EGINRL
Unstructured Finite Volume Code on a
Cluster with Multiple GPUs per Node

Keith Obenschain & Andrew Corrigan

Laboratory for Computational Physics and Fluid Dynamics
Naval Research Laboratory
Washington DC, 20375

Mayhem GPU Cluster
Overview

e Division Machine

— Balance both CPU and GPU requirements for all
users

* Each node can be configured as prototype
field-deployable system
— Difficult to deploy a typical HPC machine in the
field
— Severely reduced power and cooling requirements

— Single/multiple 4U nodes with multiple GPUs a
potential solution

LCP

Mayhem GPU Cluster
Overview

* Balanced System
— Fast CPUs (Intel)
— Fast 10 internally
— Multiple GPUs per compute node
— Fast 10 across compute nodes (40 Gbps Infiniband)

* Node Choices

— Available chipsets have 36 PCl Express Lanes (2 x16
slots + 1 x4)

* Choice of 1 GPU and 1 Infiniband Card or 2 GPUs with full
bandwidth

e Use PLX chip share PCl Express lanes
— Multiple Chipset systems available

LCP

Mayhem Cluster

Details

* 24 Compute Nodes
— Super Micro X8DTG-QF Dual Socket Motherboard
— 4 PCl Express 2.0 x16 Slots

— 4U Chassis to accommodate a wide variety of GPUs and
interconnects

— Intel X5650 6 Cores @ 2.67 Ghz with 12 MB L3 Cache
— 24 GB DDR 1333 memory
— 2 GPUs (2 Tesla C2050 or 2 GTX 480 GPUs)

— QLogic QDR Infiniband
* 1 Infiniband card in GTX 480 Nodes
* 2 Infiniband cards in Tesla Nodes

— 36 Port QLogic QDR Switch
— Centos 5.5 (Diskless)

— CUDA 3.1

LCP

Motherboard Interconnect
Overview

25.6 GB/sec
Bidirectional
System Memory
DDR 1333 DDR3 '”é‘f)'c)égfgo '”Stg'c)k(fffo DDR3
Socket 0
25.6 GB/sec ' © 25.6 GB/sec = ©
Bidirectional i) Bidirectional = B
16 GB/sec 16 GB/sec
Bidirectional Bidirectional
Fermi GPU
Tesla C2050 or x16 é?aﬁiﬁésnea‘; x16
GTX 480M
Intel 5520 Intel 5520
I/0 Chipset I/0 Chipset
QLogic QDR
Infiniband x16 x16
(40 Gpbs)
16 GB/sec 16 GB/sec
Bidirectional ‘s T Bidirectional

* NUMA architecture

* Two Intel 5520 Chipsets provide 4 x16 PCI Express 2.0 Slots

* Non-Uniform Access to GPUs/Chipsets

* Must go through an additional QPI link if GPU is not associated with the
processor’s chipset

System Memory

DDR 1333
Socket 1

Fermi GPU
Tesla C2050 or
GTX 480M

QLogic QDR
Infiniband
(40 Gpbs)

Lcpe

Optimal communication

25.6 GB/sec
Bidirectional

System Memory
DDR 1333
Socket 0

System Memory
DDR 1333
Socket 1

Intel X5650
Socket 0

Intel X5650
Socket 1

g

25.6/GB/lsec O
Bidirectional Y

256 GB/sec @ ©
Bidirectional = B

16 GB/sec

Bidirectional
Fermi GPU Fermi GPU
Tesla C2050 or 25.6 GB/sec Tesla C2050 or
GTX 480M Bidirectional GTX 480M
Intel 5520 Intel 5520
I/0 Chipset I/0 Chipset
QLogic QDR QLogic QDR
Infiniband x16 ‘ , x16 Infiniband
(40 Gpbs) (40 Gpbs)
16 GB/sec 16 GB/sec

Bidirectional _— Bidirectional

* Processor and memory affinity should be enabled
* Process started on a CPU should select a GPU connected to the CPU’s chipset

» Before we optimize performance across nodes, we need to optimize one node firs

LCP
* Is this really important?

WACH (.
é:’ — 90,9
A 74
£y \ |)
& =
n Y
*) *
P,
SHinGToN

Host<->Device Bandwidth Tests

Measure transfer rate of data between CPU and GPU

memory
— N CPU to GPU memory transfers followed by N GPU to CPU transfers

— CPU to GPU memory transfer followed by a GPU to CPU transfer repeated N
times

Bandwidth test developed for GPU Direct modified to
run on multiple GPU’s

— Using Pinned Memory

OpenMPI’s processor/memory/socket affinity utilized

to configure optimal and non-optimal memory/GPU
selection

Tested with/without socket affinity and non-optimal
configurations

Tested with a node configured with 4 Tesla C2050 GPUs

LCP

G NRL
Setting CPU Affinity under Linux

 OpenMPI has a rich set of options to set
affinity
— Ability to set memory/core/socket affinity
Example:
mpirun --mca mpi_paffinity_alone 1
-bind-to-core —npersocket 1 —np 4
command

e Use “taskset” to set CPU affinity for single
processor tasks

LCP

RCH
Q@eﬂ Las

Q
WY

A

e

2
* *

* *
D o

Vs

NRL Total Host to Device Bandwidth
(CPU to GPU)

Host->Device Transfer

25
20
T 15
c
o
(9]
Q
v
~
m
O 10
—&—2 GPUs, CPU Affinity
5 =#= 2 GPUs, No Affinity
=¥=4 GPUs, CPU Affinity
=<= 4 GPUs, No Affinity
0
1 10 100 1000 10000 100000
Size in KB

* Host to Device bandwidth scaling is reasonable if CPU affinity is enabled ‘ LCP ﬂ

RCH (.
oL
&

Total Device to Host Bandwidth
(GPU to CPU)

N SHINGTON

14

Device->Host Transfer

12

10

B by DEEC EEby Tony S

-
g X
O
—i—2 GPUs, CPU Affinity
4 =¥- 2 GPUs, No Affinity
—8—4 GPUs, CPU Affinity
=== 4 GPUs, No Affinity
2
0
1 10 10 gizein KB %% 10000 100000

* Forlarger messages, GPU to CPU transfer becomes saturated even with one GPU

Lcpe

Total Device to Host Bandwidth

Interleaved with CPU to GPU Transfer

Host->Device Transfer

16

14

12

10

GB/Second

1 10 100 L. 1000
Size in KB

* Overall performance less when CPU->GPU and GPU->CPU are interleaved

=2 GPUs, CPU Affinity
= 4&= 2 GPUs, No Affinity
=¥=4 GPUs, CPU Affinity
== 4 GPUs, No Affinity

10000

100000

Lcpe ﬂ

Total Host to Device Bandwidth
Interleaved with GPU to CPU Transfer

GB/Second

Device->Host Transfer

18

16

14

1 JPUEp e P
‘_——
—.

10

- e e "'--.'--
,".‘_-* & “\\
& “d---4

——2 GPUs, CPU Affinity
= 4&= 2 GPUs, No Affinity
=4 GPUs, CPU Affinity
== 4 GPUs, No Affinity

1 10 100 1000 10000

Size in KB

100000

| ..«CP&

QPI Bandwidth

* Are the more expensive chips necessary?

* Tested with QPI Speeds of 4.8, 5.86 and 6.4
GT/sec

* N CPU to GPU memory transfers followed by N
GPU to CPU transfers

e Test with 2 and 4 GPUs
 CPU Affinity Set

LCP

RCH (
i LS

& D
A §/e
3 =
* *

N *
D> o
4 0,
SHINGTON,

14

QPI Test: 2 GPUs

QPI Test 2 GPUs

12

»GB/Secy

—+—CPU->GPU (4.8GT)
- GPU->CPU (4.8GT)
—4— CPU->GPU (5.86GT)
- ¥- GPU->CPU (5.86GT)
—=— CPU->GPU (6.4GT)
-®- GPU->CPU (6.4GT)

I

0
1 10 100 §jzein KB 1000 10000 100000

e CPU->GPU Tests almost identical

* For larger messages GPU->CPU QPI speed limited
transfers

Lcpe

QPI Test: 4 GPUs

25
QPI Test 4 GPUs

20] —K

——e——t—hA
15 —
3
g - —--—-W-----0---@
) .‘,:.-,e--—k'---x---x---x---x---x---x
© o’
10 B Dot ity Dt D Dl Lo it o

e

—o—CPU->GPU (4.8GT)
- %~ GPU->CPU (4.8GT)
—4— CPU->GPU (5.86GT)
=#= GPU->CPU (5.86GT)
—¥—CPU->GPU (6.4GT)
-®- GPU->CPU (6.4GT)
0

1 10 100 sjzein KB 1000 10000 100000

* Difference in QPI speed is approximately the same as

measured difference in bandwidth for both CPU->GPU anc

Lcpe

GPU->CPU transfers

* >
/A

TBD — A New CFD Solver

* A new CFD solver is under development at
NRL for supersonic jet noise and other high-
speed compressible flow problems.

Solver Features

* Solves the Euler equations
for inviscid, compressible
flow.

* The equations are
discretized using the finite

volume method.
SR 2
S v“":q’:‘,‘?f“—“"4 a7
.) O AV ATy
 Computes fluxes using o
= S
h“, ks = KT Vi BALRE?
T AN S
S S B

q
(SSE g Sy
2 Va3,
b&ﬁﬂ ﬁ'ﬁ.@% Y
Vi N AUV
s

SIS b ‘—" ':: VA e X
SAY R v e SN PTG V4 S »
Flux-Corrected Trans port 1o Feidese St e i Ll S et o
RN KIK] S YATAV SHC NSO T OGRS <A
SV A A Ny T 7 <25 N S 7
LD e avay® ARG PO

A
(] (] (] AWAT by LA RlCRY 7l Ay s

2 - SN Ay

achieve monotonicit
2K i AN N W AVatP AV Sy

7, NN
w’fgﬁg'. "Avi# "Q’gé‘%ﬁ;‘ :(V <

. 4 e V2 A
while limiting excessive AT
. . TR
diffusion

* Extensible to other physics
and numerical methods.

TSRS
[LARITS

el
WS

Solver Features

* Implemented in C++ using templates.

* Operations are performed using standard
algorithms provided by either:

— The C++ Standard Library and Boost to allow for
portable C++ code.

— Thrust to achieve GPU and multi-core CPU
parallelization

— This allows for a unified GPU-CPU codebase.

* Uses MPI to achieve multi-CPU/GPU
parallelization.

LCP

s D

< <
& ?
< %
z <!
* *
B *
5 S
4, 9,

HINGTON

Solver Features

* Arbitrary mesh geometry needed to
support complex jet nozzle geometry

— Arbitrary face shapes

— Arbitrary cell shapes: tetrahedral,
hexahedral, pyramids, etc.

Arbitrary mesh topology
Unstructured grids (to allow for complex geometry).
Structured grids (to reduce storage and bandwidth
usage).

Lcpe

Finite Volume Discretization

* The domain geometry is discretized into cells,
forming a mesh.

[
WavAVAN

N7
K

A

O AVAYAVAVAYAVav, o AYAYAV iy A W S
VAYAYAS AVAAVAVAY o AV Vet
A A TATAATAYAva e Ao b

Vava¥
atay

Vi
N

\z

AN
Vs
i,

Ay N
OANAFI KK F KN OONN KBRS
N e e KEEERE

N
TAYAVAYA Y A oY)

4
¥
AS

AN Ny
N

Y
AVAVAYAVLLSS
N\ /A

P

K

N/

A NACA 0012 I'fféa

Finite Volume Discretization

* The flow field is integrated in time by
exchanging fluxes across faces, as governed
by the Euler equations.

d
—/udﬂ—i—/F-ndI‘zO
dt Jq I

LCP

Implementation

* Conserved flow quantities are stored at the
cell centers of the mesh.

Implementation

* Flow quantities are interpolated from the cells
onto the faces.

* A fluxis computed and integrated and the
conserved variables are updated.

Implementation
e All computation is performed by either:

— Looping over cells and updating the cell values
* Runge-Kutta Time integration

— Looping over faces, and gathering and scattering
cell values between adjacent cells
* Flux calculation

Implementation

e All algorithms are expressed in terms of:

1 Function objects which represent operations on a
per-cell or per-face basis

2 lterators which provide input and output to these
operations.

3 Data parallel primitives (copy, transform,
for _each) perform these operations over a range
of values specified by iterators, and are used to
implement loops over the cells and faces.

LCP

Euler flux surface integration

Input: EuIer state at template<typename State>
struct integrates_euler_flux
. : public unary_function<tuple<State,State,Vector>, State>
each adjacent cell, i
typedef typename lcp_traits<State>::StateFlux StateFlux;
the face normal. typedef typename lcp_traits<State>::Vector Vector;
inline __device__ _ host__
State operator()(tuple<State, State, Vector> input) const
{
— State state_owner = get<0>(input);
Interpolates to the B

face, derives pressure e~

StateFlux state_flux = compute_state_convective_flux(U_surf, state_surf);

Computes the
convective flux and

// div(pU)
pressure terms get<2>(state_flux) += p_surfxU_surf;

// grad(p)
add_to_diagonal(get<l>(state_flux), p_surf);

t State(get<0>(state_flux) & Sf,
| geteto(state flm) & SF.
get<2>(state_flux) & Sf);
Returns the flux _
integrated over the
surface

Lcpe

ARCH (.

é:,e LT

&' e R
A\ /| @
&) | B
n ‘\‘ e
* iy *,

R

SHINGTON

Shared Memory Parallelism:
GPUs and CPUs

* Portability is achieved using the Standard C++
Library and Boost: any platform with a C++
compiler can compile and run the code.

* Analogous implementations of these
algorithms are provided by the Thrust library
to run on multi-core CPUs and many-core
GPUs.

LCP

INRL

@ .
" Shared Memory Parallelism:

Coloring

e A face coloring is used to
group faces which can be
safely be processed in
parallel.

'NRbistributed Memory Parallelism:
Multi GPUs and CPUs

* Jet noise problems require
enormous meshes.

* Requires multi-CPU/GPU
parallelization.

* Special boundary conditions are
implemented which make MPI
calls to exchange data across
processor boundaries

 MPI support is entirely orthogonal
to shared memory multicore CPU/
GPU parallelization.

* The code can run eitherina
number of configurations

— MPI

— MPI + CUDA U
A partitioned NACA 0012 mesh — MPI + OpenMP A

Performance Results

*Performance was measured on a benchmark

NACA 0012 air foil case.
*Two mesh sizes, 1 million and 11 million

elements.

Performance Results

Double precision, 1 million cells

1000 ¢ T T GTX 480 achieves
[—e— X5650 (6 core) double prec. |1 roughly a factor of 4
I —=—GTX 480 double prec. | -
Single Core over the X5650 6-core
100 - —= -Tesla C2050 double prec. |

processor

v
Q
O L
)]
g 0 3 The Fermi C2050
£ i] :
i achieves roughly a
factor of 2
1 |deal Scaling ; performance over
the X5650
0.1 RN .
0.1 100

110
CPUs (6-core) or # GPUs

Lcpe

Performance Results

Single precision, 11 million cells

1000 .

100 |-

Time, secs.

—
(@
T

L

T T T
Single Core

—=—GTX 480 single prec.
—= -Tesla C2050 single prec.

—e— X5650 (6 core) single prec.]

ldeal Scaling

|

0.1

N
CPUs (6-core) or # GPUs

7100

GTX 480 achieves
roughly a factor of 4
over the X5650 6-core

processor

The Fermi C2050
achieves roughly a
factor of 2
performance over
the X5650

Lcpe

Conclusions/Future Work

* Good scaling achieved with a 3D unstructured
grid code across many nodes on a GPU cluster.

* The code appears to be memory bandwidth

bound.

— Numbering schemes for meeting coalescing
requirements on unstructured grids are needed.

* Continued development of the physics
capabilities

LCP

Conclusions/Future Work

CPU affinity must be set for optimal transfer
performance

One GPU per CPU scales linearly

Open Issue: Performance with multiple GPUs

per chipset
Test GPU Direct/Node to Node Bandwidth

— Allows for Pinned memory enabled for both GPU

and Infiniband Buffers

LCP

Acknowledgements

* The code was developed in collaboration with
Johann Dahm (University of Michigan and

NRL)

e Rainald Lohner (George Mason University) for
the NACA 0012 mesh.

 Work was funded by Office of Naval Research
and Naval Research Laboratory

LCP

