
NRL
Unstructured	
 Finite	
 Volume	
 Code	
 on	
 a	

Cluster	
 with	
 Mul6ple	
 GPUs	
 per	
 Node	

Keith	
 Obenschain	
 &	
 Andrew	
 Corrigan	

Laboratory	
 for	
 Computa;onal	
 Physics	
 and	
 Fluid	
 Dynamics	

Naval	
 Research	
 Laboratory	

Washington	
 DC,	
 20375	

NRL Mayhem	
 GPU	
 Cluster	

Overview	

•  Division	
 Machine	

– Balance	
 both	
 CPU	
 and	
 GPU	
 requirements	
 for	
 all	

users	

•  Each	
 node	
 can	
 be	
 configured	
 as	
 prototype	

field-­‐deployable	
 system	

– Difficult	
 to	
 deploy	
 a	
 typical	
 HPC	
 machine	
 in	
 the	

field	

– Severely	
 reduced	
 power	
 and	
 cooling	
 requirements	

– Single/mul6ple	
 4U	
 nodes	
 with	
 mul6ple	
 GPUs	
 a	

poten6al	
 solu6on	

NRL Mayhem	
 GPU	
 Cluster	

Overview	

•  Balanced	
 System	

–  Fast	
 CPUs	
 (Intel)	

–  Fast	
 IO	
 internally	

– Mul6ple	
 GPUs	
 per	
 compute	
 node	

–  Fast	
 IO	
 across	
 compute	
 nodes	
 (40	
 Gbps	
 Infiniband)	

•  Node	
 Choices	

– Available	
 chipsets	
 have	
 36	
 PCI	
 Express	
 Lanes	
 (2	
 x16	

slots	
 +	
 1	
 x4)	

•  Choice	
 of	
 1	
 GPU	
 and	
 1	
 Infiniband	
 Card	
 or	
 2	
 GPUs	
 with	
 full	

bandwidth	

•  Use	
 PLX	
 chip	
 share	
 PCI	
 Express	
 lanes	
 	

– Mul6ple	
 Chipset	
 systems	
 available	
 	

NRL Mayhem	
 Cluster	

Details	

•  24	
 Compute	
 Nodes	

–  Super	
 Micro	
 X8DTG-­‐QF	
 Dual	
 Socket	
 Motherboard	

–  4	
 PCI	
 Express	
 2.0	
 x16	
 Slots	

–  4U	
 Chassis	
 to	
 accommodate	
 a	
 wide	
 variety	
 of	
 GPUs	
 and	

interconnects	

–  Intel	
 X5650	
 6	
 Cores	
 @	
 2.67	
 Ghz	
 with	
 12	
 MB	
 L3	
 Cache	

–  24	
 GB	
 DDR	
 1333	
 memory	

–  2	
 GPUs	
 (2	
 Tesla	
 C2050	
 or	
 2	
 GTX	
 480	
 GPUs)	

–  QLogic	
 QDR	
 Infiniband	

•  1	
 Infiniband	
 card	
 in	
 GTX	
 480	
 Nodes	

•  2	
 Infiniband	
 cards	
 in	
 Tesla	
 Nodes	

–  36	
 Port	
 QLogic	
 QDR	
 Switch	

–  Centos	
 5.5	
 (Diskless)	

–  CUDA	
 3.1	

NRL Motherboard	
 Interconnect	

Overview	

• 	
 NUMA	
 architecture	

• 	
 Two	
 Intel	
 5520	
 Chipsets	
 provide	
 4	
 x16	
 PCI	
 Express	
 2.0	
 Slots	

• 	
 Non-­‐Uniform	
 Access	
 to	
 GPUs/Chipsets	

• 	
 Must	
 go	
 through	
 an	
 addi6onal	
 QPI	
 link	
 if	
 GPU	
 is	
 not	
 associated	
 with	
 the	

processor’s	
 chipset	

System Memory
DDR 1333
Socket 1

 Intel X5650
Socket 1 DDR3

Q
PI

Intel 5520
I/O Chipset

Fermi GPU
Tesla C2050 or

GTX 480M
x16

System Memory
DDR 1333
Socket 0

Intel X5650
Socket 0DDR3

Q
PI

Intel 5520
I/O Chipset

Fermi GPU
Tesla C2050 or

GTX 480M
x16

QLogic QDR
Infiniband
(40 Gpbs)

x16

QPI

QPI

25.6 GB/sec
Bidirectional

25.6 GB/sec
Bidirectional

25.6 GB/sec
Bidirectional

16 GB/sec
Bidirectional

16 GB/sec
Bidirectional

16 GB/sec
Bidirectional

25.6 GB/sec
Bidirectional

QLogic QDR
Infiniband
(40 Gpbs)

x16

16 GB/sec
Bidirectional

NRL

System Memory
DDR 1333
Socket 1

 Intel X5650
Socket 1 DDR3

Q
PI

Intel 5520
I/O Chipset

Fermi GPU
Tesla C2050 or

GTX 480M
x16

System Memory
DDR 1333
Socket 0

Intel X5650
Socket 0DDR3

Q
PI

Intel 5520
I/O Chipset

Fermi GPU
Tesla C2050 or

GTX 480M
x16

QLogic QDR
Infiniband
(40 Gpbs)

x16

QPI

QPI

25.6 GB/sec
Bidirectional

25.6 GB/sec
Bidirectional

25.6 GB/sec
Bidirectional

16 GB/sec
Bidirectional

16 GB/sec
Bidirectional

16 GB/sec
Bidirectional

25.6 GB/sec
Bidirectional

QLogic QDR
Infiniband
(40 Gpbs)

x16

16 GB/sec
Bidirectional

Op6mal	
 communica6on	

• 	
 Processor	
 and	
 memory	
 affinity	
 should	
 be	
 enabled	

• 	
 Process	
 started	
 on	
 a	
 CPU	
 should	
 select	
 a	
 GPU	
 connected	
 to	
 the	
 CPU’s	
 chipset	

• 	
 Before	
 we	
 op6mize	
 performance	
 across	
 nodes,	
 we	
 need	
 to	
 op6mize	
 one	
 node	
 first	

• 	
 Is	
 this	
 really	
 important?	

NRL
Host<-­‐>Device	
 Bandwidth	
 Tests	

•  Measure	
 transfer	
 rate	
 of	
 data	
 between	
 CPU	
 and	
 GPU	

memory	

–  N	
 CPU	
 to	
 GPU	
 memory	
 transfers	
 followed	
 by	
 N	
 GPU	
 to	
 CPU	
 transfers	

–  CPU	
 to	
 GPU	
 memory	
 transfer	
 followed	
 by	
 a	
 GPU	
 to	
 CPU	
 transfer	
 repeated	
 N	

6mes	

•  Bandwidth	
 test	
 developed	
 for	
 GPU	
 Direct	
 modified	
 to	

run	
 on	
 mul6ple	
 GPU’s	

–  Using	
 Pinned	
 Memory	

•  OpenMPI’s	
 processor/memory/socket	
 affinity	
 u6lized	

to	
 configure	
 op6mal	
 and	
 non-­‐op6mal	
 memory/GPU	

selec6on	

•  Tested	
 with/without	
 socket	
 affinity	
 and	
 non-­‐op6mal	

configura6ons	

•  Tested	
 with	
 a	
 node	
 configured	
 with	
 4	
 Tesla	
 C2050	
 GPUs	

NRL
Segng	
 CPU	
 Affinity	
 under	
 Linux	

•  OpenMPI	
 has	
 a	
 rich	
 set	
 of	
 op6ons	
 to	
 set	

affinity	

–  Ability to set memory/core/socket affinity

Example:
 mpirun --mca mpi_paffinity_alone 1
-bind-to-core –npersocket 1 –np 4
command

•  Use	
 “taskset”	
 to	
 set	
 CPU	
 affinity	
 for	
 single	

processor	
 tasks	
 	

NRL Total	
 Host	
 to	
 Device	
 Bandwidth	

(CPU	
 to	
 GPU)	

!"

#"

$!"

$#"

%!"

%#"

$" $!" $!!" $!!!" $!!!!" $!!!!!"

!
"#
$%
&'
()

*

$+,%*+(*-"*

.'/0123%4+&%*567(/8%6*

%"&'()*"+'(",-./01"

%"&'()*"23",-./01"

4"&'()*"+'(",-./01"

4"&'()*"23",-./01"

•  Host	
 to	
 Device	
 bandwidth	
 scaling	
 is	
 reasonable	
 if	
 CPU	
 affinity	
 is	
 enabled	

NRL Total	
 Device	
 to	
 Host	
 Bandwidth	

(GPU	
 to	
 CPU)	

!"

#"

$"

%"

&"

'!"

'#"

'$"

'" '!" '!!" '!!!" '!!!!" '!!!!!"

!
"#
$%
&'
()

*

$+,%*+(*-"*

.%/+&%012'34*567(38%6*

#"()*+,"-)*"./0123"

#"()*+,"45"./0123"

$"()*+,"-)*"./0123"

$"()*+,"45"./0123"

•  For	
 larger	
 messages,	
 GPU	
 to	
 CPU	
 transfer	
 becomes	
 saturated	
 even	
 with	
 one	
 GPU	

NRL

!"

#"

$"

%"

&"

'!"

'#"

'$"

'%"

'&"

'" '!" '!!" '!!!" '!!!!" '!!!!!"

!
"#
$%
&'
()

*

$+,%*+(*-"*

.'/0123%4+&%*567(/8%6*

#"()*+,"-)*"./0123"

#"()*+,"45"./0123"

$"()*+,"-)*"./0123"

$"()*+,"45"./0123"

Total	
 Device	
 to	
 Host	
 Bandwidth	

Interleaved	
 with	
 CPU	
 to	
 GPU	
 Transfer	

•  Overall	
 performance	
 less	
 when	
 CPU-­‐>GPU	
 and	
 GPU-­‐>CPU	
 are	
 interleaved	

NRL

!"

#"

$"

%"

&"

'!"

'#"

'$"

'%"

'&"

'" '!" '!!" '!!!" '!!!!" '!!!!!"

!
"#
$%
&'
()

*

$+,%*+(*-"*

.%/+&%012'34*567(38%6*

#"()*+,"-)*"./0123"

#"()*+,"45"./0123"

$"()*+,"-)*"./0123"

$"()*+,"45"./0123"

Total	
 Host	
 to	
 Device	
 Bandwidth	

Interleaved	
 with	
 GPU	
 to	
 CPU	
 Transfer	

NRL
QPI	
 Bandwidth	

•  Are	
 the	
 more	
 expensive	
 chips	
 necessary?	

•  Tested	
 with	
 QPI	
 Speeds	
 of	
 4.8,	
 5.86	
 and	
 6.4	

GT/sec	

•  N	
 CPU	
 to	
 GPU	
 memory	
 transfers	
 followed	
 by	
 N	

GPU	
 to	
 CPU	
 transfers	

•  Test	
 with	
 2	
 and	
 4	
 GPUs	

•  CPU	
 Affinity	
 Set	

NRL
QPI	
 Test:	
 2	
 GPUs	

!"

#"

$"

%"

&"

'!"

'#"

'$"

'" '!" '!!" '!!!" '!!!!" '!!!!!"

!
"#
$%
&'

$()%'(*'+"'

,-.'/%01'2'!-30'

()*+,-)*".$/&-01"

-)*+,()*".$/&-01"

()*+,-)*".2/&%-01"

-)*+,()*".2/&%-01"

()*+,-)*".%/$-01"

-)*+,()*".%/$-01"

•  CPU-­‐>GPU	
 Tests	
 almost	
 iden6cal	

•  For	
 larger	
 messages	
 GPU-­‐>CPU	
 QPI	
 speed	
 limited	

transfers	

NRL
QPI	
 Test:	
 4	
 GPUs	

•  Difference	
 in	
 QPI	
 speed	
 is	
 approximately	
 the	
 same	
 as	

measured	
 difference	
 in	
 bandwidth	
 for	
 both	
 CPU-­‐>GPU	
 and	

GPU-­‐>CPU	
 transfers	

!"

#"

$!"

$#"

%!"

%#"

$" $!" $!!" $!!!" $!!!!" $!!!!!"

!
"#
$%
&'

$()%'(*'+"'

,-.'/%01'2'!-30'

&'()*+'(",-./+01"

+'()*&'(",-./+01"

&'()*+'(",#./2+01"

+'()*&'(",#./2+01"

&'()*+'(",2.-+01"

+'()*&'(",2.-+01"

NRL
TBD	
 –	
 A	
 New	
 CFD	
 Solver	

•  A	
 new	
 CFD	
 solver	
 is	
 under	
 development	
 at	

NRL	
 for	
 supersonic	
 jet	
 noise	
 and	
 other	
 high-­‐
speed	
 compressible	
 flow	
 problems.	

NRL
Solver	
 Features	

•  Solves	
 the	
 Euler	
 equa6ons	

for	
 inviscid,	
 compressible	

flow.	

•  The	
 equa6ons	
 are	

discre6zed	
 using	
 the	
 finite	

volume	
 method.	

•  Computes	
 fluxes	
 using	

Flux-­‐Corrected	
 Transport	
 to	

achieve	
 monotonicity	

while	
 limi6ng	
 excessive	

diffusion	
 	
 	

•  Extensible	
 to	
 other	
 physics	

and	
 numerical	
 methods.	

NRL
Solver	
 Features	

•  Implemented	
 in	
 C++	
 using	
 templates.	

•  Opera6ons	
 are	
 performed	
 using	
 standard	

algorithms	
 provided	
 by	
 either:	

–  The	
 C++	
 Standard	
 Library	
 and	
 Boost	
 to	
 allow	
 for	

portable	
 C++	
 code.	

–  Thrust	
 to	
 achieve	
 GPU	
 and	
 mul6-­‐core	
 CPU	

paralleliza6on	

–  This	
 allows	
 for	
 a	
 unified	
 GPU-­‐CPU	
 codebase.	

•  Uses	
 MPI	
 to	
 achieve	
 mul6-­‐CPU/GPU	

paralleliza6on.	

NRL
Solver	
 Features	

•  Arbitrary	
 mesh	
 geometry	
 needed	
 to	

support	
 complex	
 jet	
 nozzle	
 geometry	

–  Arbitrary	
 face	
 shapes	

–  Arbitrary	
 cell	
 shapes:	
 tetrahedral,	

hexahedral,	
 pyramids,	
 etc.	

Arbitrary	
 mesh	
 topology	

Unstructured	
 grids	
 (to	
 allow	
 for	
 complex	
 geometry).	

Structured	
 grids	
 (to	
 reduce	
 storage	
 and	
 bandwidth	

usage).	

NRL
Finite	
 Volume	
 Discre6za6on	

•  The	
 domain	
 geometry	
 is	
 discre6zed	
 into	
 cells,	

forming	
 a	
 mesh.	

A	
 NACA	
 0012	
 mesh	

NRL
Finite	
 Volume	
 Discre6za6on	

•  The	
 flow	
 field	
 is	
 integrated	
 in	
 6me	
 by	

exchanging	
 fluxes	
 across	
 faces,	
 as	
 governed	

by	
 the	
 Euler	
 equa6ons.	

NRL
Implementa6on	

•  Conserved	
 flow	
 quan66es	
 are	
 stored	
 at	
 the	

cell	
 centers	
 of	
 the	
 mesh.	

ρ,	
 ρU,	
 ρE	
 ρ,	
 ρU,	
 ρE	

NRL
Implementa6on	

•  Flow	
 quan66es	
 are	
 interpolated	
 from	
 the	
 cells	

onto	
 the	
 faces.	

•  A	
 flux	
 is	
 computed	
 and	
 integrated	
 and	
 the	

conserved	
 variables	
 are	
 updated.	

ρ,	
 ρU,	
 ρE	
 ρ,	
 ρU,	
 ρE	
 F(ρ,ρU,ρE)	

NRL
Implementa6on	

•  All	
 computa6on	
 is	
 performed	
 by	
 either:	

– Looping	
 over	
 cells	
 and	
 upda6ng	
 the	
 cell	
 values	

•  Runge-­‐Kura	
 Time	
 integra6on	

– Looping	
 over	
 faces,	
 and	
 gathering	
 and	
 scarering	

cell	
 values	
 between	
 adjacent	
 cells	

•  Flux	
 calcula6on	

ρ,	
 ρU,	
 ρE	
 ρ,	
 ρU,	
 ρE	
 F(ρ,ρU,ρE)	

NRL
Implementa6on	

•  All	
 algorithms	
 are	
 expressed	
 in	
 terms	
 of:	

1  Func9on	
 objects	
 which	
 represent	
 opera6ons	
 on	
 a	

per-­‐cell	
 or	
 per-­‐face	
 basis	

2  Iterators	
 which	
 provide	
 input	
 and	
 output	
 to	
 these	

opera6ons.	

3  Data	
 parallel	
 primi9ves	
 (copy,	
 transform,	

for_each)	
 perform	
 these	
 opera6ons	
 over	
 a	
 range	

of	
 values	
 specified	
 by	
 iterators,	
 and	
 are	
 used	
 to	

implement	
 loops	
 over	
 the	
 cells	
 and	
 faces.	

NRL
Euler	
 flux	
 surface	
 integra6on	

template<typename State> !
struct integrates_euler_flux !
: public unary_function<tuple<State,State,Vector>, State> !
{ !
 typedef typename lcp_traits<State>::StateFlux StateFlux; !
 typedef typename lcp_traits<State>::Vector Vector; !

 inline __device__ __host__!
 State operator()(tuple<State, State, Vector> input) const!
 { !
 State state_owner = get<0>(input); !
 State state_nghbr = get<1>(input); !
 Vector Sf = get<2>(input); !

 State state_surf = interpolate_linear(state_owner, state_nghbr); !
 Scalar p_surf = compute_p(state_surf); !
 Vector U_surf = compute_U(state_surf); !

 StateFlux state_flux = compute_state_convective_flux(U_surf, state_surf); !

 // grad(p)!
 add_to_diagonal(get<1>(state_flux), p_surf); !

 // div(pU)!
 get<2>(state_flux) += p_surf*U_surf; !

 return State(get<0>(state_flux) & Sf, !
 get<1>(state_flux) & Sf, !
 get<2>(state_flux) & Sf); !
 } !
}; !

Input:	
 Euler	
 state	
 at	

each	
 adjacent	
 cell,	

the	
 face	
 normal.	

Interpolates	
 to	
 the	

face,	
 derives	
 pressure	

and	
 velocity.	

Computes	
 the	

convec6ve	
 flux	
 and	

pressure	
 terms	

Returns	
 the	
 flux	

integrated	
 over	
 the	

surface	

NRL Shared	
 Memory	
 Parallelism:	

	
 GPUs	
 and	
 CPUs	

•  Portability	
 is	
 achieved	
 using	
 	
 the	
 Standard	
 C++	

Library	
 and	
 Boost:	
 any	
 platorm	
 with	
 a	
 C++	

compiler	
 can	
 compile	
 and	
 run	
 the	
 code.	

•  Analogous	
 implementa6ons	
 of	
 these	

algorithms	
 are	
 provided	
 by	
 the	
 Thrust	
 library	

to	
 run	
 on	
 mul6-­‐core	
 CPUs	
 and	
 many-­‐core	

GPUs.	

NRL Shared	
 Memory	
 Parallelism:	

Coloring	

•  A	
 face	
 coloring	
 is	
 used	
 to	

group	
 faces	
 which	
 can	
 be	

safely	
 be	
 processed	
 in	

parallel.	

ρ,	
 ρU,	
 ρE	
 ρ,	
 ρU,	
 ρE	
 F(ρ,ρU,ρE)	

ρ,	
 ρU,	
 ρE	

ρ,	
 ρU,	
 ρE	

NRL Distributed	
 Memory	
 Parallelism:	

	
 Mul6	
 GPUs	
 and	
 CPUs	

•  Jet	
 noise	
 problems	
 require	

enormous	
 meshes.	

•  Requires	
 mul6-­‐CPU/GPU	

paralleliza6on.	

•  Special	
 boundary	
 condi6ons	
 are	

implemented	
 which	
 make	
 MPI	

calls	
 to	
 exchange	
 data	
 across	

processor	
 boundaries	

•  MPI	
 support	
 is	
 en6rely	
 orthogonal	

to	
 shared	
 memory	
 mul6core	
 CPU/
GPU	
 paralleliza6on.	

•  The	
 code	
 can	
 run	
 either	
 in	
 a	

number	
 of	
 configura6ons	

–  MPI	

–  MPI	
 +	
 CUDA	

–  MPI	
 +	
 OpenMP	
 A	
 par66oned	
 NACA	
 0012	
 mesh	

NRL
Performance	
 Results	

• Performance	
 was	
 measured	
 on	
 a	
 benchmark	

NACA	
 0012	
 air	
 foil	
 case.	

• Two	
 mesh	
 sizes,	
 1	
 million	
 and	
 11	
 million	

elements.	

NRL
Performance	
 Results	

GTX	
 480	
 achieves	

roughly	
 a	
 factor	
 of	
 4	

over	
 the	
 X5650	
 6-­‐core	

processor	

The	
 Fermi	
 C2050	

achieves	
 roughly	
 a	

factor	
 of	
 2	

performance	
 over	

the	
 X5650	
 	

Double	
 precision,	
 1	
 million	
 cells	

NRL
Performance	
 Results	

GTX	
 480	
 achieves	

roughly	
 a	
 factor	
 of	
 4	

over	
 the	
 X5650	
 6-­‐core	

processor	

The	
 Fermi	
 C2050	

achieves	
 roughly	
 a	

factor	
 of	
 2	

performance	
 over	

the	
 X5650	
 	

Single	
 precision,	
 11	
 million	
 cells	

NRL
Conclusions/Future	
 Work	

•  Good	
 scaling	
 achieved	
 with	
 a	
 3D	
 unstructured	

grid	
 code	
 across	
 many	
 nodes	
 on	
 a	
 GPU	
 cluster.	

•  The	
 code	
 appears	
 to	
 be	
 memory	
 bandwidth	

bound.	

– Numbering	
 schemes	
 for	
 mee6ng	
 coalescing	

requirements	
 on	
 unstructured	
 grids	
 are	
 needed.	

•  Con6nued	
 development	
 of	
 the	
 physics	

capabili6es	

NRL
Conclusions/Future	
 Work	

•  CPU	
 affinity	
 must	
 be	
 set	
 for	
 op6mal	
 transfer	

performance	

•  One	
 GPU	
 per	
 CPU	
 scales	
 linearly	

•  Open	
 Issue:	
 Performance	
 with	
 mul6ple	
 GPUs	

per	
 chipset	
 	

•  Test	
 GPU	
 Direct/Node	
 to	
 Node	
 Bandwidth	

– Allows	
 for	
 Pinned	
 memory	
 enabled	
 for	
 both	
 GPU	

and	
 Infiniband	
 Buffers	

NRL
Acknowledgements	

•  The	
 code	
 was	
 developed	
 in	
 collabora6on	
 with	

Johann	
 Dahm	
 (University	
 of	
 Michigan	
 and	

NRL)	

•  Rainald	
 Löhner	
 (George	
 Mason	
 University)	
 for	

the	
 NACA	
 0012	
 mesh.	

•  Work	
 was	
 funded	
 by	
 Office	
 of	
 Naval	
 Research	

and	
 Naval	
 Research	
 Laboratory	

