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The (general) problem

Increasingly complex application Increasingly complex hardware

design ® More coarse-grained parallelism
® Bigger problem sizes e SIMD
® Higher dimensionality ® Explicit resource management

e More sub-problems (memories, communication)

® Proprietary programming models ® Mixed execution models

and languages (e.g., CUDA)

|| =

Software challenges

i Intel Nehalem Nvidia GPU ClearSpeed Tile
® Productivity p ilera

® Performance
® Portability
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Outline

New chips: A major programming issue

Approach: R-Stream, a source-to-source compiler

Mapping to CUDA
® Highlights
e GPU

Performance results
e (GPU
® (QOther targets
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Approach: R-Stream, an Automatic C Parallelizer

Source-to-source auto-parallelizing compiler
Takes in sequential code, combinations of loops in C
Addresses specific features of emerging architectures

® |ots of parallelism, granularities, hierarchical mixed
execution models, explicit management of memories,
explicit bulk communications, asynchronous comm.,
Importance of locality

Reduces programming effort

® User writes C code in a clean, "textbook” style

® Functions to be processed marked with #pragma
rstream map

Produces mapped C code to be compiled by a backend
compiler (GCC, ICC, nvcc, etc.)
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Does this work ?

We currently map programs to a variety of targets
® Tilera, SMP, nVidia GPU, Clearspeed, Cell, SGI RC100

Many times, performance in the ball park of libraries,
sometimes better

® Depends on maturity of target-specific optimizations

® More sophisticated mappings than your reqular programmers’
® Pathological cases exist

® |[f library call is better: R-Stream handles library calls

Application domain large for those mapping capabilities
® Supports dynamic programs, library calls, etc.
® But the more static information, the more precise the mapping
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R-Stream: overview of the compilation process

Tilera, x86,
Cell, CSX,
machine model FPGA, multi-
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(Very) rough overview of the mapping process

Dependencies
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2- Task formation:

- Coarse-grain atomic tasks
- Master/slave side operations

1- Scheduling: ‘ ‘:ﬂ

Parallelism, locality, tilability _ F.ﬂ'y'nim*!r&ﬂf.n
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- Local [ global data layout optimization
- Multi-buffering (explicitly managed)
- Synchronization (barriers)

- Bulk communications
- Thread generation -> master/slave
- CUDA-specific optimizations
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R-Stream: Style-based programming and polyhedral IR for
loop-based code
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for (3=0; j<=i; j++) {
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-1

Loop code represented (exactly or conservatively) with polyhedrons
—> High-level, mathematical view of a mapping
—> But targets concrete properties: parallelism, locality, memory footprint
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Outline
New chips: A major programming issue
Approach: R-Stream, a source-to-source compiler
Mapping to CUDA

® Highlights

¢ GPU

General performance results
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CUDA -What is needed
Expressing the program in CUDA

Follow accelerator execution model
® Define master and slave computations and partition codes

® Generate (CUDA) kernel configuration, communications,
kernel launches

® Parallelize across multiple GPUs

Doing all this by hand is costly, error-prone, performance is
not portable

Promise of our technology
® Meet or exceed what you can do by hand

® Without knowing much about CUDA or GPUs (or other
multicore targets)
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Main goals of the mapping process

Those you find in any application porting paper
® Coalescing of transfers from/to global memory
® Data footprint has to fit in shared, global, private memories
® High occupancy of threads and blocks
® Minimize data transfers

® Avoid shared memory bank conflicts
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Distinctive parts of mapping process

Tradeoff among parallelism, locality and coalesced accesses
Advanced task formation and placement
Coalesced data movement

Hierarchical mapping
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Trading off parallelism, locality and coalescing

Affine scheduling algorithm:

® Fuses loops to increase computational intensity and
locality

® while exposing enough parallel iterations for threads and
blocks for occupancy

® and exposing parallel iterations that enable coalescing

Adaptive array expansion algorithm duplicates data just
enough to expose the desired parallelism
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Tradeoff Example

Array z gets expanded, to

introduce another level of Maximum fission destroys locality

parallelism
/* doall (i=0; i<400; i++)
* Original code: Coalescing along i \doall (j=0; j<3997; j++)
*/ z_e[jlli]=0
for (k=0; k<400; k++) { doall (i=_0; i<400; i++_)
for (i=0; i<3997; i++) { Max. para//e//jsm doall (j=0; j<3997; j++)
2[i]=0; (no fusion) \for (k.=0.; k<40(.)0;. k++? .
for (j=0; j<4000; j++) > | Lz_elillil=z_e[IIiH+BIKI*[il[k];
z[i1= z[i]+B[i1[j1*x[K1[j]; doall .(|=0;.|<399?; i++)
} for (j=0; j<400; j++)
for (i=0; i<3997; i++) w{i]_=w{i]+z_e[i][j];
wli]=wli]+z[i]; Data doz'all_(|=0; |_<3399997;. i++)
} accumulation 2[i] = z_e[il[399];

— 2 levels of parallelism, but poor data reuse (on array z_e)
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Tradeoff Example (cont.)

Aggressive loop fusion destroys
parallelism (i.e., only 1 degree

/*
* Original code:
*/
for (k=0; k<400; k++) {
for (i=0; i<3997; i++) {
2[i]=0;
for (j=0; j<4000; j++)
2[i]= z[i]+B[il[i1*x[K][jl;
}
for (i=0; i<3997; i++)
wli]=wli]+z[i];

}

Coalescing along i

Max. fusion an
coalescing

>

of parallelism)

doall (i=0; i<3997; i++)
for (j=0; j<400; j++) {
z[i]=0;
\for (k=0; k<4000; k++)
z[i]=z[i]#BLi] [k]*x[i][k];
wli]=wli]+z[i];

}

_

— Very good data reuse (on array z), but only 1 level of parallelism
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Tradeoff Example (cont.)

Partial fusion doesn't

Expansion of array z decrease parallelism

/*
* Original code:
*/
for (k=0; k<400; k++) {
for (i=0; i<3997; i++) {
2[i]=0;
for (j=0; j<4000; j++)
2[i]= z[i]+B[il[i1*x[K][jl;
}
for (i=0; i<3997; i++)
wli]=wli]+z[i];

}

Coalescing along j

Para//ellm

partial fusion and
coalescing

>

doall (i=0; i<3997; i++) {
doall (j=0; j<400; j++) {
z_e[i][j]=0;
for (k=0; k<4000; k++)

~~
}
for (j=0; j<400; j++)

wli]=wlil+z_e[i][jl;

}
doall (i=0; i<3997; i++)

Data
accumulation

z[il=z_e[i][399];

— 2 levels of parallelism with good data reuse (on array z_e)
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Advanced task formation and placement

Natural phase ordering problem among:
Forming atomic tasks (think blockske—="UuCIN RIS IgL:

Distributing tasks « Load balancing
Defining data Iayomm

R-Stream components interact with each other

Memory footprint
Forward and Backward (feedback)

"sensible” | Load balanci
Produces “sensible” mappings: SElL I
— As many constraints as possible get satisfied Occupancy

at once
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Coalesced data movement

Data that are not coalesced naturally
® (Can be loaded to shared memory in a coalesced way

for (i=0;: i< 128: i++)
A_I[i, th.x] = Ali, th.x];

for (i=0;: i< 128: i++)
f(A_I[th.x, i]);

for (i=0: i< 128: i++)
All,th.x] = A_I[i, th.x];

for (i=0; i< 128; i++) {
f(A[th.x, i])

;

)

coalesced
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Multi-GPU - Hierarchical mapping

R-Stream mapping is driven by a machine model

® Describes targeted machine as a graph of processors,
memories, explicit data links, etc.

® Hierarchical mappings: decompose the problem using
“morphs”, i.e., views of the machine

® A backend is associated with each morph
— Defines the way code is generated (OpenMP, CUDA, etc.)
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Machine model example: multi-Tesla

PROC cpu
geometry=[8]
SIMD width=128 bits
H SIMD alignment=128 bits
OSt ’—n' int registers=32
fp registers=32
funit types=[MEM, INT, FP4, FP8]
funit issue rates=[2.0, 2.0, 2.0, 2.0]
instr. size=4 byte(s)
addr. unit=8 bit(s)
parm. passing=[implicit]

thread ll-l

MEM L1
size=[16KB]
banks=[nhone]
cache_level=1
cache_line_size=32B

tlb_miss_cost=0

1 thread per GPU

N\

speed=>5

data only

options=[]

APROC tuda_thread
included proes=[gpu_device]
proper mems=[] 1-2 1-many
geometry=[2]

MEM L2

size=[6MB]

banks=[none]

cache_level=2
1-many | cache_line_size=32B

tlb_miss_cost=192

APROC PC
included procs=[cuda_thread, cpu]
proper mems=|[global]
geometry=[1]

speed=10
unified
options=[]
1-1 /mny—l
MEM global
size=[4GB]
banks=[nhone]
speed=1
unified
options=[]

PROC cc
geometry=[512]
SIMD width=128 bits
SIMD alignment=128 bits
int registers=32
fp registers=32
funit types=[MEM, INT, FP4, FP8]
funit issue rates=[1.0, 1.0, 1.0, 0.5]
instr. size=4 byte(s)
addr. unit=8 bit(s)
parm. passing=[none]
major revision=1
minor revision=1
multi processors=16
cores=128
warp size=32
registers per block=8192
max threads per block=512
max thread sizes=[512, 512, 64]
max grid sizes=[65535, 65535]

APROC sm

included procs=[cc]
proper mems=[local_gpu, constant_cache_gpu]
geometry=[15]

many-1

<

MEM constant_cache_gpu
size=[8KB]

}.1

MEM private_gpu
size=[8KB]
banks=[none]
speed=20
data only

any-1

options=[]
\ any-1 any-1

MEM local_gpu

banks=[none]
cache_level=1
cache_line_size=18B
tlb_miss_cost=0
speed=12

APROC gpu_device
included procs=[sm]

geometry=[1]

proper mems=[global_gpu, constant_gpu]

size=[16344B]

banks=[none]
speed=10
data only

data only

MEM constant_gpu
size=[8KB]
banks=[none]
speed=8
data only

OpenMP morph

XML file

options=[cuda_constant]

options=[]
\Q‘any—l -1 -1

options=[]

many-1

MEM global_gpu
size=[768MB]
banks=[none]

speed=1
unified
options=[]

CUDA morph
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Performance Results

Benchmarks
® Stencil kernels with multiple time iterations

- Gauss-seidel (2D - 5 points and 9 points stencil)
® Stencil kernels with single time iteration

— Divergence (3D)

— Gradient (3D)

— Laplacian (3D)

- RTM (3D)
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Performance Results

Stencil kernels with single time iteration

® Double Precision Performance

® Problem size: 256°3

Performance (Gflops)
Kernel
GTX 285 GTX 480
Divergence 15.59 28.74
Gradient 8.02 17.55
Laplacian 16.79 41.33
RTM 24.69 50.74

Reservoir Labs  GTC - 23 September 2010

22



Performance Results

Stencil kernels with multiple time iterations
® Single Precision (SP) and Double Precision (DP)

Performance
® Problem size: 4096°2

Performance (Gflops)
Kernel GTX 285 GTX 480
SP DP SP DP
Gauss- 16.41 834 | 17.04 | 11.98
seidel_5pt
Gauss- 21.51 8.40 | 24.87 | 18.40
seidel_9pt

Reservoir Labs  GTC - 23 September 2010

23



Outline

New chips: A major programming issue
Approach: R-Stream, a source-to-source compiler
Mapping to CUDA

® Highlights

* GPU

General performance results

Conclusion
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x86 multicore

Dual E5405 Xeon 2.0 GHz with 9 GB. R-Stream 3.1.2

GCC 4.3.0 ("-06 -fno-trapping-math -ftree-vectorize -msse3 -
fopenmp")

Gflop/s

50

45

40

35

30

25

20

15

10 -

5

0 -

\ A X
6\(8@\‘}& K\{LSJ 5}“2::\*(\0&\\} S @é\ 6035& 6&} b‘;\@@ o g—?\{» f,,\@ N > {&&Q co‘\c'o %\L’O\i{\@bi&?&;@}o’b&b\%&bé ,5&
l—'—J

Reservoir Labs  GTC - 23 September 2010

30



Gflops

O = N W B 01 O

x86 multicore (cont.)

Comparison against Intel's MKL on a few radar applications:

g R-Stream(GCC)
R-Stream(ICC)

. | C C

1K 3K 5K 7K 9K
#Channels

MVDR-SER

50 - e KL
e R-Stream (GCC)
R-Stream(ICC)
40 -\ i GC
ps | CC
m30 n
o
K=
520 -
10 -
0 I I 1 I I | I
IK 3K 5K 7K SK
#Channels
CSLC-LMS

Gflops
o = N W »~p U0 O N

e VKL
g R- St re am (GCC)
R-Stream(ICC)

i | CC

i ——

1K 3K 5K 7K 9K
#Channels

CSLC-RLS

Dual E5405 Xeon 2.0 GHz with 9 GB, Linux 2.6.25 (x86-64). R-Stream 3.1.2
GCC 4.3.0 ("-06 -fno-trapping-math -ftree-vectorize -msse3 -fopenmp” flags)
ICC 11.0 (with “-fast -openmp" flags).

Intel MKL 10.2.1.
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Tilera results

Integer Floating Point (SW Gflop/s)

. T . 1.2
Polynomial multiplication

N=32768, 7x8 tiles :

Locality opt Speedup 0.8

0.048 1 06
Y N 2.273 47X
Y Y 3416 71.2X . I I I
0.2 - I
Matrix-matrix multiply
4096x4096, 7x8 tiles 0 - : : :

R-Stream Locality opt Gop/s | Speedu SR ) < & $°
y op Y p Y @Q’ QQ\% Q& Q(?\/ ((?\/ o\;b

0013 1
Y § N TileExpressPro-20G
Y Y 8.104 634X
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Conclusion

R-Stream simplifies software development and maintenance

Porting: reduces expense and delivery delays

Does this by automatically parallelizing loop code
® \While optimizing for data locality, coalescing, etc.

Addresses broad range of applications
® Dense loop-intensive computations

Promise of this technology
® Meet or exceed what you can do by hand

Reservoir Labs  GTC - 23 September 2010

33



Questions
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