Faster Simulations of the
National Airspace System

PK Menon

Monish Tandale
Sandy Wiraatmadja
Optimal Synthesis Inc.

Joseph Rios
NASA Ames Research Center

NVIDIA GPU Technology Conference 2010, San Jose, CA

e 06 Future ATM Concepts Evaluation Tool (FACET)
Animation Simulation Airspace Aircraft Applications Help

7/17/2006 04:00 EDT

Research Achievements

Parallelized trajectory prediction code of a high-fidelity
airspace simulator

Ported parallel implementation to CUDA architecture

Gained 240X speed-up over original implementation

24-hour simulation with 35,000 aircraft
completed under 2.5 seconds

Outline

Background

— Air Traffic Management overview

— Airspace Simulations

— Traffic Flow Management

Accelerating simulations for Traffic Flow Management

Research

Porting code to Compute Unified Device Architecture
Experimental results

Concluding remarks

BACKGROUND

Air Traffic Management

Simulating Air Traffic

FACET: Future ATM (Air Traffic Management) Concepts Evaluation Tool
Java front end, C back end

Takes traffic and weather data as input
Works in one of two modes: Simulation or Playback

In Simulation Mode, position of each aircraft propagated forward through
calculations at each time step

Through GUI or an API, user can query or modify state of simulation

Traffic Flow Management Problem Definition < :

* Given a set of scheduled flights and a set of capacity values,
how should those flights be held to minimize delay costs
while respecting capacities?

Search for solutions involves simulation of air traffic to build
schedules and check capacity violations

Future ATM Concepts Evaluation Tool (FACET) is powerful,
commonly-used simulator

ACCELERATING
SIMULATIONS FOR
TRAFFIC FLOW
MANAGEMENT RESEARCH

Computational Appliance for Rapid Prediction of
Aircraft Trajectories (CARPAT)

Client 1

Current State, Cluster Servers with

Flight Plans, High Performance GPUs
Aircraft Type

>

Internet

Client 2 CARPAT

Accelerating Simulations of Traffic Flow

* Software Profiling and Tuning

* Parallelization
— Cluster Implementation
— Multi-Core Implementation

— GPU Implementation
* GPU as a co-processor

e GPU as the primary processor

Software Profiling and Tuning

Measure
Performance

ime-based rronle

/ N\ AMD
Validate CodeAnalyst

Changes o o Change \ Identify

Compare Trajectory Program Hot-gp .
Results with = SPO

Baseline Code \ /

Identify
Cause

Optimized table lookup, optimized linked list management, elimination of
redundant calculations in case of no change of state.

3.1X faster

Cluster Implementation

Distribute computational load
between multiple processors
connected over a high-speed
network

FACET cluster implementation
using Java RMI
Max acceleration

— Without data assembly at
Master: 4.8x (10 slaves)

— With data assembly at Master:
2.4x (12 slaves)

Acceleration with software
tuning included:

5.3X faster

REMOTE REMOTE
CLIENT1 CLIENT2

MASTER NODE CARAT # Master Server
/N —

A|r<?raft Aircraft Scheduler Functions
List Involving

AALL s Aircraft
AAL2 cs. i
AAL3 cs4

CD&R, MIT

AALS cs

Simulation

Run Control Propagated

Aircraft
Trajectories

Propagate
Aircraft

CARAT # CARAT # CARAT # CARAT #
Server 1 Server 2 Server3 Server4

SLAVE NODES Multi-Core/

Multi-Processor
Machine

Multi-Threaded FACET Implementation

Propagate aircraft for a single time step in parallel
Divide aircraft list into N sub-lists for a N-core processor

Run propagation loop over each sub-list concurrently in
separate threads

Implemented using POSIX threads

8.0X faster

PARALLELIZING TRAFFIC
FLOW SIMULATION FOR A
GPU

Using the GPU as a Coprocessor

Compute Intensive
kernels
Simultaneous
propagation of all aircraft

PCl-Express

Main Processor * Co-Processor
(NVIDIA
Graphics Card)

GPU Implementation of sim inBoundary - :

Code Profile: functions that consumed most amount of runtime
sim inBoundary: Check whether a point is inside a polygon

Ray Casting Algorithm

kx

X

N —ad

Data access time > time reduced by parallel computation over edges

Number of edges is small

24-hour simulation: 26 minutes

10X slower

GPU as the Primary Processor

* Parallelization lesson learned
— Want significant run time for single call

— Need minimum amount of data transfer between host and GPU

* Propagation of every aircraft for single time step?

Need for a new Trajectory Predictor

 FACET: Mixed C and Java Application
 FACET: Aircraft data contained in linked lists
Develop CARPAT Trajectory Predictor completely in C

TRAJECTORY PREDICTOR

Trajectory Predictor

* Flight data input: FACET track file

TRACK JBU222 A320 422700 853000 498 370 93 ZAU ZAU23
FP_ROUTE LGB./.PMM.J70.LVZ.LENDYS5.JFK

* Aircraft performance data: BADA (Base of Aircraft Data)

e Airspace data such as airports, named waypoints, airways,
sector boundary data, etc.

Trajectory Predictor Model

Calculation of great-circle heading between waypoints of the flight plan

_ sm@-meosth)
sin(A,) * cos(4,) - sin(4,) * cos(4,) * cos(t, —T,) J

Y = tan_l(

Latitude propagation

j = g 4 LeCOSW)

(R +h)

Longitude propagation

S Ve sin(@y)

(R + h)cos(A,)

Ground speed
Altitude propagation

hy=h +h-At

Climb/descent rate

Trajectory Output Data

Flight data at every 30-second interval:

Time since the start of simulation (seconds)

Flight mode (Preflight, Climb, Cruise, Descent, Landed)
Latitude (degrees): -90 to +90: North positive
Longitude (degrees): -180 to +180: East positive
Altitude (feet)

True air speed (knots)

Altitude rate (feet/second)

Heading angle (degrees)

Flight path angle (degrees)

Sector Index

Multicore Trajectory Predictor

* Automatically detects number of cores on the computer
* Splits aircraft into lists to run in parallel on different cores

e Runtimes for 24-hour simulation

Threads Propagation Time (s) Propagation Time (s) Propagation Speed up Trajectory output file
w/o thread affinity w/ thread affinity over single thread writing (s)

65.47 66.31 - 36.96
55.88 37.57 1.76X 24.69
63.41 24.76 2.22X 18.81
65.66 24.76 2.68X 14.91

PORTING CODE TO CUDA

Obstacles to GPU Implementation

Integer and Single-Precision Floating Point supported
Dynamic memory allocation inside a structure is not allowed
Host functions cannot be called from the device functions
Recursive functions are not allowed

Linked Lists cannot be used

Trajectory Predictor Data Storage

All aircraft data is stored in global memory, because read/
write access is needed

Must minimize high-latency memory access
Each aircraft has a large trajectory data structure

Use streams to hide the latency

Trajectory Data Streaming: GPU To Host

Host Memory

AC List 1
Trajectory AC List 2
DEE!

Data Streaming
(6 Time-Step Data)

Trajectory Propagation
Data Buffers Code

-

Trajectory Data Streaming: GPU To Host

e Streams

— Memory transfer and kernel execution of each list must happen sequentially,
but memory transfer and kernel execution of separate lists can happen
simultaneously

— Requires asynchronous memory transfer

* Asynchronous Memory Transfer
— Does not block CPU computations by default
— CPU computations be blocked using cudaStreamSynchronize ()

— Host memory has to reside in the page-locked (pinned) memory

Timeline Comparison

» After the trajectory data in GPU is full (6 time-step propagations):

WITHOUT STREAMS

Trajectory Data From Previous 6 Time Steps
MemepY |
kernel I

WITH STREAMS

async memcpy
kernel I |

TIME

Memory Optimization

* Coalescing global memory access of aircraft data
— Original implementation: array of structures

— Modified Implementation: independent arrays for each field

Tt 1t1
t1 t0o t1 t2
Original : prevents Modified: leads to coalescing

coalescing
(size of structure is large)

* Use registers to avoid redundant memory transfers,
whenever possible

— Registers are limited, use caution when allocating them

Optimization of Parallelization

* Increase parallelization
— Limiting the number of registers allows bigger blocks and improves
thread parallelism
* Minimize branching within a warp
— Reducing the if-else statements and while loops whenever possible

— Performance lookup
* Index is based on altitude, found using a ‘while’ loop

* Instead, altitude table has 500-foot intervals, can be calculated:

500

index = ﬂoor(

current_altitude)

CUDA Profile Summary

memcpyDtoHasync()

_ propagateSingleAircraftKernel()

memcpyHtoD()

20 30 40

Percentage of total GPU time

EXPERIMENTAL RESULTS

GPU Hardware

* GeForce 9800 GT (112 cores) * TeslaC-1060 (240 cores)

GPU Comparison

GeForce 9800GT

Tesla C 1060

Cores

Processor clock
Dedicated memory
Memory clock

Memory interface width
Memory bandwidth

112

900 MHz
0.5 GB
900 MHz
256 bit
57.6 GB/s

240

1300 MHz
4 GB

800 MHz
912 bit
102 GB/s

Simulation time

418 s

1.7X faster

242 s

GPU Implementation Results

Implementation Runtime (s) Speed-up Speed-up Speed-up w.r.t.
w.r.t. FACET w.r.t. CPU Multi-threaded

Original FACET 586.9
Trajectory Predictor (CPU) 46.6
Trajectory Predictor (Multi-threaded) | 24.5 1.9X

Trajectory Predictor (GPU) 2.4 19.2X 10.1X

243X faster

POTENTIAL USES

Monte Carlo Simulations

* There is uncertainty in traffic flow management

* Many models for traffic flow management are deterministic

* Many uncertainties have been quantified in previous research

Predicted trdffic

and weather |
Find optimal,
deterministic schedule |

Perturb solution
based on known

distributions : :
Determine quality of

Take statistics original solution in the

CARPAT simulates
face of uncertainty

perturbed
schedule

Applications in Other Domains

* Traffic flow analysis of other transportation systems

— Automobile
— Train

— Space

* Job-shop scheduling

CONCLUDING REMARKS

Research Achievements

Parallelized trajectory prediction code of a high-fidelity
airspace simulator

Ported parallel implementation to CUDA architecture

Gained 240X speed-up over original implementation

24-hour simulation with 35,000 aircraft
completed under 2.5 seconds

Questions!

Joseph.L.Rios@nasa.gov
NASA Ames Research Center

P. K. Menon, Monish D. Tandale & Sandy Wiraatmadja
Optimal Synthesis Inc.

BACKUP SLIDES

Effect of Wind Along Track

Latitude

0 Way Point (n+1)

Longitude

Incorporating RUC Weather Data

RUC: Rapid Update Cycle: NOAA/NCEP weather forecast

— |3 km resolution, 50 Vertical Levels

Wind Data: u & v components of the wind (Lambert Conformal
Projection)
— At a given |3km grid cell for a geopotential height

Convert to True North and True East Wind Components at a given
(Lat, Lon, Alt)

Script to Download and Automatically Store RUC Data Files from the
NOAA Website

|dentifying the Current Sector for every Aircraft at

every Time Step

Bounding Box 1

Bounding Box 2

Check if Aircraft in Sector
* Check Within Bounding Box
* Ray Casting Algorithm

Lat/Lon Grid

RN
Il

L
e

Bounding Boxes

3D Hash Map: 2° Lat, 2° Lon, 1000 ft.

For every cell, store all sectors whose
bounding boxes overlap the cell

Results of Sector ldentification Code

ey
2]
T

ey
D

N
n

Lattitude (deg)
Lattitude (deg)
i AN
(@] N
T

w
@
T

w
()

==
N

i i i I i | i
-105 -100 -92 -90 -88 -86 -84
Longitude (deg) Longitude (deg)

Sequence of Sectors Sequence of Sectors
Traversed by Flight NWA1715 Traversed by Flight AAY462

Modeling Traffic Flow

* Aggregate models
— Flights aggregated into flows
— Optimal controls determine rates for entering/exiting flights
— Solution needs disaggregation for implementation in reality

— In general, computationally efficient

* Aircraft-level models
— Controls considered for each flight
— Solution is “implementation ready”

— In general, computationally difficult

* Both approaches rely on airspace simulations

