
Reservoir Labs GTC – 23 September 2010

B. Meister, A. Leung, M. Baskaran, N. Vasilache, A.

Hartono, A. Johnson, R. Lethin

1

A Programming Model and Tool for Automatic

High-Performance C to CUDA Mapping

Reservoir Labs GTC – 23 September 2010

The (general) problem

2

• Increasingly complex hardware
• More coarse-grained parallelism
• SIMD
• Explicit resource management

(memories, communication)
• Mixed execution models

Intel Nehalem Nvidia GPU ClearSpeed Tilera

• Increasingly complex application
design

• Bigger problem sizes
• Higher dimensionality
• More sub-problems
• Proprietary programming models

and languages (e.g., CUDA)

• Software challenges
• Productivity
• Performance
• Portability

Reservoir Labs GTC – 23 September 2010

• New chips: A major programming issue

• Approach: R-Stream, a source-to-source compiler

• Mapping to CUDA
• Highlights
• GPU

• Performance results
• GPU
• Other targets

3

Outline

Reservoir Labs GTC – 23 September 2010

• Source-to-source auto-parallelizing compiler
• Takes in sequential code, combinations of loops in C
• Addresses specific features of emerging architectures
• Lots of parallelism, granularities, hierarchical mixed

execution models, explicit management of memories,
explicit bulk communications, asynchronous comm.,
importance of locality

• Reduces programming effort
• User writes C code in a clean, “textbook” style
• Functions to be processed marked with #pragma

rstream map

• Produces mapped C code to be compiled by a backend
compiler (GCC, ICC, nvcc, etc.)

4

Approach: R-Stream, an Automatic C Parallelizer

Reservoir Labs GTC – 23 September 2010

• We currently map programs to a variety of targets
• Tilera, SMP, nVidia GPU, Clearspeed, Cell, SGI RC100

• Many times, performance in the ball park of libraries,
sometimes better

• Depends on maturity of target-specific optimizations
• More sophisticated mappings than your regular programmers’
• Pathological cases exist
• If library call is better: R-Stream handles library calls

• Application domain large for those mapping capabilities
• Supports dynamic programs, library calls, etc.
• But the more static information, the more precise the mapping

5

Does this work ?

Reservoir Labs GTC – 23 September 2010 6

R-Stream: overview of the compilation process

Tilera, x86,

Cell, CSX,

FPGA, multi-

CUDA

Reservoir Labs GTC – 23 September 2010 7

(Very) rough overview of the mapping process

2- Task formation:
- Coarse-grain atomic tasks
- Master/slave side operations

- Local / global data layout optimization
- Multi-buffering (explicitly managed)
- Synchronization (barriers)
- Bulk communications
- Thread generation -> master/slave
- CUDA-specific optimizations

1- Scheduling:
Parallelism, locality, tilability

3- Placement:
Assign tasks to blocks/threads

Dependencies

Reservoir Labs GTC – 23 September 2010

R-Stream: Style-based programming and polyhedral IR for

loop-based code

n = f();
for (i=5; i<= n; i+=2) {

A[i][i] = A[i][i]/B[i];
for (j=0; j<=i; j++) {
if (j<=10) {
… A[i+2j+n][i+3]…

}
}

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

1
1
3
0

0
0
1

0
0
2

0
1
1

1
1

0

n
j
i

A
A

Affine and non-affine transformations
Order and place of operations and data

8

}12;;0;5,|,{ 2 +=≤≤≤≤≤∈∃∈ kiijijniZkZji

Loop code represented (exactly or conservatively) with polyhedrons
High-level, mathematical view of a mapping
But targets concrete properties: parallelism, locality, memory footprint

Reservoir Labs GTC – 23 September 2010

• New chips: A major programming issue

• Approach: R-Stream, a source-to-source compiler

• Mapping to CUDA
• Highlights
• GPU

• General performance results

9

Outline

Reservoir Labs GTC – 23 September 2010

• Expressing the program in CUDA

• Follow accelerator execution model
• Define master and slave computations and partition codes
• Generate (CUDA) kernel configuration, communications,

kernel launches
• Parallelize across multiple GPUs

• Doing all this by hand is costly, error-prone, performance is
not portable

• Promise of our technology
• Meet or exceed what you can do by hand
• Without knowing much about CUDA or GPUs (or other

multicore targets)

10

CUDA - What is needed

Reservoir Labs GTC – 23 September 2010

• Those you find in any application porting paper

• Coalescing of transfers from/to global memory

• Data footprint has to fit in shared, global, private memories

• High occupancy of threads and blocks

• Minimize data transfers

• Avoid shared memory bank conflicts

11

Main goals of the mapping process

Reservoir Labs GTC – 23 September 2010

• Tradeoff among parallelism, locality and coalesced accesses

• Advanced task formation and placement

• Coalesced data movement

• Hierarchical mapping

12

Distinctive parts of mapping process

Reservoir Labs GTC – 23 September 2010

• Affine scheduling algorithm:
• Fuses loops to increase computational intensity and

locality
• while exposing enough parallel iterations for threads and

blocks for occupancy
• and exposing parallel iterations that enable coalescing

• Adaptive array expansion algorithm duplicates data just
enough to expose the desired parallelism

13

Trading off parallelism, locality and coalescing

Reservoir Labs GTC – 23 September 2010

Tradeoff Example

/*
* Original code:
*/
for (k=0; k<400; k++) {
for (i=0; i<3997; i++) {
z[i]=0;
for (j=0; j<4000; j++)
z[i]= z[i]+B[i][j]*x[k][j];

}
for (i=0; i<3997; i++)
w[i]=w[i]+z[i];

}

doall (i=0; i<400; i++)
doall (j=0; j<3997; j++)
z_e[j][i]=0

doall (i=0; i<400; i++)
doall (j=0; j<3997; j++)
for (k=0; k<4000; k++)
z_e[j][i]=z_e[j][i]+B[j][k]*x[i][k];

doall (i=0; i<3997; i++)
for (j=0; j<400; j++)
w[i]=w[i]+z_e[i][j];

doall (i=0; i<3997; i++)
z[i] = z_e[i][399];

Max. parallelism
(no fusion)

Array z gets expanded, to
introduce another level of
parallelism

Data
accumulation

→ 2 levels of parallelism, but poor data reuse (on array z_e)

Maximum fission destroys locality

Coalescing along i

Reservoir Labs GTC – 23 September 2010

Tradeoff Example (cont.)

doall (i=0; i<3997; i++)
for (j=0; j<400; j++) {
z[i]=0;
for (k=0; k<4000; k++)
z[i]=z[i]+B[i][k]*x[j][k];
w[i]=w[i]+z[i];
}

Max. fusion and
coalescing

→ Very good data reuse (on array z), but only 1 level of parallelism

Aggressive loop fusion destroys
parallelism (i.e., only 1 degree
of parallelism)/*

* Original code:
*/
for (k=0; k<400; k++) {
for (i=0; i<3997; i++) {
z[i]=0;
for (j=0; j<4000; j++)
z[i]= z[i]+B[i][j]*x[k][j];

}
for (i=0; i<3997; i++)
w[i]=w[i]+z[i];

}

Coalescing along i

Reservoir Labs GTC – 23 September 2010

Tradeoff Example (cont.)

doall (i=0; i<3997; i++) {
doall (j=0; j<400; j++) {
z_e[i][j]=0;
for (k=0; k<4000; k++)
z_e[i][j]=z_e[i][j]+B[i][k]*x[j][k];

}
for (j=0; j<400; j++)
w[i]=w[i]+z_e[i][j];

}
doall (i=0; i<3997; i++)
z[i]=z_e[i][399];

Parallelism with
partial fusion and

coalescing

→ 2 levels of parallelism with good data reuse (on array z_e)

Data
accumulation

Expansion of array z
Partial fusion doesn’t
decrease parallelism

Coalescing along j

/*
* Original code:
*/
for (k=0; k<400; k++) {
for (i=0; i<3997; i++) {
z[i]=0;
for (j=0; j<4000; j++)
z[i]= z[i]+B[i][j]*x[k][j];

}
for (i=0; i<3997; i++)
w[i]=w[i]+z[i];

}

Reservoir Labs GTC – 23 September 2010

• Natural phase ordering problem among:
• Forming atomic tasks (think blocks)
• Distributing tasks
• Defining data layout

• R-Stream components interact with each other
• Forward and Backward (feedback)
• Produces “sensible” mappings:

– As many constraints as possible get satisfied
at once

17

Advanced task formation and placement

Memory footprint

Load balancing

Occupancy

Memory footprint

Load balancing

Occupancy

&

&

Reservoir Labs GTC – 23 September 2010

• Data that are not coalesced naturally
• Can be loaded to shared memory in a coalesced way

18

Coalesced data movement

for (i=0; i< 128; i++) {
f(A[th.x, i])

}

for (i=0; i< 128; i++)
A_l[i, th.x] = A[i, th.x];

for (i=0; i< 128; i++)
f(A_l[th.x, i]);

for (i=0; i< 128; i++)
A[I,th.x] = A_l[i, th.x];

coalesced

Reservoir Labs GTC – 23 September 2010

• R-Stream mapping is driven by a machine model

• Describes targeted machine as a graph of processors,
memories, explicit data links, etc.

• Hierarchical mappings: decompose the problem using
“morphs”, i.e., views of the machine

• A backend is associated with each morph
– Defines the way code is generated (OpenMP, CUDA, etc.)

19

Multi-GPU - Hierarchical mapping

Reservoir Labs GTC – 23 September 2010 20

Machine model example: multi-Tesla

OpenMP morph
CUDA morph

Host

1 thread per GPU

XML file

Reservoir Labs GTC – 23 September 2010

• Benchmarks
• Stencil kernels with multiple time iterations

– Gauss-seidel (2D – 5 points and 9 points stencil)

• Stencil kernels with single time iteration
– Divergence (3D)
– Gradient (3D)
– Laplacian (3D)
– RTM (3D)

21

Performance Results

Reservoir Labs GTC – 23 September 2010

• Stencil kernels with single time iteration
• Double Precision Performance
• Problem size: 256^3

22

Performance Results

Kernel
Performance (Gflops)

GTX 285 GTX 480

Divergence 15.59 28.74

Gradient 8.02 17.55

Laplacian 16.79 41.33

RTM 24.69 50.74

Reservoir Labs GTC – 23 September 2010

• Stencil kernels with multiple time iterations
• Single Precision (SP) and Double Precision (DP)

Performance
• Problem size: 4096^2

23

Performance Results

Kernel

Performance (Gflops)
GTX 285 GTX 480

SP DP SP DP

Gauss-
seidel_5pt

16.41 8.34 17.04 11.98

Gauss-
seidel_9pt

21.51 8.40 24.87 18.40

Reservoir Labs GTC – 23 September 2010

• New chips: A major programming issue

• Approach: R-Stream, a source-to-source compiler

• Mapping to CUDA
• Highlights
• GPU

• General performance results

• Conclusion

29

Outline

Reservoir Labs GTC – 23 September 2010

• Dual E5405 Xeon 2.0 GHz with 9 GB. R-Stream 3.1.2
• GCC 4.3.0 (“-O6 -fno-trapping-math -ftree-vectorize -msse3 -

fopenmp”)

30

x86 multicore

0

5

10

15

20

25

30

35

40

45

50

Gflop/s

FFT-based stencils

Reservoir Labs GTC – 23 September 2010

• Comparison against Intel’s MKL on a few radar applications:

31

x86 multicore (cont.)

MVDR-SER CSLC-LMS CSLC-RLS

Dual E5405 Xeon 2.0 GHz with 9 GB, Linux 2.6.25 (x86-64). R-Stream 3.1.2
GCC 4.3.0 (“-O6 -fno-trapping-math -ftree-vectorize -msse3 -fopenmp” flags)
ICC 11.0 (with “-fast -openmp” flags).
Intel MKL 10.2.1.

Reservoir Labs GTC – 23 September 2010 32

Tilera results

Matrix-matrix multiply
4096x4096, 7x8 tiles

Polynomial multiplication
N=32768, 7x8 tiles

R-Stream Locality opt Gop/s Speedup

N N 0.048 1

Y N 2.273 47X

Y Y 3.416 71.2X

R-Stream Locality opt Gop/s Speedup

N N 0.013 1

Y N 0.272 21.3X

Y Y 8.104 634X

0

0.2

0.4

0.6

0.8

1

1.2

Floating Point (SW Gflop/s)Integer

TileExpressPro-20G

Reservoir Labs GTC – 23 September 2010

• R-Stream simplifies software development and maintenance

• Porting: reduces expense and delivery delays

• Does this by automatically parallelizing loop code
• While optimizing for data locality, coalescing, etc.

• Addresses broad range of applications
• Dense loop-intensive computations

• Promise of this technology
• Meet or exceed what you can do by hand

33

Conclusion

Reservoir Labs GTC – 23 September 2010 34

Questions

	A Programming Model and Tool for Automatic High-Performance C to CUDA Mapping
	The (general) problem
	Outline
	Approach: R-Stream, an Automatic C Parallelizer
	Does this work ?
	R-Stream: overview of the compilation process
	(Very) rough overview of the mapping process
	R-Stream: Style-based programming and polyhedral IR for loop-based code
	Outline
	CUDA - What is needed
	Main goals of the mapping process
	Distinctive parts of mapping process
	Trading off parallelism, locality and coalescing
	Tradeoff Example
	Tradeoff Example (cont.)
	Tradeoff Example (cont.)
	Advanced task formation and placement
	Coalesced data movement
	Multi-GPU - Hierarchical mapping
	Machine model example: multi-Tesla
	Performance Results
	Performance Results
	Performance Results
	Outline
	x86 multicore
	x86 multicore (cont.)
	Tilera results
	Conclusion
	Questions

