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PREVIOUS WORK

2 Most of the studies so far have been done on low-
level operations:

= GEMM (see Demmel/\olkov SCO8 paper)
= Factorizations

2 Only one case has studied the acceleration of multi-
frontal solvers (I/IT SEC 2007)

= But not done with a commerical software package like
Abaqus

2 SC'08 Demo (with Gene Poole)
= More, as of GTC 2010!?
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OVERVIEW

= Introduction: multi-frontal solvers

2 Acceleware factorization library

= |nterfacing with Abagqus
= The LDLT factorization
= Kernels

= Results

2 Discussion / Conclusion



MULTI-FRONTAL SOLVERS

2 Direct sparse solvers
2 Often chosen for:
= Reliability
= Accuracy
= Robustness
2 Parallelized
= Shared memory (fine grain: factorization level)
= Distributed memory (coarse grain: independent fronts)
2 Goal: factorization of a large sparse matrix
= Factorize small dense matrices using LDLT
= Assemble these dense matrices



MULTIFRONTAL SOLVER DEPENDENCY TREE
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= Many fronts are small and independent

Courtesy Steve Ashcraft
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FRONTS DISTRIBUTION: SIZ€
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MODeEL US€ED

1 Block engine model

2 ABAQUS’ s4b
Benchmark

o Static analysis
= Displacement
T T A T N = Realistic model
= Size(3.2m dofs)
= Complexity
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FRONTS DISTRIBUTION: FACTORIZATION TIME
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= Most of the time is spent factorizing large fronts
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INTEGRATION WITHIN ABAQUS
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2 As not all the fronts are suited for GPU computation, several

thresholds are used ;\
. Upper Limit

A A A A Max. GPU Memory
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2 ABAQUS 6.X integration
= Dynamic library replacement
= Command-line option




PERFORMANCE: LDU FACTORIZATION
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= Performance on Windows 7 (C1060) and Linux (C2030)

(GFLOPS with respect to front size)
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LDU FACTORIZATION

o A=LDLT
A:real symmetric matrix

L: lower triangular, unit-
diagonal

D: diagonal matrix
A overwritten by L and D
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"LEFT-LOOKING”
LDU" FACTORIZATION




"RIGHT-LOOKING"

LDU" FACTORIZATION

= Relying on matrix-matrix
multiplication (BLAS3)
= Very parallel

= Implementation notes

= Matrices stored in Z-order on GPU
for better memory accesses

= This storage leads to better cache
utilization for diagonal (1)

= Packing/unpacking to compact
column-major format is done on
the host; ie: host format different
than under the API

= (1) Diagonal
factorization
On CPU

= (2) Non-diagonal
factorization (column)

2 (3) Right-looking update
GEMMLD* LT
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MAXIMUM SUPPORTED FRONT SIZe?
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Complete and LD
partial sums
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OVERALL RESULTS

Job name Size (dofs) FLOPS Overall
Speed-up

S4b 3.2 million 1.03e13 3.0X 2.0X
suspension

S4a 631 thousand 4.34e11 1.8 X 1.2/%
Customer #1 1.5 million 1.70e13 3.7 X 23X
Customer #2 3.7 million 1.68e13 3.4 X 20X

o Dell T5500, dual-socket Xeon E5530 (2.4GHz), 48 GB
o 4 Nehalem™* cores versus 4 Nehalem™* cores + C2050

= " dual-socket machine (8 physical cores), but 4 cores saturate
= Allthe tested models are realistic: Large number of small fronts, few large
fronts
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PERFORMANCE ANALYSIS

2 Even if most fronts are still factorized on
the CPU, we can get acceleration!

= Speed-up versus 2-cores is up to 4x

= As only the factorization is accelerated,
Amdahl's law Is a limiting factor

2 Other parts need to be acceleratedto
provide even greater performance:

« Forward/backward solve
fﬁacceleware (19)
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THE "SPIN”

2 What are the alternatives to get 2-3X7

= Faster CPU (Limited by Memory BW)
= 4-way or 8-way node (Big SMP); not cheap
= Amdahl's law
2 The value of a “day” or an “engineer’
= Design iterations
= Time-to-market

2 High-end GPU already installed/required



CONCLUSION

2 Afast GEMM is used to obtain acceleration
= Butitis not enough!

2 Tight integration with the whole solver is needed
= Replacing the CPU BLAS calls by GPU BLAS callsis not enough

= Raw performance numbers cannot be matched if one does not think about
communication (PCI-Express bandwidth: 6GB/s!)

2 Useas much parallelism as possible

= Have the GPU and the CPU collaborate rather than compete: both work on parts
that are optimized for their architecture

= Use asynchronism: communications, parallel GPU/CPU execution

2 |nfluence of the model on performance
= [fthere are too many small fronts, the GPU cannot compete with a modern CPU

A = acceleware @)



EASY
QUESTIONS?

Contact: Ryan Schneider
Chief Technology Officer
Email: ryan.schneider@acceleware.com

Phone: +1.403.249.9099 x202
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