
Faster Simulations of the �
National Airspace System

PK Menon

Monish Tandale

Sandy Wiraatmadja

Optimal Synthesis Inc.

Joseph Rios

NASA Ames Research Center

NVIDIA GPU Technology Conference 2010, San Jose, CA

Research Achievements

•  Parallelized trajectory prediction code of a high-fidelity
airspace simulator

•  Ported parallel implementation to CUDA architecture

•  Gained 240X speed-up over original implementation

24-hour simulation with 35,000 aircraft
completed under 2.5 seconds

Outline

•  Background

–  Air Traffic Management overview

–  Airspace Simulations

–  Traffic Flow Management

•  Accelerating simulations for Traffic Flow Management
Research

•  Porting code to Compute Unified Device Architecture

•  Experimental results

•  Concluding remarks

BACKGROUND

Air Traffic Management

Simulating Air Traffic

•  FACET: Future ATM (Air Traffic Management) Concepts Evaluation Tool

•  Java front end, C back end

•  Takes traffic and weather data as input

•  Works in one of two modes: Simulation or Playback

•  In Simulation Mode, position of each aircraft propagated forward through

calculations at each time step

•  Through GUI or an API, user can query or modify state of simulation

Traffic Flow Management Problem Definition

•  Given a set of scheduled flights and a set of capacity values,
how should those flights be held to minimize delay costs
while respecting capacities?

•  Search for solutions involves simulation of air traffic to build
schedules and check capacity violations

•  Future ATM Concepts Evaluation Tool (FACET) is powerful,
commonly-used simulator

ACCELERATING
SIMULATIONS FOR
TRAFFIC FLOW
MANAGEMENT RESEARCH�

Computational Appliance for Rapid Prediction of
Aircraft Trajectories (CARPAT)

Accelerating Simulations of Traffic Flow

•  Software Profiling and Tuning

•  Parallelization

–  Cluster Implementation

–  Multi-Core Implementation

–  GPU Implementation

•  GPU as a co-processor

•  GPU as the primary processor

•  Optimized table lookup, optimized linked list management, elimination of
redundant calculations in case of no change of state.

Software Profiling and Tuning

3.1X faster

Cluster Implementation

•  Distribute computational load
between multiple processors
connected over a high-speed
network

•  FACET cluster implementation
using Java RMI

•  Max acceleration

–  Without data assembly at

Master: 4.8x (10 slaves)

–  With data assembly at Master:

2.4x (12 slaves)

•  Acceleration with software
tuning included:

5.3X faster

Multi-Threaded FACET Implementation

•  Propagate aircraft for a single time step in parallel

•  Divide aircraft list into N sub-lists for a N-core processor

•  Run propagation loop over each sub-list concurrently in
separate threads

•  Implemented using POSIX threads

8.0X faster

PARALLELIZING TRAFFIC
FLOW SIMULATION FOR A
GPU

Using the GPU as a Coprocessor

FACET

GPU Implementation of sim_inBoundary

•  Code Profile: functions that consumed most amount of runtime

•  sim_inBoundary: Check whether a point is inside a polygon

•  Ray Casting Algorithm

•  Number of edges is small

•  Data access time > time reduced by parallel computation over edges

•  24-hour simulation: 26 minutes

10X slower

GPU as the Primary Processor

•  Parallelization lesson learned

–  Want significant run time for single call

–  Need minimum amount of data transfer between host and GPU

•  Propagation of every aircraft for single time step?

Need for a new Trajectory Predictor

•  FACET: Mixed C and Java Application

•  FACET: Aircraft data contained in linked lists

•  Develop CARPAT Trajectory Predictor completely in C

TRAJECTORY PREDICTOR

Trajectory Predictor

•  Flight data input: FACET track file

•  Aircraft performance data: BADA (Base of Aircraft Data)

•  Airspace data such as airports, named waypoints, airways,
sector boundary data, etc.

TRACK JBU222 A320 422700 853000 498 370 93 ZAU ZAU23
 FP_ROUTE LGB./.PMM.J70.LVZ.LENDY5.JFK

Trajectory Predictor Model

–  Calculation of great-circle heading between waypoints of the flight plan

–  Latitude propagation

–  Longitude propagation

–  Ground speed

–  Altitude propagation

–  Climb/descent rate

€

h2 = h1 + ˙ h ⋅ Δt

€

˙ h
€

VG

Trajectory Output Data

Flight data at every 30-second interval:

•  Time since the start of simulation (seconds)

•  Flight mode (Preflight, Climb, Cruise, Descent, Landed)

•  Latitude (degrees): -90 to +90: North positive

•  Longitude (degrees): -180 to +180: East positive

•  Altitude (feet)

•  True air speed (knots)

•  Altitude rate (feet/second)

•  Heading angle (degrees)

•  Flight path angle (degrees)

•  Sector Index

Multicore Trajectory Predictor

•  Automatically detects number of cores on the computer

•  Splits aircraft into lists to run in parallel on different cores

•  Runtimes for 24-hour simulation

Threads Propagation Time (s)
w/o thread affinity

Propagation Time (s)
w/ thread affinity

Propagation Speed up
over single thread

Trajectory output file
writing (s)

1 65.47 66.31 - 36.96

2 55.88 37.57 1.76X 24.69

3 63.41 24.76 2.22X 18.81

4 65.66 24.76 2.68X 14.91

PORTING CODE TO CUDA

Obstacles to GPU Implementation

•  Integer and Single-Precision Floating Point supported

•  Dynamic memory allocation inside a structure is not allowed

•  Host functions cannot be called from the device functions

•  Recursive functions are not allowed

•  Linked Lists cannot be used

Trajectory Predictor Data Storage

•  All aircraft data is stored in global memory, because read/
write access is needed

•  Must minimize high-latency memory access

•  Each aircraft has a large trajectory data structure

•  Use streams to hide the latency

Trajectory Data Streaming: GPU To Host

Host Memory GPU

GPU Memory
Trajectory
Data

Trajectory
Data Buffers

Propagation
Code

Data Streaming
(6 Time-Step Data)

AC List 1
AC List 2

Trajectory Data Streaming: GPU To Host

•  Streams

–  Memory transfer and kernel execution of each list must happen sequentially,

but memory transfer and kernel execution of separate lists can happen
simultaneously

–  Requires asynchronous memory transfer

•  Asynchronous Memory Transfer

–  Does not block CPU computations by default

–  CPU computations be blocked using cudaStreamSynchronize()
–  Host memory has to reside in the page-locked (pinned) memory

Timeline Comparison

•  After the trajectory data in GPU is full (6 time-step propagations):

memcpy

kernel

WITHOUT STREAMS

WITH STREAMS
async memcpy

kernel

Stream 0 Stream 1

Stream 0 Stream 1

TIME

Trajectory Data From Previous 6 Time Steps

Memory Optimization

•  Coalescing global memory access of aircraft data

–  Original implementation: array of structures

–  Modified Implementation: independent arrays for each field

•  Use registers to avoid redundant memory transfers,
whenever possible

–  Registers are limited, use caution when allocating them

 t0 t1 t0 t1 t2

 . .
.

Original : prevents
coalescing

(size of structure is large)

Modified: leads to coalescing

Optimization of Parallelization

•  Increase parallelization

–  Limiting the number of registers allows bigger blocks and improves

thread parallelism

•  Minimize branching within a warp

–  Reducing the if-else statements and while loops whenever possible

–  Performance lookup

•  Index is based on altitude, found using a ‘while’ loop

•  Instead, altitude table has 500-foot intervals, can be calculated:

€

index = floor
current_altitude

500








CUDA Profile Summary

0 10 20 30 40 50 60 70

memcpyDtoHasync()

propagateSingleAircraftKernel()

memcpyHtoD()

Percentage of total GPU time

EXPERIMENTAL RESULTS

GPU Hardware

•  GeForce 9800 GT (112 cores)
 •  TeslaC-1060 (240 cores)

GPU Comparison

GeForce 9800GT Tesla C 1060
Cores 112 240
Processor clock 900 MHz 1300 MHz
Dedicated memory 0.5 GB 4 GB
Memory clock 900 MHz 800 MHz
Memory interface width 256 bit 512 bit
Memory bandwidth 57.6 GB/s 102 GB/s
Simulation time 4.18 s 2.42 s

1.7X faster

GPU Implementation Results

Implementation Runtime (s) Speed-up
w.r.t. FACET

Speed-up
w.r.t. CPU

Speed-up w.r.t.
Multi-threaded

Original FACET 586.9

Trajectory Predictor (CPU) 46.6 12.6X

Trajectory Predictor (Multi-threaded) 24.5 23.9X 1.9X

Trajectory Predictor (GPU) 2.4 242.5X 19.2X 10.1X

243X faster

POTENTIAL USES

Monte Carlo Simulations

•  There is uncertainty in traffic flow management

•  Many models for traffic flow management are deterministic

•  Many uncertainties have been quantified in previous research

Predicted traffic
and weather

Find optimal,
deterministic schedule

Perturb solution
based on known
distributions

CARPAT simulates
perturbed
schedule

Take statistics

Determine quality of
original solution in the
face of uncertainty

Applications in Other Domains

•  Traffic flow analysis of other transportation systems

–  Automobile

–  Train

–  Space

•  Job-shop scheduling

CONCLUDING REMARKS

Research Achievements

•  Parallelized trajectory prediction code of a high-fidelity
airspace simulator

•  Ported parallel implementation to CUDA architecture

•  Gained 240X speed-up over original implementation

24-hour simulation with 35,000 aircraft
completed under 2.5 seconds

Questions?

Joseph.L.Rios@nasa.gov

NASA Ames Research Center

P. K. Menon, Monish D. Tandale & Sandy Wiraatmadja

Optimal Synthesis Inc.

BACKUP SLIDES

Effect of Wind Along Track

•  Reading True North and True East Wind Components from the RUC File

44

Incorporating RUC Weather Data

•  RUC: Rapid Update Cycle: NOAA/NCEP weather forecast

–  13 km resolution, 50 Vertical Levels

•  Wind Data: u & v components of the wind (Lambert Conformal
Projection)

–  At a given 13km grid cell for a geopotential height

•  Convert to True North and True East Wind Components at a given
(Lat, Lon, Alt)

•  Script to Download and Automatically Store RUC Data Files from the
NOAA Website

Identifying the Current Sector for every Aircraft at
every Time Step

Check if Aircraft in Sector

•  Check Within Bounding Box

•  Ray Casting Algorithm

•  3D Hash Map: 2° Lat, 2° Lon, 1000 ft.

•  For every cell, store all sectors whose
bounding boxes overlap the cell

Results of Sector Identification Code

47

Sequence of Sectors
Traversed by Flight AAY462

Sequence of Sectors
Traversed by Flight NWA1715

Modeling Traffic Flow

•  Aggregate models

–  Flights aggregated into flows

–  Optimal controls determine rates for entering/exiting flights

–  Solution needs disaggregation for implementation in reality

–  In general, computationally efficient

•  Aircraft-level models

–  Controls considered for each flight

–  Solution is “implementation ready”

–  In general, computationally difficult

•  Both approaches rely on airspace simulations

