TidePowerd GPU.NET

Introducing "Native” GPU support for
NET



Introducing GPU.NET

Issues with current GPU development tools
Goals of GPU.NET

— How GPU.NET solves problems of other tools

How does GPU.NET work?
A brief look at the implications of GPU.NET
Writing code with GPU.NET

A -
/(@ftldepowerd



Issues with current tools

In general, code 1s vendor- and OS-specific
Even OpenCL is vendor-specific in practice
Programming model has a steep learning curve

Not targeted towards ‘enterprise’ development
— Developers stuck writing lots of ‘integration’ code

A -
/@ftldepowerd



Goals of GPU.NET

"GPU computing made easy”

— Should be intuitive for developers without GPU
experience

Reduce or eliminate boilerplate code

Add hardware acceleration to “write once, run
everywhere”

Performance at least on par with current tools
7. tidepowerd



Overview of GPU.NET

Visual Studio integration
Device methods library
Assembly rewriting

Runtime
— Vendor-specific plugins

W

2

tidepowerd



Compile to .NET .NET Assembly /
Assembly CIL Bytecode

Process assembly

with GPU.NET
Vendor-Specific .NET / CPU AMD GPU /
Runtime Plugins (Fallback) Stream IL




Overview of GPU.NET

* Write kernels like any other method in .NET-
based languages like C#, F#, or VB.NET

— Kernel methods stay ‘in-sync’ with rest of code
— IntelliSense support

» Easy to GPU-accelerate existing .NET codebases

» Ability to use the built-in unit testing features
of VS to ensure correctness of kernel code

~\ tidepowerd

-7?}\)



Visual Studio Integration
* GPU.NET tab in project properties page

— Provides options to fine-tune how code will run
— Intuitive location for developers familiar with VS

» "Squiggles” denote invalid kernel code
— Allows developers to fix errors before compile-time

 Integrates with error list

)

tidepowerd



Device Methods

* Provides .NET-based implementations of
common device intrinsics
— E.g., PopulationCount()

 Used for .NET-based ‘fallback’ methods

* Allows new hardware intrinsics to be emulated
on older hardware (in most cases)

A -
//@,tldepowerd



Assembly Rewriting

Performs final validation of the assembly
njects reference to the GPU.NET Runtime

Rewriting process ensures that metadata stays
valid —important for GPU-accelerated libraries

A -
/(@ftldepowerd



Runtime

* "Deep” integration with .NET
— Allows selected types to be used directly in kernels
— E.g., System.Drawing.Bitmap

* Dynamically detects hardware via plugins
— Kernels transparently scheduled on multiple GPUs
— Manages device resources

 Fallback to .NET-based methods if no GPU
~\ tidepowerd

3



Vendor Plugins

* Interfaces with device drivers
» Performs final stage of JIT compilation

» Applications can be sped up after deployment
by updating plugins

— Without needing to be recompiled

tidepowerd

W



Implications of GPU.NET

JIT compilation means DLR support in future
— Write kernels in IronPython, Lisp, SmallTalk, etc.

Generate/execute kernels via .NET Reflection
GPU-accelerated LINQ-to-objects queries

GPU.NET's architecture designed for maximum
speed on all platforms

7. tidepowerd



Implications of GPU.NET

» Asingle binary covers nearly all end-users
— 32/64-bit versions of Windows, Mac OS X, & Linux

» Controlling the entire 'stack’ allows us to make
unique performance optimizations

« Simplifies development of GPU-accelerated
plugins for existing applications

— E.g., MS SQL Server, MS Dynamics, Adobe Photoshop

A -
/(@\,tldepowerd



Conclusion

Developers can now write kernel code in a
language they are familiar with

VS integration reduces GPU learning curve
Eliminates time spent writing boilerplate code
Easy to accelerate existing .NET codebases

A -
7 tidepowerd



Availability

* Public beta will be available on
tidepowerd.com by end of October 2010

* RTM of v1.0 expected around the end of 2010

W

7

tidepowerd

§

—



