAB, SQL, VHDL, .. 

 

 Benefit of using DSLs for parallelism 
 Productivity 

 Shield average programmers from the difficulty of parallel 
programming 

 Performance 
 Match generic parallel execution patterns to high level 

domain abstraction 
 Restrict expressiveness to more easily and fully extract 

available parallelism 
 Use domain knowledge for static/dynamic optimizations 

 Portability and forward scalability 



PPL Goals and Organization 

 Goal: the parallel computing platform for the 
masses 
 Parallel applications without parallel programming 

 

 PPL is a collaboration of  

 Leading Stanford researchers across multiple domains 

 Applications, languages, software systems, architecture 

 Leading companies in computer systems and software 

 NVIDIA, Oracle(Sun), AMD, IBM, Intel, NEC, HP 

 

 PPL is open 
 Any company can join; all results in the public domain 



The PPL Vision 
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Machine Learning 

 Learning patterns from data 
 Regression 
 Classification (e.g. SVMs) 
 Clustering (e.g. K-Means) 
 Density estimation (e.g. Expectation Maximization) 
 Inference (e.g. Loopy Belief Propagation) 
 Adaptive (e.g. Reinforcement Learning) 

 

 A good domain for studying parallelism  
 Many applications and datasets are time-bound in practice 
 A combination of regular and irregular parallelism at varying 

granularities 
 At the core of many emerging applications (speech recognition, 

robotic control, data mining etc.) 
 

 Characteristics of ML applications 
 Iterative algorithms on fixed structures 
 Large datasets with potential redundancy 
 Trade off between accuracy for performance 
 Large amount of data parallelism with varying granularity 

 

 



Machine Learning Examples 



OptiML: Motivation 

 Raise the level of abstraction 
 Focus on algorithmic description, get parallel performance 

 

 Use domain knowledge to identify coarse-grained 
parallelism 
 Identify parallel and sequential operations in the domain (e.g. 

„batch gradient descent‟) 
 

 Single source => Multiple heterogeneous targets 
 Not possible with today‟s MATLAB support 

 

 Domain specific optimizations 
 Optimize data layout and operations using domain-specific 

semantics 
 

 A driving example 
 Flesh out issues with the common framework, embedding etc.   

 
 



OptiML: Overview 

 Provides a familiar (MATLAB-like) language and API 
for writing ML applications 

 Provide an easy syntax for operations 

 Ex) val c = a * b (a, b are Matrix[Double])  

 

 Implicitly parallel data structures 

 General data types : Vector[T], Matrix[T] 

 Independent from the underlying implementation 

 Special data types : TrainingSet, TestSet, IndexVector, .. 

 Encode semantic information 

 

 Implicitly parallel control structures 

 Sum{…}, (0::end) {…} 

 Allow anonymous functions to be passed as arguments of the 
control structures 



% x : Matrix, y: Vector 
% mu0, mu1: Vector 
 
n = size(x,2); 
sigma = zeros(n,n); 
 
parfor i=1:length(y) 
    if (y(i) == 0) 
        sigma = sigma + (x(i,:)-mu0)’*(x(i,:)-mu0); 
    else 
        sigma = sigma + (x(i,:)-mu1)’*(x(i,:)-mu1); 
    end 
end 
     

Example OptiML / MATLAB code 
(Gaussian Discriminant Analysis) 

// x : TrainingSet[Double] 
// mu0, mu1 : Vector[Double] 
 
val sigma = sum(0,x.numSamples) {  
    if (x.labels(_) == false) { 
        (x(_)-mu0).trans.outer(x(_)-mu0) 
    } 
    else { 
        (x(_)-mu1).trans.outer(x(_)-mu1) 
    } 
} 
    

OptiML code (parallel) MATLAB code 



OptiML vs. MATLAB 

OptiML 

 Statically typed 

 Implicit parallelization 

 Automatic GPU data 
management via run-
time support 

 Inherits Scala features 
and tool-chain 
 Still experimenting with: 

“what, if any, Scala 
features do we want to 
disallow, and how should 
we do that?” 

 

 

MATLAB 

 Dynamically typed 

 Applications must 
explicitly choose 
between vectorization 
or parallelization 

 Explicit GPU data 
management 

 Widely used, efficient 

 



Dynamic Optimizations 

 Relaxed dependencies 

 Iterative algorithms with inter-loop dependencies 
prohibit task parallelism 

 Dependencies can be relaxed at the cost of a marginal 
loss in accuracy 

 Relaxation percentage is run-time configurable 

 

 Best effort computations 

 Some computations can be dropped and still generates 
acceptable results 

 Provide data structures with “best effort” semantics, 
along with policies that can be chosen by DSL users  



Potential Static Optimizations 

 Efficient data representation 

 Same abstract data types can have multiple underlying 
optimized implementations 

 Matrix[Double] can be implemented as a dense matrix 
or a sparse matrix 

 

  Transparent compression 

 Use knowledge of ML data types (image, video, audio, 
etc) to automatically insert efficient compression 
routines before transferring data across address spaces 
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Delite: A DSL Design Framework 

 Delite provides a common infrastructure for 
exposing implicit task and data parallelism 
 OPs to automate building of execution task graph (task-

level parallelism) 
 Extended to provide implicitly parallelized DSL operations 

 OP archetypes that simplify exposing data-parallelism 
 DeliteOP_Map, DeliteOP_Zipwith, DeliteOP_Reduce, etc. 

 

 DSL author free to package work into Delite 
OPs however they deem best 
 Method call mapped to a deferred OP is a good starting 

point 

 Sum control structure in OptiML creates two Delite OPs 
 Generate temp results 

 Perform final summation 



Delite OPs 

protected[optiml] case class OP_subtract[A] 
  (v1: Vector[A], v2: Vector[A]) 
  extends DeliteOP_SingleTask[Vector[A]](v1,v2) { 
 
  def task = { 
    val result = Vector[A](v1.length) 
    for (k <- 0 until v1.length) 
      result(k) = v1(k) - v2(k)     
    result 
}} 

protected[optiml] case class OP_subtract[A] 
  (val collA: Vector[A], val collB: Vector[A], 
  val out: Vector[A]) 
  extends DeliteOP_ZipWith2[A,A,A,Vector] { 
 
  def func = (a,b) => a - b 
} 



Delite Execution Flow 

Calls Matrix 

DSL methods 

Delite applies 

generic & domain 

transformations and 

generates mapping  

DSL defers OP 

execution to 

Delite R.T. 



Delite: A Heterogeneous 
Parallel Runtime 

 Delite schedules OPs to run from the window of 
currently deferred OPs, honoring the 
dependencies and anti-dependencies present in 
the task graph 
 

 OPs are scheduled using a low-cost clustering 
heuristic in order to minimize communication 
costs among OPs as well as scheduling overhead 
 

 Data-parallel OPs are submitted to the runtime 
as a single OP and later split into the desired 
number of OP chunks.  
 The number of chunks is chosen at scheduling time 

based on the size of the collection and the availability of 
hardware resources in the system 
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Using GPUs with MATLAB 

sigma = gpuArray(zeros(n,n)); 
for i=1:m 
    if (y(i) == 0) 
        sigma = sigma + gpuArray(x(i,:)-mu0)’*gpuArray(x(i,:-mu0); 
    else 
        sigma = sigma + gpuArray(x(i,:)-mu1)’*gpuArray(x(i,:-mu1); 
    end 
end 

 MATLAB GPU code 

sigma = gzeros(n,n); 
y = gdouble(y); 
x = gdouble(x); 
for i=1:m 
    if (y(i) == 0) 
        sigma = sigma + (x(i,:)-mu0)’* (x(i,:-mu0); 
    else 
        sigma = sigma + (x(i,:)-mu1)’* (x(i,:-mu1); 
    end 
end 

 Jacket GPU code 
sigma = gzeros(n,n); 
y = gdouble(y); 
x = gdouble(x); 
for i=1:m 
    if (y(i) == 0) 
        sigma = sigma + (x(i,:)-mu0)’* (x(i,:-mu0); 
    else 
        sigma = sigma + (x(i,:)-mu1)’* (x(i,:-mu1); 
    end 
end 



Using GPUs with Delite 

 No change in the application source code 

 Same application code also runs on systems with GPUs 

 Runtime and DSL (not DSL user) dynamically make 
scheduling decisions (CPU or GPU) 

 Good for portability / productivity 

 

 Performance optimizations under the hood 

 Memory transfers between CPU and GPU 

 On-chip device memory allocation 

 Concurrent kernel executions 



Runtime Implementation  

 Portion of the task graph (Delite OPs) scheduled 
on GPU is sent to a dedicated GPU executor 

 1 GPU executor thread for 1 GPU device 

 

 GPU executor identifies the OP and launches 
corresponding GPU kernel on GPU device 

 Use asynchronous calls of CUDA Driver APIs  

 Transfer input data from main memory to GPU memory 

 Check timestamps to determine kernel termination 

 Pinned host memory is allocated for timestamps, and each 
kernel updates the timestamp value after execution 

 Copy back the result data when CPU needs it 

 



GPU Runtime Diagram 
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GPU Runtime Optimizations 

 High communication cost between CPU/GPU 

 PCI Express 2.0 (x16) bandwidth: 8GB/s max 

 

 Reuse data in GPU device memory 

 Keep input/output data of GPU kernels in GPU memory 
as long as possible 

 Likely to reuse recently touched data in subsequent kernels 

 Evict only when needed 

 Limited GPU device memory size 

 

 Encourage bulk transfer 

 Transfer entire data structures even when only portions 
are used 

 



Optimized GPU Runtime 
Diagram 
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GPU Memory Coherency 

 Problem: DSL OPs with side effects 

 Using GPU device memory as a cache inherently results 
in the coherency problem between main memory and 
GPU device memory 

 

 Solution: Use runtime information (list of 
true/anti dependencies) of OPs to keep correct 
order of executions with synchronization  

 Generates necessary data transfers 

 When GPU mutates the data 

 CPU worker asks GPU for the updated data 

 When CPU mutates the data 

 GPU invalidates corresponding cache line 



GPU Code generation 

 GPU kernels for DSL OPs 

 DSL OPs have optimized GPU kernels for the task 

 DSL author provides the GPU kernels 

 Libraries (CUBLAS, CUFFT, ..) can be used  

 

 What about DSL OPs with anonymous functions? 

 The task behavior is not determined by OP itself 

 Given by DSL user, not DSL author 

 Function is passed to the OP as an argument  

 Ex) map{..}, sum(0,n){..}, (0::n){..} 



GPU Code generation 

<Example Code> 

 

 

 

 DSL author cannot provide GPU kernels 
 

 Automatically generate corresponding GPU 
kernels at compile time 

 Use Scala compiler plugin 

 Traverse the application‟s AST and generate CUDA 
source code 

 Transform the AST for runtime information 

val a = Vector.randn(n) 
val tau = 3.28 
val b = (0::n) { i =>  i * tau / a(i) } 



GPU Code Generation Flow 

val a = Vector.randn(n) 
val tau = 3.28 
val b = (0::n) { i =>  i * tau / a(i) } 

__global__ kernel0(double *input, double *output, int length, double *a, double tau){ 
    int i = blockIdx.x*blockDim.x + threadIdx.x; 
    if(i < length)  
        output[i] = input[i] * tau / a[input[i]];  
} 

Original Application Code 

val a = Vector.randn(n) 
val tau = 3.28 
val b = (0::n) { DeliteGPUFunc( {i =>  i * tau / a(i)}, 0, List(a,tau) ) } 

Transformed Application Code 

Generated CUDA Code 

Scala compiler plugin 
(AST traversal / transformation) 

Kernel ID Input List Closure 
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Experiments Setup 

 4 Different implementations 

 OptiML+Delite 

 MATLAB (Parallel CPU, GPU, Jacket GPU) 

 

 System 1: Performance Tests 
 Intel Xeon X5550 (2.67GHz) 

 2 sockets, 8 cores, 16 threads 

 24 GB DRAM 

 GPU: NVIDIA GTX 275 GPU 

 

 System 2: Scalability Tests 
 Sun UltraSPARC T2+ (1.16GHz) 

 4 sockets, 32 cores, 256 threads 

 128 GB DRAM 



Applications for Experiments 

 6 machine learning domain applications 

 Gaussian Discriminant Analysis (GDA) 

 Generative learning algorithm for probability distribution 

 Loopy Belief Propagation (LBP) 

 Graph based inference algorithm 

 Naïve Bayes (NB) 

 Supervised learning algorithm for classification 

 K-means Clustering (K-means) 

 Unsupervised learning algorithm for clustering 

 Support Vector Machine (SVM) 

 Optimal margin classifier using SMO algorithm 

 Restricted Boltzmann Machine (RBM) 

 Stochastic recurrent neural network 

 



Performance Study (CPU) 
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SVM 
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GDA 
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Performance Study (GPU) 
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Scalability Study 
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Domain Specific Optimizations 
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Conclusion 

 Using Domain Specific Languages (DSLs) is a 
potential solution for heterogeneous parallelism 

 OptiML, an example DSL for ML demonstrates 
productivity, portability and performance 

 Delite, as a framework, simplifies developing implicitly 
parallel DSLs that target heterogeneous platforms 

 Delite, as a runtime, maximizes performance through 
dynamic optimizations and scheduling decisions 

 GPU specific optimizations and automatic CUDA code 
generation allows efficient use of GPU devices with 
Delite runtime 

 Experimental results show that OptiML+Delite 
outperforms various MATLAB implementations 



THANK YOU 


