TidePowerd GPU.NET

Introducing "Native” GPU support for
NET



Introducing GPU.NET

Issues with current GPU development tools
Goals of GPU.NET

— How GPU.NET solves problems of other tools

How does GPU.NET work?
A brief look at the implications of GPU.NET
Writing code with GPU.NET
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Issues with current tools

In general, code 1s vendor- and OS-specific
Even OpenCL is vendor-specific in practice
Programming model has a steep learning curve

Not targeted towards ‘enterprise’ development
— Developers stuck writing lots of ‘integration’ code
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Goals of GPU.NET

"GPU computing made easy”

— Should be intuitive for developers without GPU
experience

Reduce or eliminate boilerplate code

Add hardware acceleration to “write once, run
everywhere”

Performance at least on par with current tools
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Overview of GPU.NET

Visual Studio integration
Device methods library
Assembly rewriting

Runtime
— Vendor-specific plugins
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Compile to .NET .NET Assembly /
Assembly CIL Bytecode

Process assembly

with GPU.NET
Vendor-Specific .NET / CPU AMD GPU /
Runtime Plugins (Fallback) Stream IL




Overview of GPU.NET

* Write kernels like any other method in .NET-
based languages like C#, F#, or VB.NET

— Kernel methods stay ‘in-sync’ with rest of code
— IntelliSense support

» Easy to GPU-accelerate existing .NET codebases

» Ability to use the built-in unit testing features
of VS to ensure correctness of kernel code
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Visual Studio Integration
* GPU.NET tab in project properties page

— Provides options to fine-tune how code will run
— Intuitive location for developers familiar with VS

» "Squiggles” denote invalid kernel code
— Allows developers to fix errors before compile-time

 Integrates with error list
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Device Methods

* Provides .NET-based implementations of
common device intrinsics
— E.g., PopulationCount()

 Used for .NET-based ‘fallback’ methods

* Allows new hardware intrinsics to be emulated
on older hardware (in most cases)
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Assembly Rewriting

Performs final validation of the assembly
njects reference to the GPU.NET Runtime

Rewriting process ensures that metadata stays
valid —important for GPU-accelerated libraries
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Runtime

* "Deep” integration with .NET
— Allows selected types to be used directly in kernels
— E.g., System.Drawing.Bitmap

* Dynamically detects hardware via plugins
— Kernels transparently scheduled on multiple GPUs
— Manages device resources

 Fallback to .NET-based methods if no GPU
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Vendor Plugins

* Interfaces with device drivers
» Performs final stage of JIT compilation

» Applications can be sped up after deployment
by updating plugins

— Without needing to be recompiled

tidepowerd

W



Implications of GPU.NET

JIT compilation means DLR support in future
— Write kernels in IronPython, Lisp, SmallTalk, etc.

Generate/execute kernels via .NET Reflection
GPU-accelerated LINQ-to-objects queries

GPU.NET's architecture designed for maximum
speed on all platforms
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Implications of GPU.NET

» Asingle binary covers nearly all end-users
— 32/64-bit versions of Windows, Mac OS X, & Linux

» Controlling the entire 'stack’ allows us to make
unique performance optimizations

« Simplifies development of GPU-accelerated
plugins for existing applications

— E.g., MS SQL Server, MS Dynamics, Adobe Photoshop
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Conclusion

Developers can now write kernel code in a
language they are familiar with

VS integration reduces GPU learning curve
Eliminates time spent writing boilerplate code
Easy to accelerate existing .NET codebases
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Availability

* Public beta will be available on
tidepowerd.com by end of October 2010

* RTM of v1.0 expected around the end of 2010
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