
Simplifying Parallel Programming

with Domain Specific Languages

Hassan Chafi, HyoukJoong Lee, Arvind Sujeeth, Kevin Brown,

Anand Atreya, Nathan Bronson, Kunle Olukotun

Stanford University

Pervasive Parallelism Laboratory (PPL)

GPU Technology Conference 2010

Era of Power Limited Computing

 Mobile

 Battery operated

 Passively cooled

 Data center

 Energy costs

 Infrastructure costs

Computing System Power



Power  EnergyOp 
Ops

second

Heterogeneous Hardware

 Heterogeneous HW for energy efficiency
 Multi-core, ILP, threads, data-parallel engines, custom engines

 H.264 encode study

1

10

100

1000

4 cores + ILP + SIMD + custom
inst

ASIC

Performance

Energy Savings

Source: Understanding Sources of Inefficiency in General-Purpose Chips (ISCA’10)

DE Shaw Research: Anton

D. E. Shaw et al. SC 2009, Best Paper and Gordon Bell Prize

100 times more power efficient

Molecular dynamics computer

Apple A4 in iP{ad|hone}

Contains CPU and GPU and …

Heterogeneous Parallel
Computing
 Uniprocessor

 Sequential programming

 C

 CMP (Multicore)

 Threads and locks

 C + (Pthreads, OpenMP)

 GPU

 Data parallel programming

 C + (Pthreads, OpenMP) + (CUDA, OpenCL)

 Cluster

 Message passing

 C + (Pthreads, OpenMP) + (CUDA, OpenCL) + MPI

Intel

Pentium 4

Multiple incompatible programming models

Sun

T2

Nvidia

Fermi

Cray

Jaguar

A solution for pervasive
parallelism

 Domain Specific Languages (DSLs)
 Programming language with restricted expressiveness

for a particular domain
 OpenGL, MATLAB, SQL, VHDL, ..

 Benefit of using DSLs for parallelism
 Productivity

 Shield average programmers from the difficulty of parallel
programming

 Performance
 Match generic parallel execution patterns to high level

domain abstraction
 Restrict expressiveness to more easily and fully extract

available parallelism
 Use domain knowledge for static/dynamic optimizations

 Portability and forward scalability

PPL Goals and Organization

 Goal: the parallel computing platform for the
masses
 Parallel applications without parallel programming

 PPL is a collaboration of

 Leading Stanford researchers across multiple domains

 Applications, languages, software systems, architecture

 Leading companies in computer systems and software

 NVIDIA, Oracle(Sun), AMD, IBM, Intel, NEC, HP

 PPL is open
 Any company can join; all results in the public domain

The PPL Vision

Domain Embedding Language (Scala)

Virtual

Worlds

Personal

Robotics

Data

informatics

Scientific

Engineering

Physics

(Liszt)
Scripting

Probabilistic

(RandomT)

Machine
Learning
(OptiML)

Rendering

Parallel Runtime (Delite)

Dynamic Domain Spec. Opt. Locality Aware Scheduling

Staging Polymorphic Embedding

Applications

Domain

Specific

Languages

Heterogeneous

Hardware

DSL

Infrastructure

Task & Data Parallelism

Hardware Architecture

OOO Cores SIMD Cores Threaded Cores Specialized Cores

Static Domain Specific Opt.

Programmable

Hierarchies

Scalable

Coherence

Isolation &

Atomicity

On-chip

Networks

Pervasive

Monitoring

Outline

 Introduction

 Using DSL for parallel programming

 OptiML

 An example DSL for machine learning

 Delite

 Runtime and framework for DSL approach

 Delite with GPU

 Optimizations and automatic code generation

 Experimental Results

 Conclusion

Machine Learning

 Learning patterns from data
 Regression
 Classification (e.g. SVMs)
 Clustering (e.g. K-Means)
 Density estimation (e.g. Expectation Maximization)
 Inference (e.g. Loopy Belief Propagation)
 Adaptive (e.g. Reinforcement Learning)

 A good domain for studying parallelism
 Many applications and datasets are time-bound in practice
 A combination of regular and irregular parallelism at varying

granularities
 At the core of many emerging applications (speech recognition,

robotic control, data mining etc.)

 Characteristics of ML applications
 Iterative algorithms on fixed structures
 Large datasets with potential redundancy
 Trade off between accuracy for performance
 Large amount of data parallelism with varying granularity

Machine Learning Examples

OptiML: Motivation

 Raise the level of abstraction
 Focus on algorithmic description, get parallel performance

 Use domain knowledge to identify coarse-grained
parallelism
 Identify parallel and sequential operations in the domain (e.g.

„batch gradient descent‟)

 Single source => Multiple heterogeneous targets
 Not possible with today‟s MATLAB support

 Domain specific optimizations
 Optimize data layout and operations using domain-specific

semantics

 A driving example
 Flesh out issues with the common framework, embedding etc.

OptiML: Overview

 Provides a familiar (MATLAB-like) language and API
for writing ML applications

 Provide an easy syntax for operations

 Ex) val c = a * b (a, b are Matrix[Double])

 Implicitly parallel data structures

 General data types : Vector[T], Matrix[T]

 Independent from the underlying implementation

 Special data types : TrainingSet, TestSet, IndexVector, ..

 Encode semantic information

 Implicitly parallel control structures

 Sum{…}, (0::end) {…}

 Allow anonymous functions to be passed as arguments of the
control structures

% x : Matrix, y: Vector
% mu0, mu1: Vector

n = size(x,2);
sigma = zeros(n,n);

parfor i=1:length(y)
 if (y(i) == 0)
 sigma = sigma + (x(i,:)-mu0)’*(x(i,:)-mu0);
 else
 sigma = sigma + (x(i,:)-mu1)’*(x(i,:)-mu1);
 end
end

Example OptiML / MATLAB code
(Gaussian Discriminant Analysis)

// x : TrainingSet[Double]
// mu0, mu1 : Vector[Double]

val sigma = sum(0,x.numSamples) {
 if (x.labels(_) == false) {
 (x(_)-mu0).trans.outer(x(_)-mu0)
 }
 else {
 (x(_)-mu1).trans.outer(x(_)-mu1)
 }
}

OptiML code (parallel) MATLAB code

OptiML vs. MATLAB

OptiML

 Statically typed

 Implicit parallelization

 Automatic GPU data
management via run-
time support

 Inherits Scala features
and tool-chain
 Still experimenting with:

“what, if any, Scala
features do we want to
disallow, and how should
we do that?”

MATLAB

 Dynamically typed

 Applications must
explicitly choose
between vectorization
or parallelization

 Explicit GPU data
management

 Widely used, efficient

Dynamic Optimizations

 Relaxed dependencies

 Iterative algorithms with inter-loop dependencies
prohibit task parallelism

 Dependencies can be relaxed at the cost of a marginal
loss in accuracy

 Relaxation percentage is run-time configurable

 Best effort computations

 Some computations can be dropped and still generates
acceptable results

 Provide data structures with “best effort” semantics,
along with policies that can be chosen by DSL users

Potential Static Optimizations

 Efficient data representation

 Same abstract data types can have multiple underlying
optimized implementations

 Matrix[Double] can be implemented as a dense matrix
or a sparse matrix

 Transparent compression

 Use knowledge of ML data types (image, video, audio,
etc) to automatically insert efficient compression
routines before transferring data across address spaces

Outline

 Introduction

 Using DSL for parallel programming

 OptiML

 An example DSL for machine learning

 Delite

 Runtime and framework for DSL approach

 Delite with GPU

 Optimizations and automatic code generation

 Experimental Results

 Conclusion

Delite: A DSL Design Framework

 Delite provides a common infrastructure for
exposing implicit task and data parallelism
 OPs to automate building of execution task graph (task-

level parallelism)
 Extended to provide implicitly parallelized DSL operations

 OP archetypes that simplify exposing data-parallelism
 DeliteOP_Map, DeliteOP_Zipwith, DeliteOP_Reduce, etc.

 DSL author free to package work into Delite
OPs however they deem best
 Method call mapped to a deferred OP is a good starting

point

 Sum control structure in OptiML creates two Delite OPs
 Generate temp results

 Perform final summation

Delite OPs

protected[optiml] case class OP_subtract[A]
 (v1: Vector[A], v2: Vector[A])
 extends DeliteOP_SingleTask[Vector[A]](v1,v2) {

 def task = {
 val result = Vector[A](v1.length)
 for (k <- 0 until v1.length)
 result(k) = v1(k) - v2(k)
 result
}}

protected[optiml] case class OP_subtract[A]
 (val collA: Vector[A], val collB: Vector[A],
 val out: Vector[A])
 extends DeliteOP_ZipWith2[A,A,A,Vector] {

 def func = (a,b) => a - b
}

Delite Execution Flow

Calls Matrix

DSL methods

Delite applies

generic & domain

transformations and

generates mapping

DSL defers OP

execution to

Delite R.T.

Delite: A Heterogeneous
Parallel Runtime

 Delite schedules OPs to run from the window of
currently deferred OPs, honoring the
dependencies and anti-dependencies present in
the task graph

 OPs are scheduled using a low-cost clustering
heuristic in order to minimize communication
costs among OPs as well as scheduling overhead

 Data-parallel OPs are submitted to the runtime
as a single OP and later split into the desired
number of OP chunks.
 The number of chunks is chosen at scheduling time

based on the size of the collection and the availability of
hardware resources in the system

Outline

 Introduction

 Using DSL for parallel programming

 OptiML

 An example DSL for machine learning

 Delite

 Runtime and framework for DSL approach

 Delite with GPU

 Optimizations and automatic code generation

 Experimental Results

 Conclusion

Using GPUs with MATLAB

sigma = gpuArray(zeros(n,n));
for i=1:m
 if (y(i) == 0)
 sigma = sigma + gpuArray(x(i,:)-mu0)’*gpuArray(x(i,:-mu0);
 else
 sigma = sigma + gpuArray(x(i,:)-mu1)’*gpuArray(x(i,:-mu1);
 end
end

 MATLAB GPU code

sigma = gzeros(n,n);
y = gdouble(y);
x = gdouble(x);
for i=1:m
 if (y(i) == 0)
 sigma = sigma + (x(i,:)-mu0)’* (x(i,:-mu0);
 else
 sigma = sigma + (x(i,:)-mu1)’* (x(i,:-mu1);
 end
end

 Jacket GPU code
sigma = gzeros(n,n);
y = gdouble(y);
x = gdouble(x);
for i=1:m
 if (y(i) == 0)
 sigma = sigma + (x(i,:)-mu0)’* (x(i,:-mu0);
 else
 sigma = sigma + (x(i,:)-mu1)’* (x(i,:-mu1);
 end
end

Using GPUs with Delite

 No change in the application source code

 Same application code also runs on systems with GPUs

 Runtime and DSL (not DSL user) dynamically make
scheduling decisions (CPU or GPU)

 Good for portability / productivity

 Performance optimizations under the hood

 Memory transfers between CPU and GPU

 On-chip device memory allocation

 Concurrent kernel executions

Runtime Implementation

 Portion of the task graph (Delite OPs) scheduled
on GPU is sent to a dedicated GPU executor

 1 GPU executor thread for 1 GPU device

 GPU executor identifies the OP and launches
corresponding GPU kernel on GPU device

 Use asynchronous calls of CUDA Driver APIs

 Transfer input data from main memory to GPU memory

 Check timestamps to determine kernel termination

 Pinned host memory is allocated for timestamps, and each
kernel updates the timestamp value after execution

 Copy back the result data when CPU needs it

GPU Runtime Diagram

A

C +

*

B /
/

CPU executor threads

GPU executor threads GPU devices Delite main thread

Device
Memory

Application

scheduler +
optimizer

Main Memory

Delite OP

Kernel
Call

Delite OP

Input/Output
Transfer

GPU Runtime Optimizations

 High communication cost between CPU/GPU

 PCI Express 2.0 (x16) bandwidth: 8GB/s max

 Reuse data in GPU device memory

 Keep input/output data of GPU kernels in GPU memory
as long as possible

 Likely to reuse recently touched data in subsequent kernels

 Evict only when needed

 Limited GPU device memory size

 Encourage bulk transfer

 Transfer entire data structures even when only portions
are used

Optimized GPU Runtime
Diagram

A

C +

*

B /
/

CPU executor threads

GPU executor threads GPU devices Delite main thread

Device
Memory

Application

scheduler +
optimizer

Main Memory

cache map

Delite OP

Delite OP

Input/Output
Transfer

Kernel
Call

GPU Memory Coherency

 Problem: DSL OPs with side effects

 Using GPU device memory as a cache inherently results
in the coherency problem between main memory and
GPU device memory

 Solution: Use runtime information (list of
true/anti dependencies) of OPs to keep correct
order of executions with synchronization

 Generates necessary data transfers

 When GPU mutates the data

 CPU worker asks GPU for the updated data

 When CPU mutates the data

 GPU invalidates corresponding cache line

GPU Code generation

 GPU kernels for DSL OPs

 DSL OPs have optimized GPU kernels for the task

 DSL author provides the GPU kernels

 Libraries (CUBLAS, CUFFT, ..) can be used

 What about DSL OPs with anonymous functions?

 The task behavior is not determined by OP itself

 Given by DSL user, not DSL author

 Function is passed to the OP as an argument

 Ex) map{..}, sum(0,n){..}, (0::n){..}

GPU Code generation

<Example Code>

 DSL author cannot provide GPU kernels

 Automatically generate corresponding GPU
kernels at compile time

 Use Scala compiler plugin

 Traverse the application‟s AST and generate CUDA
source code

 Transform the AST for runtime information

val a = Vector.randn(n)
val tau = 3.28
val b = (0::n) { i => i * tau / a(i) }

GPU Code Generation Flow

val a = Vector.randn(n)
val tau = 3.28
val b = (0::n) { i => i * tau / a(i) }

__global__ kernel0(double *input, double *output, int length, double *a, double tau){
 int i = blockIdx.x*blockDim.x + threadIdx.x;
 if(i < length)
 output[i] = input[i] * tau / a[input[i]];
}

Original Application Code

val a = Vector.randn(n)
val tau = 3.28
val b = (0::n) { DeliteGPUFunc({i => i * tau / a(i)}, 0, List(a,tau)) }

Transformed Application Code

Generated CUDA Code

Scala compiler plugin
(AST traversal / transformation)

Kernel ID Input List Closure

Outline

 Introduction

 Using DSL for parallel programming

 OptiML

 An example DSL for machine learning

 Delite

 Runtime and framework for DSL approach

 Delite with GPU

 Optimizations and automatic code generation

 Experimental Results

 Conclusion

Experiments Setup

 4 Different implementations

 OptiML+Delite

 MATLAB (Parallel CPU, GPU, Jacket GPU)

 System 1: Performance Tests
 Intel Xeon X5550 (2.67GHz)

 2 sockets, 8 cores, 16 threads

 24 GB DRAM

 GPU: NVIDIA GTX 275 GPU

 System 2: Scalability Tests
 Sun UltraSPARC T2+ (1.16GHz)

 4 sockets, 32 cores, 256 threads

 128 GB DRAM

Applications for Experiments

 6 machine learning domain applications

 Gaussian Discriminant Analysis (GDA)

 Generative learning algorithm for probability distribution

 Loopy Belief Propagation (LBP)

 Graph based inference algorithm

 Naïve Bayes (NB)

 Supervised learning algorithm for classification

 K-means Clustering (K-means)

 Unsupervised learning algorithm for clustering

 Support Vector Machine (SVM)

 Optimal margin classifier using SMO algorithm

 Restricted Boltzmann Machine (RBM)

 Stochastic recurrent neural network

Performance Study (CPU)

1
.0

1
.8

3
.6

6
.3

1
.1

1
.2

1
.2

1
.2

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1 CPU 2 CPU 4 CPU 8 CPU

K-means

1
.0

3
.1

4
.4

5
.5

0
.7

1
.6

2
.1

2
.3

0.00

0.50

1.00

1.50

1 CPU 2 CPU 4 CPU 8 CPUN
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

SVM

1
.0

1
.9

3
.4

5
.2

0
.1

0
.1

0
.1

0
.1

0.00

2.00

4.00

6.00

8.00

1 CPU 2 CPU 4 CPU 8 CPU

LBP

1
.0

1
.9

3
.1

3
.0

1
.0

1
.9

3
.4

4
.7

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1 CPU 2 CPU 4 CPU 8 CPU

RBM

1
.0

1
.7

1
.8

1
.9

0
.5

1
.0

1
.4

1
.6

0.00

0.50

1.00

1.50

2.00

1 CPU 2 CPU 4 CPU 8 CPUN
o

rm
al

iz
e

d
 E

xe
cu

ti
o

n
 T

im
e

GDA

1
.0

2
.0

3
.4

4
.6

0
.6

0
.8

1
.0

1
.1

 0.00

 0.50

 1.00

 1.50

 2.00

 2.50

1 CPU 2 CPU 4 CPU 8 CPU

Naive Bayes

DELITE Parallelized MATLAB

Performance Study (GPU)

0.03

0.06

0.13

0.25

0.50

1.00

2.00

4.00

8.00

16.00

32.00

GDA RBM SVM KM NB LBP

N
o
rm

a
li
ze

d
 S

p
e
e
d
u
p

DELITE MATLAB (GPU) MATLAB (Jacket GPU)

Scalability Study

0.50

1.00

2.00

4.00

8.00

16.00

32.00

64.00

1 2 4 8 16 32 64 128

Sp
e

e
d

u
p

Threads

GDA

NB

K-means

SVM

LBP

RBM

Domain Specific Optimizations

0

0.2

0.4

0.6

0.8

1

1.2

N
o

rm
al

iz
e

d
 E

xe
cu

ti
o

n
 T

im
e

K-means Best-effort (1.2% error)

Best-effort (4.2% error) Best-effort (7.4% error)

SVM Relaxed SVM (+ 1% error)

1.0x

1.8x

4.9x

12.7x

1.0x

1.8x

 Best Effort Computation  Relaxed Dependencies

Conclusion

 Using Domain Specific Languages (DSLs) is a
potential solution for heterogeneous parallelism

 OptiML, an example DSL for ML demonstrates
productivity, portability and performance

 Delite, as a framework, simplifies developing implicitly
parallel DSLs that target heterogeneous platforms

 Delite, as a runtime, maximizes performance through
dynamic optimizations and scheduling decisions

 GPU specific optimizations and automatic CUDA code
generation allows efficient use of GPU devices with
Delite runtime

 Experimental results show that OptiML+Delite
outperforms various MATLAB implementations

THANK YOU

