A Programming Model and Tool for Automatic
High-Performance C to CUDA Mapping

B. Meister, A. Leung, M. Baskaran, N. Vasilache, A.
Hartono, A. Johnson, R. Lethin

e . ey

M

_-/ L
. ?e’l.wn,al'r-L-'}I‘-j"

y,
3. localihy
¥

‘}3;:‘ (O)D‘g,akl

Reservoir Labs GTC - 23 September 2010

The (general) problem

Increasingly complex application Increasingly complex hardware

design ® More coarse-grained parallelism
® Bigger problem sizes e SIMD
® Higher dimensionality ® Explicit resource management

e More sub-problems (memories, communication)

® Proprietary programming models ® Mixed execution models

and languages (e.g., CUDA)

|| =

Software challenges

i Intel Nehalem Nvidia GPU ClearSpeed Tile
® Productivity p ilera

® Performance
® Portability

Reservoir Labs GTC- 23 September 2010 2

Outline

New chips: A major programming issue

Approach: R-Stream, a source-to-source compiler

Mapping to CUDA
® Highlights
e GPU

Performance results
e (GPU
® (QOther targets

Reservoir Labs GTC - 23 September 2010

Approach: R-Stream, an Automatic C Parallelizer

Source-to-source auto-parallelizing compiler
Takes in sequential code, combinations of loops in C
Addresses specific features of emerging architectures

® |ots of parallelism, granularities, hierarchical mixed
execution models, explicit management of memories,
explicit bulk communications, asynchronous comm.,
Importance of locality

Reduces programming effort

® User writes C code in a clean, "textbook” style

® Functions to be processed marked with #pragma
rstream map

Produces mapped C code to be compiled by a backend
compiler (GCC, ICC, nvcc, etc.)

Reservoir Labs GTC - 23 September 2010

Does this work ?

We currently map programs to a variety of targets
® Tilera, SMP, nVidia GPU, Clearspeed, Cell, SGI RC100

Many times, performance in the ball park of libraries,
sometimes better

® Depends on maturity of target-specific optimizations

® More sophisticated mappings than your reqular programmers’
® Pathological cases exist

® |[f library call is better: R-Stream handles library calls

Application domain large for those mapping capabilities
® Supports dynamic programs, library calls, etc.
® But the more static information, the more precise the mapping

Reservoir Labs GTC - 23 September 2010

R-Stream: overview of the compilation process

Tilera, x86,
Cell, CSX,
machine model FPGA, multi-

prOCESE0rS, MEemories,
data and control links —

polyhedral mapping J
scheduling, task formation, placement
promotion, multi-buffering, DMA +

synchronization + thread generation
DG (Polyhedral representation))
Generalized Dependence Graph

Ei: ®
raising || slave GDGs

C, CUDA, Cn,
Dataflow languages

High-laval compllar I Low-laval compllar
|

: mastercode | @ mmaaaaas i
mappable functions lowerin | |
® g C + runtime calls ' compiler !
|
@ - ® —— [p—
C source code % IR R-Stream's Intermediate Representation pretty printing 1 e S
I : '
e savecode |—NSIRIEI
scakar epltimizations I— C + runtime calls 1 I —— 1
@ GGP, GVN,GGM, OSR, : [Cshvele | I M |
inlining, unroliing, ... I . —— -t
il o Lo linkee T
machinemode! | v
(ow-level) | binary executable
type defs endianness, | e e
alignment...

Reservoir Labs GTC - 23 September 2010

(Very) rough overview of the mapping process

Dependencies

A AN AN
PR At At ALY
AV VE VIV

2- Task formation:

- Coarse-grain atomic tasks
- Master/slave side operations

1- Scheduling: ‘ ‘:ﬂ

Parallelism, locality, tilability _ F.ﬂ'y'nim*!r&ﬂf.n
an‘faﬁnmmfan‘ra

g/ "1 s

I

- Local [global data layout optimization
- Multi-buffering (explicitly managed)
- Synchronization (barriers)

- Bulk communications
- Thread generation -> master/slave
- CUDA-specific optimizations

TR
Jolell oo N0l ol o ool (g

Reservoir Labs GTC - 23 September 2010 7

R-Stream: Style-based programming and polyhedral IR for
loop-based code

n="7%0; : /]
for (1=5; 1<= n; 1+=2) { j<=10 .
ALl = AL][i]/BLi];
for (3=0; j<=i; j++) {

N

+ o+ o+ o+ o+
+ o+ o+ o+ +

if (j<=10) {
. A[i+2j+n][i+3].

>
==0 -

+ o+
FEN NN
sesosense
+ o+ o+ +

&
A
A
d

AY L 21 0]

Al=l1 00 3 J Affine and non-affine transformations

1) 1o oo 1]" Order and place of operations and data
-1

Loop code represented (exactly or conservatively) with polyhedrons
—> High-level, mathematical view of a mapping
—> But targets concrete properties: parallelism, locality, memory footprint

Reservoir Labs GTC - 23 September 2010

Outline
New chips: A major programming issue
Approach: R-Stream, a source-to-source compiler
Mapping to CUDA

® Highlights

¢ GPU

General performance results

Reservoir Labs GTC - 23 September 2010

CUDA -What is needed
Expressing the program in CUDA

Follow accelerator execution model
® Define master and slave computations and partition codes

® Generate (CUDA) kernel configuration, communications,
kernel launches

® Parallelize across multiple GPUs

Doing all this by hand is costly, error-prone, performance is
not portable

Promise of our technology
® Meet or exceed what you can do by hand

® Without knowing much about CUDA or GPUs (or other
multicore targets)

Reservoir Labs GTC - 23 September 2010

10

Main goals of the mapping process

Those you find in any application porting paper
® Coalescing of transfers from/to global memory
® Data footprint has to fit in shared, global, private memories
® High occupancy of threads and blocks
® Minimize data transfers

® Avoid shared memory bank conflicts

Reservoir Labs GTC - 23 September 2010

1

Distinctive parts of mapping process

Tradeoff among parallelism, locality and coalesced accesses
Advanced task formation and placement
Coalesced data movement

Hierarchical mapping

Reservoir Labs GTC - 23 September 2010

12

Trading off parallelism, locality and coalescing

Affine scheduling algorithm:

® Fuses loops to increase computational intensity and
locality

® while exposing enough parallel iterations for threads and
blocks for occupancy

® and exposing parallel iterations that enable coalescing

Adaptive array expansion algorithm duplicates data just
enough to expose the desired parallelism

Reservoir Labs GTC - 23 September 2010

13

Tradeoff Example

Array z gets expanded, to

introduce another level of Maximum fission destroys locality

parallelism
/* doall (i=0; i<400; i++)
* Original code: Coalescing along i \doall (j=0; j<3997; j++)
*/ z_e[jlli]=0
for (k=0; k<400; k++) { doall (i=_0; i<400; i++_)
for (i=0; i<3997; i++) { Max. para//e//jsm doall (j=0; j<3997; j++)
2[i]=0; (no fusion) \for (k.=0.; k<40(.)0;. k++? .
for (j=0; j<4000; j++) > | Lz_elillil=z_e[IIiH+BIKI*[il[k];
z[i1= z[i]+B[i1[j1*x[K1[j]; doall .(|=0;.|<399?; i++)
} for (j=0; j<400; j++)
for (i=0; i<3997; i++) w{i]_=w{i]+z_e[i][j];
wli]=wli]+z[i]; Data doz'all_(|=0; |_<3399997;. i++)
} accumulation 2[i] = z_e[il[399];

— 2 levels of parallelism, but poor data reuse (on array z_e)

Reservoir Labs GTC - 23 September 2010

Tradeoff Example (cont.)

Aggressive loop fusion destroys
parallelism (i.e., only 1 degree

/*
* Original code:
*/
for (k=0; k<400; k++) {
for (i=0; i<3997; i++) {
2[i]=0;
for (j=0; j<4000; j++)
2[i]= z[i]+B[il[i1*x[K][jl;
}
for (i=0; i<3997; i++)
wli]=wli]+z[i];

}

Coalescing along i

Max. fusion an
coalescing

>

of parallelism)

doall (i=0; i<3997; i++)
for (j=0; j<400; j++) {
z[i]=0;
\for (k=0; k<4000; k++)
z[i]=z[i]#BLi] [k]*x[i][k];
wli]=wli]+z[i];

}

_

— Very good data reuse (on array z), but only 1 level of parallelism

Reservoir Labs

GTC - 23 September 2010

Tradeoff Example (cont.)

Partial fusion doesn't

Expansion of array z decrease parallelism

/*
* Original code:
*/
for (k=0; k<400; k++) {
for (i=0; i<3997; i++) {
2[i]=0;
for (j=0; j<4000; j++)
2[i]= z[i]+B[il[i1*x[K][jl;
}
for (i=0; i<3997; i++)
wli]=wli]+z[i];

}

Coalescing along j

Para//ellm

partial fusion and
coalescing

>

doall (i=0; i<3997; i++) {
doall (j=0; j<400; j++) {
z_e[i][j]=0;
for (k=0; k<4000; k++)

~~
}
for (j=0; j<400; j++)

wli]=wlil+z_e[i][jl;

}
doall (i=0; i<3997; i++)

Data
accumulation

z[il=z_e[i][399];

— 2 levels of parallelism with good data reuse (on array z_e)

Reservoir Labs

GTC - 23 September 2010

z_elillj]=z_elil[j+BLillkI*x[j][K];

Advanced task formation and placement

Natural phase ordering problem among:
Forming atomic tasks (think blockske—="UuCIN RIS IgL:

Distributing tasks « Load balancing
Defining data Iayomm

R-Stream components interact with each other

Memory footprint
Forward and Backward (feedback)

"sensible” | Load balanci
Produces “sensible” mappings: SElL I
— As many constraints as possible get satisfied Occupancy

at once

Reservoir Labs GTC - 23 September 2010

17

Coalesced data movement

Data that are not coalesced naturally
® (Can be loaded to shared memory in a coalesced way

for (i=0;: i< 128: i++)
A_I[i, th.x] = Ali, th.x];

for (i=0;: i< 128: i++)
f(A_I[th.x, i]);

for (i=0: i< 128: i++)
All,th.x] = A_I[i, th.x];

for (i=0; i< 128; i++) {
f(A[th.x, i])

;

)

coalesced

Reservoir Labs GTC - 23 September 2010

18

Multi-GPU - Hierarchical mapping

R-Stream mapping is driven by a machine model

® Describes targeted machine as a graph of processors,
memories, explicit data links, etc.

® Hierarchical mappings: decompose the problem using
“morphs”, i.e., views of the machine

® A backend is associated with each morph
— Defines the way code is generated (OpenMP, CUDA, etc.)

Reservoir Labs GTC - 23 September 2010 19

Machine model example: multi-Tesla

PROC cpu
geometry=[8]
SIMD width=128 bits
H SIMD alignment=128 bits
OSt ’—n' int registers=32
fp registers=32
funit types=[MEM, INT, FP4, FP8]
funit issue rates=[2.0, 2.0, 2.0, 2.0]
instr. size=4 byte(s)
addr. unit=8 bit(s)
parm. passing=[implicit]

thread ll-l

MEM L1
size=[16KB]
banks=[nhone]
cache_level=1
cache_line_size=32B

tlb_miss_cost=0

1 thread per GPU

N\

speed=>5

data only

options=[]

APROC tuda_thread
included proes=[gpu_device]
proper mems=[] 1-2 1-many
geometry=[2]

MEM L2

size=[6MB]

banks=[none]

cache_level=2
1-many | cache_line_size=32B

tlb_miss_cost=192

APROC PC
included procs=[cuda_thread, cpu]
proper mems=|[global]
geometry=[1]

speed=10
unified
options=[]
1-1 /mny—l
MEM global
size=[4GB]
banks=[nhone]
speed=1
unified
options=[]

PROC cc
geometry=[512]
SIMD width=128 bits
SIMD alignment=128 bits
int registers=32
fp registers=32
funit types=[MEM, INT, FP4, FP8]
funit issue rates=[1.0, 1.0, 1.0, 0.5]
instr. size=4 byte(s)
addr. unit=8 bit(s)
parm. passing=[none]
major revision=1
minor revision=1
multi processors=16
cores=128
warp size=32
registers per block=8192
max threads per block=512
max thread sizes=[512, 512, 64]
max grid sizes=[65535, 65535]

APROC sm

included procs=[cc]
proper mems=[local_gpu, constant_cache_gpu]
geometry=[15]

many-1

<

MEM constant_cache_gpu
size=[8KB]

}.1

MEM private_gpu
size=[8KB]
banks=[none]
speed=20
data only

any-1

options=[]
\ any-1 any-1

MEM local_gpu

banks=[none]
cache_level=1
cache_line_size=18B
tlb_miss_cost=0
speed=12

APROC gpu_device
included procs=[sm]

geometry=[1]

proper mems=[global_gpu, constant_gpu]

size=[16344B]

banks=[none]
speed=10
data only

data only

MEM constant_gpu
size=[8KB]
banks=[none]
speed=8
data only

OpenMP morph

XML file

options=[cuda_constant]

options=[]
\Q‘any—l -1 -1

options=[]

many-1

MEM global_gpu
size=[768MB]
banks=[none]

speed=1
unified
options=[]

CUDA morph

Reservoir Labs GTC - 23 September 2010

20

Performance Results

Benchmarks
® Stencil kernels with multiple time iterations

- Gauss-seidel (2D - 5 points and 9 points stencil)
® Stencil kernels with single time iteration

— Divergence (3D)

— Gradient (3D)

— Laplacian (3D)

- RTM (3D)

Reservoir Labs GTC - 23 September 2010

Performance Results

Stencil kernels with single time iteration

® Double Precision Performance

® Problem size: 256°3

Performance (Gflops)
Kernel
GTX 285 GTX 480
Divergence 15.59 28.74
Gradient 8.02 17.55
Laplacian 16.79 41.33
RTM 24.69 50.74

Reservoir Labs GTC - 23 September 2010

22

Performance Results

Stencil kernels with multiple time iterations
® Single Precision (SP) and Double Precision (DP)

Performance
® Problem size: 4096°2

Performance (Gflops)
Kernel GTX 285 GTX 480
SP DP SP DP
Gauss- 16.41 834 | 17.04 | 11.98
seidel_5pt
Gauss- 21.51 8.40 | 24.87 | 18.40
seidel_9pt

Reservoir Labs GTC - 23 September 2010

23

Outline

New chips: A major programming issue
Approach: R-Stream, a source-to-source compiler
Mapping to CUDA

® Highlights

* GPU

General performance results

Conclusion

Reservoir Labs GTC - 23 September 2010

29

x86 multicore

Dual E5405 Xeon 2.0 GHz with 9 GB. R-Stream 3.1.2

GCC 4.3.0 ("-06 -fno-trapping-math -ftree-vectorize -msse3 -
fopenmp")

Gflop/s

50

45

40

35

30

25

20

15

10 -

5

0 -

\ A X
6\(8@\‘}& K\{LSJ 5}“2::*(\0&\\} S @é\ 6035& 6&} b‘;\@@ o g—?\{» f,,\@ N > {&&Q co‘\c'o %\L’O\i{\@bi&?&;@}o’b&b\%&bé ,5&
l—'—J

Reservoir Labs GTC - 23 September 2010

30

Gflops

O = N W B 01 O

x86 multicore (cont.)

Comparison against Intel's MKL on a few radar applications:

g R-Stream(GCC)
R-Stream(ICC)

. | C C

1K 3K 5K 7K 9K
#Channels

MVDR-SER

50 - e KL
e R-Stream (GCC)
R-Stream(ICC)
40 -\ i GC
ps | CC
m30 n
o
K=
520 -
10 -
0 I I 1 I I | I
IK 3K 5K 7K SK
#Channels
CSLC-LMS

Gflops
o = N W »~p U0 O N

e VKL
g R- St re am (GCC)
R-Stream(ICC)

i | CC

i ——

1K 3K 5K 7K 9K
#Channels

CSLC-RLS

Dual E5405 Xeon 2.0 GHz with 9 GB, Linux 2.6.25 (x86-64). R-Stream 3.1.2
GCC 4.3.0 ("-06 -fno-trapping-math -ftree-vectorize -msse3 -fopenmp” flags)
ICC 11.0 (with “-fast -openmp" flags).

Intel MKL 10.2.1.

Reservoir Labs

GTC - 23 September 2010

Tilera results

Integer Floating Point (SW Gflop/s)

. T . 1.2
Polynomial multiplication

N=32768, 7x8 tiles :

Locality opt Speedup 0.8

0.048 1 06
Y N 2.273 47X
Y Y 3416 71.2X . I I I
0.2 - I
Matrix-matrix multiply
4096x4096, 7x8 tiles 0 - : : :

R-Stream Locality opt Gop/s | Speedu SR) < & $°
y op Y p Y @Q’ QQ\% Q& Q(?\/ ((?\/ o\;b

0013 1
Y § N TileExpressPro-20G
Y Y 8.104 634X

Reservoir Labs GTC - 23 September 2010 32

Conclusion

R-Stream simplifies software development and maintenance

Porting: reduces expense and delivery delays

Does this by automatically parallelizing loop code
® \While optimizing for data locality, coalescing, etc.

Addresses broad range of applications
® Dense loop-intensive computations

Promise of this technology
® Meet or exceed what you can do by hand

Reservoir Labs GTC - 23 September 2010

33

Questions

Reservoir Labs

GTC - 23 September 2010

34

	A Programming Model and Tool for Automatic High-Performance C to CUDA Mapping
	The (general) problem
	Outline
	Approach: R-Stream, an Automatic C Parallelizer
	Does this work ?
	R-Stream: overview of the compilation process
	(Very) rough overview of the mapping process
	R-Stream: Style-based programming and polyhedral IR for loop-based code
	Outline
	CUDA - What is needed
	Main goals of the mapping process
	Distinctive parts of mapping process
	Trading off parallelism, locality and coalescing
	Tradeoff Example
	Tradeoff Example (cont.)
	Tradeoff Example (cont.)
	Advanced task formation and placement
	Coalesced data movement
	Multi-GPU - Hierarchical mapping
	Machine model example: multi-Tesla
	Performance Results
	Performance Results
	Performance Results
	Outline
	x86 multicore
	x86 multicore (cont.)
	Tilera results
	Conclusion
	Questions

