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NRL Mayhem	
  GPU	
  Cluster	
  
Overview	
  

•  Division	
  Machine	
  
– Balance	
  both	
  CPU	
  and	
  GPU	
  requirements	
  for	
  all	
  
users	
  

•  Each	
  node	
  can	
  be	
  configured	
  as	
  prototype	
  
field-­‐deployable	
  system	
  
– Difficult	
  to	
  deploy	
  a	
  typical	
  HPC	
  machine	
  in	
  the	
  
field	
  

– Severely	
  reduced	
  power	
  and	
  cooling	
  requirements	
  
– Single/mul6ple	
  4U	
  nodes	
  with	
  mul6ple	
  GPUs	
  a	
  
poten6al	
  solu6on	
  



NRL Mayhem	
  GPU	
  Cluster	
  
Overview	
  

•  Balanced	
  System	
  
–  Fast	
  CPUs	
  (Intel)	
  
–  Fast	
  IO	
  internally	
  
– Mul6ple	
  GPUs	
  per	
  compute	
  node	
  
–  Fast	
  IO	
  across	
  compute	
  nodes	
  (40	
  Gbps	
  Infiniband)	
  

•  Node	
  Choices	
  
– Available	
  chipsets	
  have	
  36	
  PCI	
  Express	
  Lanes	
  (2	
  x16	
  
slots	
  +	
  1	
  x4)	
  
•  Choice	
  of	
  1	
  GPU	
  and	
  1	
  Infiniband	
  Card	
  or	
  2	
  GPUs	
  with	
  full	
  
bandwidth	
  

•  Use	
  PLX	
  chip	
  share	
  PCI	
  Express	
  lanes	
  	
  
– Mul6ple	
  Chipset	
  systems	
  available	
  	
  



NRL Mayhem	
  Cluster	
  
Details	
  

•  24	
  Compute	
  Nodes	
  
–  Super	
  Micro	
  X8DTG-­‐QF	
  Dual	
  Socket	
  Motherboard	
  
–  4	
  PCI	
  Express	
  2.0	
  x16	
  Slots	
  
–  4U	
  Chassis	
  to	
  accommodate	
  a	
  wide	
  variety	
  of	
  GPUs	
  and	
  
interconnects	
  

–  Intel	
  X5650	
  6	
  Cores	
  @	
  2.67	
  Ghz	
  with	
  12	
  MB	
  L3	
  Cache	
  
–  24	
  GB	
  DDR	
  1333	
  memory	
  
–  2	
  GPUs	
  (2	
  Tesla	
  C2050	
  or	
  2	
  GTX	
  480	
  GPUs)	
  
–  QLogic	
  QDR	
  Infiniband	
  

•  1	
  Infiniband	
  card	
  in	
  GTX	
  480	
  Nodes	
  
•  2	
  Infiniband	
  cards	
  in	
  Tesla	
  Nodes	
  

–  36	
  Port	
  QLogic	
  QDR	
  Switch	
  
–  Centos	
  5.5	
  (Diskless)	
  
–  CUDA	
  3.1	
  



NRL Motherboard	
  Interconnect	
  
Overview	
  

• 	
  NUMA	
  architecture	
  
• 	
  Two	
  Intel	
  5520	
  Chipsets	
  provide	
  4	
  x16	
  PCI	
  Express	
  2.0	
  Slots	
  
• 	
  Non-­‐Uniform	
  Access	
  to	
  GPUs/Chipsets	
  
• 	
  Must	
  go	
  through	
  an	
  addi6onal	
  QPI	
  link	
  if	
  GPU	
  is	
  not	
  associated	
  with	
  the	
  
processor’s	
  chipset	
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Op6mal	
  communica6on	
  

• 	
  Processor	
  and	
  memory	
  affinity	
  should	
  be	
  enabled	
  
• 	
  Process	
  started	
  on	
  a	
  CPU	
  should	
  select	
  a	
  GPU	
  connected	
  to	
  the	
  CPU’s	
  chipset	
  
• 	
  Before	
  we	
  op6mize	
  performance	
  across	
  nodes,	
  we	
  need	
  to	
  op6mize	
  one	
  node	
  first	
  
• 	
  Is	
  this	
  really	
  important?	
  



NRL 
Host<-­‐>Device	
  Bandwidth	
  Tests	
  

•  Measure	
  transfer	
  rate	
  of	
  data	
  between	
  CPU	
  and	
  GPU	
  
memory	
  
–  N	
  CPU	
  to	
  GPU	
  memory	
  transfers	
  followed	
  by	
  N	
  GPU	
  to	
  CPU	
  transfers	
  
–  CPU	
  to	
  GPU	
  memory	
  transfer	
  followed	
  by	
  a	
  GPU	
  to	
  CPU	
  transfer	
  repeated	
  N	
  

6mes	
  

•  Bandwidth	
  test	
  developed	
  for	
  GPU	
  Direct	
  modified	
  to	
  
run	
  on	
  mul6ple	
  GPU’s	
  
–  Using	
  Pinned	
  Memory	
  

•  OpenMPI’s	
  processor/memory/socket	
  affinity	
  u6lized	
  
to	
  configure	
  op6mal	
  and	
  non-­‐op6mal	
  memory/GPU	
  
selec6on	
  

•  Tested	
  with/without	
  socket	
  affinity	
  and	
  non-­‐op6mal	
  
configura6ons	
  

•  Tested	
  with	
  a	
  node	
  configured	
  with	
  4	
  Tesla	
  C2050	
  GPUs	
  



NRL 
Segng	
  CPU	
  Affinity	
  under	
  Linux	
  

•  OpenMPI	
  has	
  a	
  rich	
  set	
  of	
  op6ons	
  to	
  set	
  
affinity	
  
–  Ability to set memory/core/socket affinity 

Example: 
 mpirun --mca mpi_paffinity_alone 1 
-bind-to-core –npersocket 1 –np 4 
command 

•  Use	
  “taskset”	
  to	
  set	
  CPU	
  affinity	
  for	
  single	
  
processor	
  tasks	
  	
  



NRL Total	
  Host	
  to	
  Device	
  Bandwidth	
  
(CPU	
  to	
  GPU)	
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•  Host	
  to	
  Device	
  bandwidth	
  scaling	
  is	
  reasonable	
  if	
  CPU	
  affinity	
  is	
  enabled	
  



NRL Total	
  Device	
  to	
  Host	
  Bandwidth	
  
(GPU	
  to	
  CPU)	
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•  For	
  larger	
  messages,	
  GPU	
  to	
  CPU	
  transfer	
  becomes	
  saturated	
  even	
  with	
  one	
  GPU	
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Total	
  Device	
  to	
  Host	
  Bandwidth	
  
Interleaved	
  with	
  CPU	
  to	
  GPU	
  Transfer	
  

•  Overall	
  performance	
  less	
  when	
  CPU-­‐>GPU	
  and	
  GPU-­‐>CPU	
  are	
  interleaved	
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NRL 
QPI	
  Bandwidth	
  

•  Are	
  the	
  more	
  expensive	
  chips	
  necessary?	
  
•  Tested	
  with	
  QPI	
  Speeds	
  of	
  4.8,	
  5.86	
  and	
  6.4	
  
GT/sec	
  

•  N	
  CPU	
  to	
  GPU	
  memory	
  transfers	
  followed	
  by	
  N	
  
GPU	
  to	
  CPU	
  transfers	
  

•  Test	
  with	
  2	
  and	
  4	
  GPUs	
  
•  CPU	
  Affinity	
  Set	
  



NRL 
QPI	
  Test:	
  2	
  GPUs	
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•  CPU-­‐>GPU	
  Tests	
  almost	
  iden6cal	
  
•  For	
  larger	
  messages	
  GPU-­‐>CPU	
  QPI	
  speed	
  limited	
  

transfers	
  



NRL 
QPI	
  Test:	
  4	
  GPUs	
  

•  Difference	
  in	
  QPI	
  speed	
  is	
  approximately	
  the	
  same	
  as	
  
measured	
  difference	
  in	
  bandwidth	
  for	
  both	
  CPU-­‐>GPU	
  and	
  
GPU-­‐>CPU	
  transfers	
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NRL 
TBD	
  –	
  A	
  New	
  CFD	
  Solver	
  

•  A	
  new	
  CFD	
  solver	
  is	
  under	
  development	
  at	
  
NRL	
  for	
  supersonic	
  jet	
  noise	
  and	
  other	
  high-­‐
speed	
  compressible	
  flow	
  problems.	
  



NRL 
Solver	
  Features	
  

•  Solves	
  the	
  Euler	
  equa6ons	
  
for	
  inviscid,	
  compressible	
  
flow.	
  

•  The	
  equa6ons	
  are	
  
discre6zed	
  using	
  the	
  finite	
  
volume	
  method.	
  

•  Computes	
  fluxes	
  using	
  
Flux-­‐Corrected	
  Transport	
  to	
  
achieve	
  monotonicity	
  
while	
  limi6ng	
  excessive	
  
diffusion	
  	
  	
  

•  Extensible	
  to	
  other	
  physics	
  
and	
  numerical	
  methods.	
  



NRL 
Solver	
  Features	
  

•  Implemented	
  in	
  C++	
  using	
  templates.	
  
•  Opera6ons	
  are	
  performed	
  using	
  standard	
  
algorithms	
  provided	
  by	
  either:	
  
–  The	
  C++	
  Standard	
  Library	
  and	
  Boost	
  to	
  allow	
  for	
  
portable	
  C++	
  code.	
  

–  Thrust	
  to	
  achieve	
  GPU	
  and	
  mul6-­‐core	
  CPU	
  
paralleliza6on	
  

–  This	
  allows	
  for	
  a	
  unified	
  GPU-­‐CPU	
  codebase.	
  
•  Uses	
  MPI	
  to	
  achieve	
  mul6-­‐CPU/GPU	
  
paralleliza6on.	
  



NRL 
Solver	
  Features	
  

•  Arbitrary	
  mesh	
  geometry	
  needed	
  to	
  
support	
  complex	
  jet	
  nozzle	
  geometry	
  
–  Arbitrary	
  face	
  shapes	
  
–  Arbitrary	
  cell	
  shapes:	
  tetrahedral,	
  

hexahedral,	
  pyramids,	
  etc.	
  

Arbitrary	
  mesh	
  topology	
  
Unstructured	
  grids	
  (to	
  allow	
  for	
  complex	
  geometry).	
  
Structured	
  grids	
  (to	
  reduce	
  storage	
  and	
  bandwidth	
  
usage).	
  



NRL 
Finite	
  Volume	
  Discre6za6on	
  

•  The	
  domain	
  geometry	
  is	
  discre6zed	
  into	
  cells,	
  
forming	
  a	
  mesh.	
  

A	
  NACA	
  0012	
  mesh	
  



NRL 
Finite	
  Volume	
  Discre6za6on	
  

•  The	
  flow	
  field	
  is	
  integrated	
  in	
  6me	
  by	
  
exchanging	
  fluxes	
  across	
  faces,	
  as	
  governed	
  
by	
  the	
  Euler	
  equa6ons.	
  



NRL 
Implementa6on	
  

•  Conserved	
  flow	
  quan66es	
  are	
  stored	
  at	
  the	
  
cell	
  centers	
  of	
  the	
  mesh.	
  

ρ,	
  ρU,	
  ρE	
   ρ,	
  ρU,	
  ρE	
  



NRL 
Implementa6on	
  

•  Flow	
  quan66es	
  are	
  interpolated	
  from	
  the	
  cells	
  
onto	
  the	
  faces.	
  

•  A	
  flux	
  is	
  computed	
  and	
  integrated	
  and	
  the	
  
conserved	
  variables	
  are	
  updated.	
  

ρ,	
  ρU,	
  ρE	
   ρ,	
  ρU,	
  ρE	
  F(ρ,ρU,ρE)	
  



NRL 
Implementa6on	
  

•  All	
  computa6on	
  is	
  performed	
  by	
  either:	
  
– Looping	
  over	
  cells	
  and	
  upda6ng	
  the	
  cell	
  values	
  
•  Runge-­‐Kura	
  Time	
  integra6on	
  

– Looping	
  over	
  faces,	
  and	
  gathering	
  and	
  scarering	
  
cell	
  values	
  between	
  adjacent	
  cells	
  
•  Flux	
  calcula6on	
  

ρ,	
  ρU,	
  ρE	
   ρ,	
  ρU,	
  ρE	
  F(ρ,ρU,ρE)	
  



NRL 
Implementa6on	
  

•  All	
  algorithms	
  are	
  expressed	
  in	
  terms	
  of:	
  
1  Func9on	
  objects	
  which	
  represent	
  opera6ons	
  on	
  a	
  

per-­‐cell	
  or	
  per-­‐face	
  basis	
  
2  Iterators	
  which	
  provide	
  input	
  and	
  output	
  to	
  these	
  

opera6ons.	
  
3  Data	
  parallel	
  primi9ves	
  (copy,	
  transform,	
  

for_each)	
  perform	
  these	
  opera6ons	
  over	
  a	
  range	
  
of	
  values	
  specified	
  by	
  iterators,	
  and	
  are	
  used	
  to	
  
implement	
  loops	
  over	
  the	
  cells	
  and	
  faces.	
  



NRL 
Euler	
  flux	
  surface	
  integra6on	
  

template<typename State> !
struct integrates_euler_flux !
: public unary_function<tuple<State,State,Vector>, State> !
{ !
    typedef typename lcp_traits<State>::StateFlux StateFlux; !
    typedef typename lcp_traits<State>::Vector Vector; !

    inline __device__  __host__!
    State operator()(tuple<State, State, Vector> input) const!
    { !
        State state_owner = get<0>(input); !
        State state_nghbr = get<1>(input); !
        Vector Sf         = get<2>(input); !

        State state_surf = interpolate_linear(state_owner, state_nghbr); !
        Scalar    p_surf = compute_p(state_surf); !
        Vector    U_surf = compute_U(state_surf); !

        StateFlux state_flux = compute_state_convective_flux(U_surf, state_surf); !

        // grad(p)!
        add_to_diagonal(get<1>(state_flux), p_surf); !

        // div(pU)!
        get<2>(state_flux) += p_surf*U_surf; !

        return State(get<0>(state_flux) & Sf, !
                     get<1>(state_flux) & Sf, !
                     get<2>(state_flux) & Sf); !
    } !
}; !

Input:	
  Euler	
  state	
  at	
  
each	
  adjacent	
  cell,	
  
the	
  face	
  normal.	
  

Interpolates	
  to	
  the	
  
face,	
  derives	
  pressure	
  
and	
  velocity.	
  

Computes	
  the	
  
convec6ve	
  flux	
  and	
  
pressure	
  terms	
  

Returns	
  the	
  flux	
  
integrated	
  over	
  the	
  
surface	
  



NRL Shared	
  Memory	
  Parallelism:	
  
	
  GPUs	
  and	
  CPUs	
  

•  Portability	
  is	
  achieved	
  using	
  	
  the	
  Standard	
  C++	
  
Library	
  and	
  Boost:	
  any	
  platorm	
  with	
  a	
  C++	
  
compiler	
  can	
  compile	
  and	
  run	
  the	
  code.	
  

•  Analogous	
  implementa6ons	
  of	
  these	
  
algorithms	
  are	
  provided	
  by	
  the	
  Thrust	
  library	
  
to	
  run	
  on	
  mul6-­‐core	
  CPUs	
  and	
  many-­‐core	
  
GPUs.	
  



NRL Shared	
  Memory	
  Parallelism:	
  
Coloring	
  

•  A	
  face	
  coloring	
  is	
  used	
  to	
  
group	
  faces	
  which	
  can	
  be	
  
safely	
  be	
  processed	
  in	
  
parallel.	
  

ρ,	
  ρU,	
  ρE	
   ρ,	
  ρU,	
  ρE	
  F(ρ,ρU,ρE)	
  

ρ,	
  ρU,	
  ρE	
  

ρ,	
  ρU,	
  ρE	
  



NRL Distributed	
  Memory	
  Parallelism:	
  
	
  Mul6	
  GPUs	
  and	
  CPUs	
  

•  Jet	
  noise	
  problems	
  require	
  
enormous	
  meshes.	
  

•  Requires	
  mul6-­‐CPU/GPU	
  
paralleliza6on.	
  

•  Special	
  boundary	
  condi6ons	
  are	
  
implemented	
  which	
  make	
  MPI	
  
calls	
  to	
  exchange	
  data	
  across	
  
processor	
  boundaries	
  

•  MPI	
  support	
  is	
  en6rely	
  orthogonal	
  
to	
  shared	
  memory	
  mul6core	
  CPU/
GPU	
  paralleliza6on.	
  

•  The	
  code	
  can	
  run	
  either	
  in	
  a	
  
number	
  of	
  configura6ons	
  

–  MPI	
  

–  MPI	
  +	
  CUDA	
  

–  MPI	
  +	
  OpenMP	
  A	
  par66oned	
  NACA	
  0012	
  mesh	
  



NRL 
Performance	
  Results	
  

• Performance	
  was	
  measured	
  on	
  a	
  benchmark	
  
NACA	
  0012	
  air	
  foil	
  case.	
  
• Two	
  mesh	
  sizes,	
  1	
  million	
  and	
  11	
  million	
  
elements.	
  



NRL 
Performance	
  Results	
  

GTX	
  480	
  achieves	
  
roughly	
  a	
  factor	
  of	
  4	
  
over	
  the	
  X5650	
  6-­‐core	
  
processor	
  

The	
  Fermi	
  C2050	
  
achieves	
  roughly	
  a	
  
factor	
  of	
  2	
  
performance	
  over	
  
the	
  X5650	
  	
  

Double	
  precision,	
  1	
  million	
  cells	
  



NRL 
Performance	
  Results	
  

GTX	
  480	
  achieves	
  
roughly	
  a	
  factor	
  of	
  4	
  
over	
  the	
  X5650	
  6-­‐core	
  
processor	
  

The	
  Fermi	
  C2050	
  
achieves	
  roughly	
  a	
  
factor	
  of	
  2	
  
performance	
  over	
  
the	
  X5650	
  	
  

Single	
  precision,	
  11	
  million	
  cells	
  



NRL 
Conclusions/Future	
  Work	
  

•  Good	
  scaling	
  achieved	
  with	
  a	
  3D	
  unstructured	
  
grid	
  code	
  across	
  many	
  nodes	
  on	
  a	
  GPU	
  cluster.	
  

•  The	
  code	
  appears	
  to	
  be	
  memory	
  bandwidth	
  
bound.	
  
– Numbering	
  schemes	
  for	
  mee6ng	
  coalescing	
  
requirements	
  on	
  unstructured	
  grids	
  are	
  needed.	
  

•  Con6nued	
  development	
  of	
  the	
  physics	
  
capabili6es	
  



NRL 
Conclusions/Future	
  Work	
  

•  CPU	
  affinity	
  must	
  be	
  set	
  for	
  op6mal	
  transfer	
  
performance	
  

•  One	
  GPU	
  per	
  CPU	
  scales	
  linearly	
  
•  Open	
  Issue:	
  Performance	
  with	
  mul6ple	
  GPUs	
  
per	
  chipset	
  	
  

•  Test	
  GPU	
  Direct/Node	
  to	
  Node	
  Bandwidth	
  
– Allows	
  for	
  Pinned	
  memory	
  enabled	
  for	
  both	
  GPU	
  
and	
  Infiniband	
  Buffers	
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