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Mayhem GPU Cluster
Overview

e Division Machine

— Balance both CPU and GPU requirements for all
users

* Each node can be configured as prototype
field-deployable system
— Difficult to deploy a typical HPC machine in the
field
— Severely reduced power and cooling requirements

— Single/multiple 4U nodes with multiple GPUs a
potential solution
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Mayhem GPU Cluster
Overview

* Balanced System
— Fast CPUs (Intel)
— Fast 10 internally
— Multiple GPUs per compute node
— Fast 10 across compute nodes (40 Gbps Infiniband)

* Node Choices

— Available chipsets have 36 PCl Express Lanes (2 x16
slots + 1 x4)

* Choice of 1 GPU and 1 Infiniband Card or 2 GPUs with full
bandwidth

e Use PLX chip share PCl Express lanes
— Multiple Chipset systems available
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Mayhem Cluster

Details

* 24 Compute Nodes
— Super Micro X8DTG-QF Dual Socket Motherboard
— 4 PCl Express 2.0 x16 Slots

— 4U Chassis to accommodate a wide variety of GPUs and
interconnects

— Intel X5650 6 Cores @ 2.67 Ghz with 12 MB L3 Cache
— 24 GB DDR 1333 memory
— 2 GPUs (2 Tesla C2050 or 2 GTX 480 GPUs)

— QLogic QDR Infiniband
* 1 Infiniband card in GTX 480 Nodes
* 2 Infiniband cards in Tesla Nodes

— 36 Port QLogic QDR Switch
— Centos 5.5 (Diskless)

— CUDA 3.1
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Motherboard Interconnect
Overview
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* NUMA architecture

* Two Intel 5520 Chipsets provide 4 x16 PCI Express 2.0 Slots

* Non-Uniform Access to GPUs/Chipsets

* Must go through an additional QPI link if GPU is not associated with the
processor’s chipset
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Optimal communication
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* Processor and memory affinity should be enabled
* Process started on a CPU should select a GPU connected to the CPU’s chipset

» Before we optimize performance across nodes, we need to optimize one node firs

LCP
* Is this really important?
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Host<->Device Bandwidth Tests

Measure transfer rate of data between CPU and GPU

memory
— N CPU to GPU memory transfers followed by N GPU to CPU transfers

— CPU to GPU memory transfer followed by a GPU to CPU transfer repeated N
times

Bandwidth test developed for GPU Direct modified to
run on multiple GPU’s

— Using Pinned Memory

OpenMPI’s processor/memory/socket affinity utilized

to configure optimal and non-optimal memory/GPU
selection

Tested with/without socket affinity and non-optimal
configurations

Tested with a node configured with 4 Tesla C2050 GPUs
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G NRL
Setting CPU Affinity under Linux

 OpenMPI has a rich set of options to set
affinity
— Ability to set memory/core/socket affinity
Example:
mpirun --mca mpi_paffinity_alone 1
-bind-to-core —npersocket 1 —np 4
command

e Use “taskset” to set CPU affinity for single
processor tasks
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*  Host to Device bandwidth scaling is reasonable if CPU affinity is enabled ‘ LCP ﬂ
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*  Forlarger messages, GPU to CPU transfer becomes saturated even with one GPU
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Total Device to Host Bandwidth

Interleaved with CPU to GPU Transfer
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QPI Bandwidth

* Are the more expensive chips necessary?

* Tested with QPI Speeds of 4.8, 5.86 and 6.4
GT/sec

* N CPU to GPU memory transfers followed by N
GPU to CPU transfers

e Test with 2 and 4 GPUs
 CPU Affinity Set

LCP
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QPI Test: 2 GPUs

QPI Test 2 GPUs
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I
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e CPU->GPU Tests almost identical

* For larger messages GPU->CPU QPI speed limited
transfers
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QPI Test: 4 GPUs
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* Difference in QPI speed is approximately the same as

measured difference in bandwidth for both CPU->GPU anc
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TBD — A New CFD Solver

* A new CFD solver is under development at
NRL for supersonic jet noise and other high-
speed compressible flow problems.




Solver Features

* Solves the Euler equations
for inviscid, compressible
flow.

* The equations are
discretized using the finite

volume method.
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Solver Features

* Implemented in C++ using templates.

* Operations are performed using standard
algorithms provided by either:

— The C++ Standard Library and Boost to allow for
portable C++ code.

— Thrust to achieve GPU and multi-core CPU
parallelization

— This allows for a unified GPU-CPU codebase.

* Uses MPI to achieve multi-CPU/GPU
parallelization.

LCP
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Solver Features

* Arbitrary mesh geometry needed to
support complex jet nozzle geometry

— Arbitrary face shapes

— Arbitrary cell shapes: tetrahedral,
hexahedral, pyramids, etc.

Arbitrary mesh topology
Unstructured grids (to allow for complex geometry).
Structured grids (to reduce storage and bandwidth
usage).
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Finite Volume Discretization

* The domain geometry is discretized into cells,
forming a mesh.
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Finite Volume Discretization

* The flow field is integrated in time by
exchanging fluxes across faces, as governed
by the Euler equations.

d
—/udﬂ—i—/F-ndI‘zO
dt Jq I
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Implementation

* Conserved flow quantities are stored at the
cell centers of the mesh.




Implementation

* Flow quantities are interpolated from the cells
onto the faces.

* A fluxis computed and integrated and the
conserved variables are updated.




Implementation
e All computation is performed by either:

— Looping over cells and updating the cell values
* Runge-Kutta Time integration

— Looping over faces, and gathering and scattering
cell values between adjacent cells
* Flux calculation




Implementation

e All algorithms are expressed in terms of:

1 Function objects which represent operations on a
per-cell or per-face basis

2 lterators which provide input and output to these
operations.

3 Data parallel primitives (copy, transform,
for _each) perform these operations over a range
of values specified by iterators, and are used to
implement loops over the cells and faces.

LCP




Euler flux surface integration

Input: EuIer state at template<typename State>
struct integrates_euler_flux
. : public unary_function<tuple<State,State,Vector>, State>
each adjacent cell, i
typedef typename lcp_traits<State>::StateFlux StateFlux;
the face normal. typedef typename lcp_traits<State>::Vector Vector;
inline __device__ _ host__
State operator()(tuple<State, State, Vector> input) const
{
— State state_owner = get<0>(input);
Interpolates to the B

face, derives pressure e~

StateFlux state_flux = compute_state_convective_flux(U_surf, state_surf);

Computes the
convective flux and

// div(pU)
pressure terms get<2>(state_flux) += p_surfxU_surf;

// grad(p)
add_to_diagonal(get<l>(state_flux), p_surf);

t State(get<0>(state_flux) & Sf,
| geteto(state flm) & SF.
get<2>(state_flux) & Sf);
Returns the flux _
integrated over the
surface

Lcpe
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Shared Memory Parallelism:
GPUs and CPUs

* Portability is achieved using the Standard C++
Library and Boost: any platform with a C++
compiler can compile and run the code.

* Analogous implementations of these
algorithms are provided by the Thrust library
to run on multi-core CPUs and many-core
GPUs.

LCP
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@ .
" Shared Memory Parallelism:

Coloring

e A face coloring is used to
group faces which can be
safely be processed in
parallel.




'NRbistributed Memory Parallelism:
Multi GPUs and CPUs

* Jet noise problems require
enormous meshes.

* Requires multi-CPU/GPU
parallelization.

* Special boundary conditions are
implemented which make MPI
calls to exchange data across
processor boundaries

 MPI support is entirely orthogonal
to shared memory multicore CPU/
GPU parallelization.

* The code can run eitherina
number of configurations

— MPI

— MPI + CUDA U
A partitioned NACA 0012 mesh — MPI + OpenMP A




Performance Results

*Performance was measured on a benchmark

NACA 0012 air foil case.
*Two mesh sizes, 1 million and 11 million

elements.




Performance Results

Double precision, 1 million cells
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Performance Results

Single precision, 11 million cells
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Conclusions/Future Work

* Good scaling achieved with a 3D unstructured
grid code across many nodes on a GPU cluster.

* The code appears to be memory bandwidth

bound.

— Numbering schemes for meeting coalescing
requirements on unstructured grids are needed.

* Continued development of the physics
capabilities
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Conclusions/Future Work

CPU affinity must be set for optimal transfer
performance

One GPU per CPU scales linearly

Open Issue: Performance with multiple GPUs

per chipset
Test GPU Direct/Node to Node Bandwidth

— Allows for Pinned memory enabled for both GPU

and Infiniband Buffers
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