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A Programming Model and Tool for Automatic 

High-Performance C to CUDA Mapping
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The (general) problem 
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• Increasingly complex hardware
• More coarse-grained parallelism
• SIMD
• Explicit resource management 

(memories, communication)
• Mixed execution models

Intel Nehalem Nvidia GPU ClearSpeed Tilera

• Increasingly complex application 
design

• Bigger problem sizes
• Higher dimensionality
• More sub-problems
• Proprietary programming models 

and languages (e.g., CUDA)

• Software challenges
• Productivity
• Performance
• Portability
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• New chips: A major programming issue

• Approach: R-Stream, a source-to-source compiler

• Mapping to CUDA
• Highlights
• GPU

• Performance results
• GPU
• Other targets
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Outline
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• Source-to-source auto-parallelizing compiler
• Takes in sequential code, combinations of loops in C
• Addresses specific features of emerging architectures
• Lots of parallelism, granularities, hierarchical mixed 

execution models, explicit management of memories, 
explicit bulk communications, asynchronous comm., 
importance of locality

• Reduces programming effort
• User writes C code in a clean, “textbook” style
• Functions to be processed marked with #pragma

rstream map

• Produces mapped C code to be compiled by a backend 
compiler (GCC, ICC, nvcc, etc.)
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Approach: R-Stream, an Automatic C Parallelizer
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• We currently map programs to a variety of targets 
• Tilera, SMP, nVidia GPU, Clearspeed, Cell, SGI RC100

• Many times, performance in the ball park of libraries, 
sometimes better

• Depends on maturity of target-specific optimizations
• More sophisticated mappings than your regular programmers’
• Pathological cases exist
• If library call is better: R-Stream handles library calls

• Application domain large for those mapping capabilities
• Supports dynamic programs, library calls, etc.
• But the more static information, the more precise the mapping
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Does this work ? 
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R-Stream: overview of the compilation process

Tilera, x86, 

Cell,  CSX, 

FPGA, multi-

CUDA
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(Very) rough overview of the mapping process

2- Task formation:
- Coarse-grain atomic tasks
- Master/slave side operations

- Local / global data layout optimization
- Multi-buffering (explicitly managed)
- Synchronization (barriers)
- Bulk communications
- Thread generation -> master/slave
- CUDA-specific optimizations

1- Scheduling:
Parallelism, locality, tilability

3- Placement:
Assign tasks to blocks/threads

Dependencies 
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R-Stream: Style-based programming and polyhedral IR for 

loop-based code

n = f();
for (i=5; i<= n; i+=2) {

A[i][i] = A[i][i]/B[i];
for (j=0; j<=i; j++) {
if (j<=10) {
… A[i+2j+n][i+3]…

}
}
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Affine and non-affine transformations
Order and place of operations and data
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Loop code represented (exactly or conservatively) with polyhedrons 
High-level, mathematical view of a mapping
But targets concrete properties: parallelism, locality, memory footprint
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• New chips: A major programming issue

• Approach: R-Stream, a source-to-source compiler

• Mapping to CUDA
• Highlights
• GPU

• General performance results
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Outline
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• Expressing the program in CUDA

• Follow accelerator execution model
• Define master and slave computations and partition codes
• Generate (CUDA) kernel configuration, communications, 

kernel launches
• Parallelize across multiple GPUs

• Doing all this by hand is costly, error-prone, performance is 
not portable

• Promise of our technology
• Meet or exceed what you can do by hand
• Without knowing much about CUDA or GPUs (or other 

multicore targets)
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CUDA - What is needed
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• Those you find in any application porting paper

• Coalescing of transfers from/to global memory

• Data footprint has to fit in shared, global, private memories

• High occupancy of threads and blocks

• Minimize data transfers 

• Avoid shared memory bank conflicts
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Main goals of the mapping process
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• Tradeoff among parallelism, locality and coalesced accesses

• Advanced task formation and placement

• Coalesced data movement

• Hierarchical mapping
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Distinctive parts of mapping process
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• Affine scheduling algorithm:
• Fuses loops to increase computational intensity and 

locality
• while exposing enough parallel iterations for threads and 

blocks for occupancy
• and exposing parallel iterations that enable coalescing

• Adaptive array expansion algorithm duplicates data just 
enough to expose the desired parallelism
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Trading off parallelism, locality and coalescing
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Tradeoff Example

/* 
* Original code: 
*/
for (k=0; k<400; k++) {
for (i=0; i<3997; i++) {
z[i]=0; 
for (j=0; j<4000; j++)
z[i]= z[i]+B[i][j]*x[k][j];

}
for (i=0; i<3997; i++)
w[i]=w[i]+z[i]; 

}

doall (i=0; i<400; i++)
doall (j=0; j<3997; j++)
z_e[j][i]=0

doall (i=0; i<400; i++)
doall (j=0; j<3997; j++)
for (k=0; k<4000; k++)
z_e[j][i]=z_e[j][i]+B[j][k]*x[i][k];

doall (i=0; i<3997; i++)
for (j=0; j<400; j++)
w[i]=w[i]+z_e[i][j];

doall (i=0; i<3997; i++)
z[i] = z_e[i][399];  

Max. parallelism
(no fusion)

Array z gets expanded, to 
introduce another level of 
parallelism

Data 
accumulation

→ 2 levels of parallelism, but poor data reuse (on array z_e)

Maximum fission destroys locality

Coalescing along i
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Tradeoff Example (cont.)

doall (i=0; i<3997; i++)
for (j=0; j<400; j++) {
z[i]=0;
for (k=0; k<4000; k++)
z[i]=z[i]+B[i][k]*x[j][k];
w[i]=w[i]+z[i];
}

Max. fusion and 
coalescing

→ Very good data reuse (on array z), but only 1 level of parallelism

Aggressive loop fusion destroys 
parallelism (i.e., only 1 degree 
of parallelism)/* 

* Original code: 
*/
for (k=0; k<400; k++) {
for (i=0; i<3997; i++) {
z[i]=0; 
for (j=0; j<4000; j++)
z[i]= z[i]+B[i][j]*x[k][j];

}
for (i=0; i<3997; i++)
w[i]=w[i]+z[i]; 

}

Coalescing along i
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Tradeoff Example (cont.)

doall (i=0; i<3997; i++) {
doall (j=0; j<400; j++) {
z_e[i][j]=0;
for (k=0; k<4000; k++)
z_e[i][j]=z_e[i][j]+B[i][k]*x[j][k];

}
for (j=0; j<400; j++)
w[i]=w[i]+z_e[i][j];

}
doall (i=0; i<3997; i++)
z[i]=z_e[i][399];

Parallelism with 
partial fusion and 

coalescing

→ 2 levels of parallelism with good data reuse (on array z_e)

Data 
accumulation

Expansion of array z
Partial fusion doesn’t 
decrease parallelism

Coalescing along j

/* 
* Original code: 
*/
for (k=0; k<400; k++) {
for (i=0; i<3997; i++) {
z[i]=0; 
for (j=0; j<4000; j++)
z[i]= z[i]+B[i][j]*x[k][j];

}
for (i=0; i<3997; i++)
w[i]=w[i]+z[i]; 

}
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• Natural phase ordering problem among:
• Forming atomic tasks (think blocks) 
• Distributing tasks
• Defining data layout

• R-Stream components interact with each other
• Forward and Backward (feedback)
• Produces “sensible” mappings: 

– As many constraints as possible get satisfied 
at once
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Advanced task formation and placement  

Memory footprint

Load balancing

Occupancy

Memory footprint

Load balancing

Occupancy

&

&
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• Data that are not coalesced naturally
• Can be loaded to shared memory in a coalesced way

18

Coalesced data movement

for (i=0; i< 128; i++) {
f(A[th.x, i])

}

for (i=0; i< 128; i++) 
A_l[i, th.x] = A[i, th.x];

for (i=0; i< 128; i++)
f(A_l[th.x, i]);

for (i=0; i< 128; i++) 
A[I,th.x] = A_l[i, th.x];

coalesced
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• R-Stream mapping is driven by a machine model

• Describes targeted machine as a graph of processors, 
memories, explicit data links, etc.

• Hierarchical mappings: decompose the problem using 
“morphs”, i.e., views of the machine

• A backend is associated with each morph
– Defines the way code is generated (OpenMP, CUDA, etc.)

19

Multi-GPU - Hierarchical mapping
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Machine model example: multi-Tesla

OpenMP morph
CUDA morph

Host

1 thread per GPU

XML file
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• Benchmarks
• Stencil kernels with multiple time iterations

– Gauss-seidel (2D – 5 points and 9 points stencil)

• Stencil kernels with single time iteration
– Divergence (3D)
– Gradient (3D)
– Laplacian (3D)
– RTM (3D)

21

Performance Results
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• Stencil kernels with single time iteration
• Double Precision Performance
• Problem size: 256^3

22

Performance Results

Kernel
Performance (Gflops)

GTX 285 GTX 480

Divergence 15.59 28.74

Gradient 8.02 17.55

Laplacian 16.79 41.33

RTM 24.69 50.74
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• Stencil kernels with multiple time iterations
• Single Precision (SP) and Double Precision (DP) 

Performance
• Problem size: 4096^2

23

Performance Results

Kernel

Performance (Gflops)
GTX 285 GTX 480

SP DP SP DP

Gauss-
seidel_5pt

16.41 8.34 17.04 11.98

Gauss-
seidel_9pt

21.51 8.40 24.87 18.40
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• New chips: A major programming issue

• Approach: R-Stream, a source-to-source compiler

• Mapping to CUDA
• Highlights
• GPU

• General performance results

• Conclusion
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Outline



Reservoir Labs  GTC – 23 September 2010 

• Dual E5405 Xeon 2.0 GHz with 9 GB. R-Stream 3.1.2
• GCC 4.3.0 (“-O6 -fno-trapping-math -ftree-vectorize -msse3 -

fopenmp”) 

30

x86 multicore
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• Comparison against Intel’s MKL on a few radar applications:

31

x86 multicore (cont.)

MVDR-SER CSLC-LMS CSLC-RLS

Dual E5405 Xeon 2.0 GHz with 9 GB, Linux 2.6.25 (x86-64). R-Stream 3.1.2
GCC 4.3.0 (“-O6 -fno-trapping-math -ftree-vectorize -msse3 -fopenmp” flags) 
ICC 11.0 (with “-fast -openmp” flags). 
Intel MKL 10.2.1.
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Tilera results

Matrix-matrix multiply
4096x4096, 7x8 tiles

Polynomial multiplication
N=32768, 7x8 tiles

R-Stream Locality opt Gop/s Speedup

N N 0.048 1

Y N 2.273 47X

Y Y 3.416 71.2X

R-Stream Locality opt Gop/s Speedup

N N 0.013 1

Y N 0.272 21.3X

Y Y 8.104 634X
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• R-Stream simplifies software development and maintenance

• Porting: reduces expense and delivery delays

• Does this by automatically parallelizing loop code
• While optimizing for data locality, coalescing, etc.

• Addresses broad range of applications
• Dense loop-intensive computations 

• Promise of this technology
• Meet or exceed what you can do by hand

33

Conclusion
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Questions 
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