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Research Achievements


•  Parallelized trajectory prediction code of a high-fidelity 
airspace simulator


•  Ported parallel implementation to CUDA architecture


•  Gained 240X speed-up over original implementation


24-hour simulation with 35,000 aircraft 
completed under 2.5 seconds 
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BACKGROUND




Air Traffic Management




Simulating Air Traffic


•  FACET:  Future ATM (Air Traffic Management) Concepts Evaluation Tool

•  Java front end, C back end


•  Takes traffic and weather data as input


•  Works in one of two modes: Simulation or Playback

•  In Simulation Mode, position of each aircraft propagated forward through 

calculations at each time step

•  Through GUI or an API, user can query or modify state of simulation




Traffic Flow Management Problem Definition


•  Given a set of scheduled flights and a set of capacity values, 
how should those flights be held to minimize delay costs 
while respecting capacities?


•  Search for solutions involves simulation of air traffic to build 
schedules and check capacity violations


•  Future ATM Concepts Evaluation Tool (FACET) is powerful, 
commonly-used simulator 




ACCELERATING 
SIMULATIONS FOR 
TRAFFIC FLOW 
MANAGEMENT RESEARCH�



Computational Appliance for Rapid Prediction of 
Aircraft Trajectories (CARPAT)




Accelerating Simulations of Traffic Flow


•  Software Profiling and Tuning


•  Parallelization

–  Cluster Implementation

–  Multi-Core Implementation


–  GPU Implementation

•  GPU as a co-processor


•  GPU as the primary processor




•  Optimized table lookup, optimized linked list management, elimination of 
redundant calculations in case of no change of state.


Software Profiling and Tuning


3.1X faster 



Cluster Implementation 


•  Distribute computational  load 
between multiple processors 
connected over a high-speed 
network


•  FACET cluster implementation 
using Java RMI


•  Max acceleration

–  Without data assembly at 

Master: 4.8x (10 slaves)

–  With data assembly at Master: 

2.4x (12 slaves)


•  Acceleration with software 
tuning included:


5.3X faster 



Multi-Threaded FACET Implementation


•  Propagate aircraft for a single time step in parallel


•  Divide aircraft list into N sub-lists for a N-core processor 


•  Run propagation loop over each sub-list concurrently in 
separate threads


•  Implemented using POSIX threads


8.0X faster 



PARALLELIZING TRAFFIC 
FLOW SIMULATION FOR A 
GPU




Using the GPU as a Coprocessor


FACET 



GPU Implementation of sim_inBoundary


•  Code Profile: functions that consumed most amount of runtime

•  sim_inBoundary: Check whether a point is inside a polygon


•  Ray Casting Algorithm


•  Number of edges is small


•  Data access time > time reduced by parallel computation over edges


•  24-hour simulation:  26 minutes


10X slower 



GPU as the Primary Processor


•  Parallelization lesson learned

–  Want significant run time for single call

–  Need minimum amount of data transfer between host and GPU


•  Propagation of every aircraft for single time step?


Need for a new Trajectory Predictor


•  FACET: Mixed C and Java Application


•  FACET: Aircraft data contained in linked lists


•  Develop CARPAT Trajectory Predictor completely in C




TRAJECTORY PREDICTOR




Trajectory Predictor


•  Flight data input: FACET track file


•  Aircraft performance data: BADA (Base of Aircraft Data)


•  Airspace data such as airports, named waypoints, airways, 
sector boundary data, etc.


TRACK JBU222 A320 422700 853000 498 370 93 ZAU ZAU23 
    FP_ROUTE LGB./.PMM.J70.LVZ.LENDY5.JFK 



Trajectory Predictor Model


–  Calculation of great-circle heading between waypoints of the flight plan


–  Latitude propagation


–  Longitude propagation


–  Ground speed


–  Altitude propagation


–  Climb/descent rate
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Trajectory Output Data


Flight data at every 30-second interval:


•  Time since the start of simulation (seconds)

•  Flight mode (Preflight, Climb, Cruise, Descent, Landed)

•  Latitude (degrees): -90 to +90: North positive

•  Longitude (degrees): -180 to +180: East positive

•  Altitude (feet) 


•  True air speed (knots) 


•  Altitude rate (feet/second)

•  Heading angle (degrees) 


•  Flight path angle (degrees)


•  Sector Index




Multicore Trajectory Predictor


•  Automatically detects number of cores on the computer


•  Splits aircraft into lists to run in parallel on different cores

•  Runtimes for 24-hour simulation


# Threads Propagation Time (s) 
w/o thread affinity 

Propagation Time (s) 
w/ thread affinity 

Propagation Speed up 
over single thread 

Trajectory output file 
writing (s) 

1 65.47 66.31 - 36.96 

2 55.88 37.57 1.76X 24.69 

3 63.41 24.76 2.22X 18.81 

4 65.66 24.76 2.68X 14.91 



PORTING CODE TO CUDA




Obstacles to GPU Implementation


•  Integer and Single-Precision Floating Point supported


•  Dynamic memory allocation inside a structure is not allowed


•  Host functions cannot be called from the device functions


•  Recursive functions are not allowed


•  Linked Lists cannot be used 




Trajectory Predictor Data Storage


•  All aircraft data is stored in global memory, because read/
write access is needed


•  Must minimize high-latency memory access


•  Each aircraft has a large trajectory data structure


•  Use streams to hide the latency




Trajectory Data Streaming: GPU To Host


Host Memory GPU 

GPU Memory 
Trajectory 
Data 

Trajectory 
Data Buffers 

Propagation  
Code 

Data Streaming 
(6 Time-Step Data) 

AC List 1 
AC List 2 



Trajectory Data Streaming: GPU To Host 


•  Streams

–  Memory transfer and kernel execution of each list must happen sequentially, 

but memory transfer and kernel execution of separate lists can happen 
simultaneously


–  Requires asynchronous memory transfer


•  Asynchronous Memory Transfer

–  Does not block CPU computations by default 

–  CPU computations be blocked using cudaStreamSynchronize() 
–  Host memory has to reside in the page-locked (pinned) memory




Timeline Comparison 


•  After the trajectory data in GPU is full (6 time-step propagations):


memcpy 

kernel 

WITHOUT STREAMS 

WITH STREAMS 
async memcpy 

kernel 

Stream 0 Stream 1 

Stream 0 Stream 1 

TIME 

Trajectory Data From Previous 6 Time Steps 



Memory Optimization


•  Coalescing global memory access of aircraft data

–  Original implementation: array of structures


–  Modified Implementation: independent arrays for each field


•  Use registers to avoid redundant memory transfers, 
whenever possible

–  Registers are limited, use caution when allocating them


 t0  t1  t0  t1  t2 

 . . 
. 

Original : prevents 
coalescing 

(size of structure is large) 

Modified: leads to coalescing 



Optimization of Parallelization


•  Increase parallelization

–  Limiting the number of registers allows bigger blocks and improves 

thread parallelism


•  Minimize branching within a warp

–  Reducing the if-else statements and while loops whenever possible


–  Performance lookup

•  Index is based on altitude, found using a ‘while’ loop

•  Instead, altitude table has 500-foot intervals, can be calculated:
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CUDA Profile Summary


0 10 20 30 40 50 60 70 

memcpyDtoHasync() 

propagateSingleAircraftKernel() 

memcpyHtoD() 

Percentage of total GPU time




EXPERIMENTAL RESULTS




GPU Hardware


•  GeForce 9800 GT (112 cores)
 •  TeslaC-1060 (240 cores)




GPU Comparison


GeForce 9800GT Tesla C 1060 
# Cores 112 240 
Processor clock 900 MHz 1300 MHz 
Dedicated memory 0.5 GB 4 GB 
Memory clock 900 MHz 800 MHz 
Memory interface width 256 bit 512 bit 
Memory bandwidth 57.6 GB/s 102 GB/s 
Simulation time 4.18 s 2.42 s 

1.7X faster 



GPU Implementation Results


Implementation Runtime (s) Speed-up 
w.r.t. FACET 

Speed-up 
w.r.t. CPU 

Speed-up w.r.t.     
Multi-threaded 

Original FACET 586.9 

Trajectory Predictor (CPU) 46.6 12.6X 

Trajectory Predictor (Multi-threaded) 24.5 23.9X 1.9X 

Trajectory Predictor (GPU) 2.4 242.5X 19.2X 10.1X 

243X faster 



POTENTIAL USES




Monte Carlo Simulations


•  There is uncertainty in traffic flow management


•  Many models for traffic flow management are deterministic

•  Many uncertainties have been quantified in previous research


Predicted traffic 
and weather


Find optimal, 
deterministic schedule


Perturb solution 
based on known 
distributions


CARPAT simulates 
perturbed 
schedule


Take statistics

Determine quality of 
original solution in the 
face of uncertainty




Applications in Other Domains


•  Traffic flow analysis of other transportation systems

–  Automobile

–  Train


–  Space


•  Job-shop scheduling




CONCLUDING REMARKS




Research Achievements


•  Parallelized trajectory prediction code of a high-fidelity 
airspace simulator


•  Ported parallel implementation to CUDA architecture


•  Gained 240X speed-up over original implementation


24-hour simulation with 35,000 aircraft 
completed under 2.5 seconds 



Questions?


Joseph.L.Rios@nasa.gov


NASA Ames Research Center


P. K. Menon, Monish D. Tandale & Sandy Wiraatmadja

Optimal Synthesis Inc.




BACKUP SLIDES




Effect of Wind Along Track

•  Reading True North and True East Wind Components from the RUC File


44 



Incorporating RUC Weather Data


•  RUC: Rapid Update Cycle: NOAA/NCEP  weather forecast 

–  13 km resolution, 50 Vertical Levels


•  Wind Data: u & v components of the wind (Lambert Conformal 
Projection) 

–  At a given 13km grid cell for a geopotential height 


•  Convert to True North and True East Wind Components at a given  
(Lat, Lon, Alt)


•  Script to Download and Automatically Store RUC Data Files from the 
NOAA Website




Identifying the Current Sector for every Aircraft at 
every Time Step


Check if Aircraft in Sector 

•  Check Within Bounding Box


•  Ray Casting Algorithm


•  3D Hash Map:  2° Lat, 2° Lon, 1000 ft.


•  For every cell, store all sectors whose 
bounding boxes overlap the cell




Results of Sector Identification Code
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Sequence of Sectors 
Traversed by Flight AAY462 

Sequence of Sectors 
Traversed by Flight NWA1715 



Modeling Traffic Flow


•  Aggregate models

–  Flights aggregated into flows


–  Optimal controls determine rates for entering/exiting flights

–  Solution needs disaggregation for implementation in reality


–  In general, computationally efficient


•  Aircraft-level models

–  Controls considered for each flight


–  Solution is “implementation ready”


–  In general, computationally difficult


•  Both approaches rely on airspace simulations



