
A front-office risk solution for
addressing market, operational and

regulatory changes in the OTC Markets

LOREM IPSUM DOLOR SIT AMET
Etiam sagittis, nibh eget gravida porta, purus augue aliquet urna,
id mollis urna risus sed dolor. Pellentesque fermentum faucibus
odio vel porttitor. Nulla eu justo nec nulla commodo commodo ac
ut orci. In molestie augue ut turpis pulvinar et frius blandit. Fusce
tincidunt aliquam sodales. Sed in tortor sem. Vivamus pharetra
interdum erat at tempus. In sodales dictum dolor, eu consequat
dui vulputate sed. Ut non metus non neque fermet.

LOREM IPSUM DOLOR SIT AMET
Etiam sagittis, nibh eget gravida porta, purus augue aliquet urna,
id mollis urna risus sed dolor. Pellentesque fermentum faucibus
odio vel porttitor. Nulla eu justo nec nulla commodo commodo ac
ut orci. In molestie augue ut turpis pulvinar et frius blandit. Fusce
tincidunt aliquam sodales. Sed in tortor sem. Vivamus pharetra
interdum erat at tempus. In sodales dictum dolor, eu consequat
dui vulputate sed. Ut non metus non neque fermet.

LOREM IPSUM DOLOR SIT AMET
Etiam sagittis, nibh eget gravida porta, purus augue aliquet urna,
id mollis urna risus sed dolor. Pellentesque fermentum faucibus
odio vel porttitor. Nulla eu justo nec nulla commodo commodo ac
ut orci. In molestie augue ut turpis pulvinar et frius blandit. Fusce
tincidunt aliquam sodales. Sed in tortor sem. Vivamus pharetra
interdum erat at tempus. In sodales dictum dolor, eu consequat
dui vulputate sed. Ut non metus non neque fermet.

LOREM IPSUM DOLOR SIT AMET
Etiam sagittis, nibh eget gravida porta, purus augue aliquet urna,
id mollis urna risus sed dolor. Pellentesque fermentum faucibus
odio vel porttitor. Nulla eu justo nec nulla commodo commodo ac
ut orci. In molestie augue ut turpis pulvinar et frius blandit. Fusce
tincidunt aliquam sodales. Sed in tortor sem. Vivamus pharetra
interdum erat at tempus. In sodales dictum dolor, eu consequat
dui vulputate sed. Ut non metus non neque fermet.

LOREM IPSUM DOLOR SIT AMET
Etiam sagittis, nibh eget gravida porta, purus augue aliquet urna,
id mollis urna risus sed dolor. Pellentesque fermentum faucibus
odio vel porttitor. Nulla eu justo nec nulla commodo commodo ac
ut orci. In molestie augue ut turpis pulvinar et frius blandit. Fusce
tincidunt aliquam sodales. Sed in tortor sem. Vivamus pharetra
interdum erat at tempus. In sodales dictum dolor, eu consequat
dui vulputate sed. Ut non metus non neque fermet.

LOREM IPSUM DOLOR SIT AMET
Etiam sagittis, nibh eget gravida porta, purus augue aliquet urna,
id mollis urna risus sed dolor. Pellentesque fermentum faucibus
odio vel porttitor. Nulla eu justo nec nulla commodo commodo ac
ut orci. In molestie augue ut turpis pulvinar et frius blandit. Fusce
tincidunt aliquam sodales. Sed in tortor sem. Vivamus pharetra
interdum erat at tempus. In sodales dictum dolor, eu consequat
dui vulputate sed. Ut non metus non neque fermet.

LOREM IPSUM DOLOR SIT AMET
Etiam sagittis, nibh eget gravida porta, purus augue aliquet urna,
id mollis urna risus sed dolor. Pellentesque fermentum faucibus
odio vel porttitor. Nulla eu justo nec nulla commodo commodo ac
ut orci. In molestie augue ut turpis pulvinar et frius blandit. Fusce
tincidunt aliquam sodales. Sed in tortor sem. Vivamus pharetra
interdum erat at tempus. In sodales dictum dolor, eu consequat
dui vulputate sed. Ut non metus non neque fermet.

LOREM IPSUM DOLOR SIT AMET
Etiam sagittis, nibh eget gravida porta, purus augue aliquet urna,
id mollis urna risus sed dolor. Pellentesque fermentum faucibus
odio vel porttitor. Nulla eu justo nec nulla commodo commodo ac
ut orci. In molestie augue ut turpis pulvinar et frius blandit. Fusce
tincidunt aliquam sodales. Sed in tortor sem. Vivamus pharetra
interdum erat at tempus. In sodales dictum dolor, eu consequat
dui vulputate sed. Ut non metus non neque fermet.

LOREM IPSUM DOLOR SIT AMET
Etiam sagittis, nibh eget gravida porta, purus augue aliquet urna,
id mollis urna risus sed dolor. Pellentesque fermentum faucibus
odio vel porttitor. Nulla eu justo nec nulla commodo commodo ac
ut orci. In molestie augue ut turpis pulvinar et frius blandit. Fusce
tincidunt aliquam sodales. Sed in tortor sem. Vivamus pharetra
interdum erat at tempus. In sodales dictum dolor, eu consequat
dui vulputate sed. Ut non metus non neque fermet.

LOREM IPSUM DOLOR SIT AMET
Etiam sagittis, nibh eget gravida porta, purus augue aliquet urna,
id mollis urna risus sed dolor. Pellentesque fermentum faucibus
odio vel porttitor. Nulla eu justo nec nulla commodo commodo ac
ut orci. In molestie augue ut turpis pulvinar et frius blandit. Fusce
tincidunt aliquam sodales. Sed in tortor sem. Vivamus pharetra
interdum erat at tempus. In sodales dictum dolor, eu consequat
dui vulputate sed. Ut non metus non neque fermet.

EUROPE
Quantifi Limited
16 Martin’s Le Grand
London, EC1A 4EN

+44 (0) 20 7397 8788

NORTH AMERICA
Quantifi Inc.
230 Park Avenue
New York, NY 10169

+1 (212) 784 6815

ASIA PACIFIC
Quantifi Pty Ltd
111 Elizabeth St
Sydney, NSW, 2000

+61 (02) 9221 0133

CONTACT QUANTIFI

enquire@quantifisolutions.com

www.quantifisolutions.com

LOREM IPSUM DOLOR SIT AMET

Etiam sagittis, nibh eget gravida porta, purus augue aliquet urna, id mollis urna risus sed dolor. Pellentesque fermentum faucibus odio
vel porttitor. Nulla eu justo nec nulla commodo commodo ac ut orci. In molestie augue ut turpis pulvinar et frius blandit. Fusce tincidunt
aliquam sodales. Sed in tortor sem. Vivamus pharetra interdum erat at tempus. In sodales dictum dolor, eu consequat dui vulputate
sed. Ut non metus non neque fermet. Etiam sagittis, nibh eget gravida porta, purus augue aliquet urna, id mollis urna risus sed dolor.
Pellentesque fermentum faucibus odio vel porttitor. Nulla eu justo nec nulla commodo commodo ac ut orci. In molestie augue ut turpis
pulvinar et frius blandit. Fusce tincidunt aliquam sodales. Sed in tortor sem. Vivamus pharetra interdum erat at tempus. In sodales dictum
dolor, eu consequat dui vulputate sed. Ut non metus non neque fermet. Etiam sagittis, nibh eget gravida porta, purus augue aliquet urna,
id mollis urna risus sed dolor. Pellentesque fermentum faucibus odio vel porttitor.

A front-office risk solution for
addressing market, operational and
regulatory changes in the OTC Markets
Lorem ipsum, turpis in justo placerat malesuada. Quisque rutrum
consequat diam, vel malesuada felis vulputate eget. Duis vestibulum
sem vel quam vehicula mattis scelerisque orci aliquam. Etiam feugiat
est non dui pretium vel volutpat risus suscipit. Phasellus viverra ante
ac arcu egestas tempor. Aliquam bibendum luctus sem nec volutpat.
Duis ut quam purus, eu sollicitudin massa. Aliquam accumsan tortor
nec quam luctus ac interdum nulla tempor.

Developing CUDA Accelerated .NET Plugins for Excel
NVIDIA 2010 Conference

Monday, September 20, 2010

Cuda Development

XLDeveloper-Cuda enabled

Cuda in a larger organization/codebase

Monday, September 20, 2010

XLDeveloper: Motivation

• Provide productive environment for quants to develop Excel user-defined functions

• Take care of the details of memory management, data marshaling, and exception handling

• Provide tools for drilling down into complex data structures such as curves and surfaces

• Support side-by-side deployment of multiple versions of Quantifi XL

Monday, September 20, 2010

History

• 2003 - Original version developed

• 2005 - Major iteration to apply lessons learned and take advantage of .NET 2.0

• 2008 – Add support for Excel 2007 Ribbon bar

Monday, September 20, 2010

Architecture Overview

Monday, September 20, 2010

Supported Languages/Platforms

• OS

- Windows XP/Vista/7

- Windows Server 2003/2008

• Excel

- 2002/2003/2007/2010

• Programming Languages

- Any .NET language that supports custom attributes
• e.g. C#, VB.NET, F#, C++/CLI

- Easy to call C/C++

Monday, September 20, 2010

Key Features

• Simple Declarative Markup

- Automated memory management

- Automated data marshaling / validation

- Automated generation of docs

• Object browsing

• Extensible Excel menu/ribbon bar

• Optional add on modules provides seamless integration with CUDA and Grid frameworks

Monday, September 20, 2010

Simple Declarative Markup

Monday, September 20, 2010

Automated Generation of Docs
• Function Wizard Help

- Brief help for each arguments

• Detailed Function Help
- Generated from code comments

- Supports embedded Latex formulas

Monday, September 20, 2010

Extensive Datatype Support

Monday, September 20, 2010

Object Browsing

• Integrated Object Browser
allows user to inspect any
cached object

• Can view value of any
public property

Monday, September 20, 2010

Log Message Window
• Addin can log message

at different levels

• Menu Configurable by the user

• The context information
(i.e. calculating Cell) is
auto captured.

Monday, September 20, 2010

Extensible Excel Menu/Ribbon Bar
• Extension points provided to allow for easy addition of custom menus

• In addition to user-defined functions, entire applications can be built

• If using Excel 2007, menus are displayed in Ribbon Bar

Monday, September 20, 2010

© Quantifi 2010

Hybrid CPU/GPU Development

• The challenge:

Creating Maintainable Code

Allow for Specialized Development

Allow for CPU and GPU Hardware

Compilation with or without Cuda Hardware

• The tools:

Templates

Classes (Fermi)

14

Monday, September 20, 2010

© Quantifi 2010

An example
• Lots of modeling is around Normal Distributions;

• For example Uniformly (0,1) numbers need to be mapped to a
normal distribution;

• Function below is not invertible

• So polynomial approximations...

• Monte Carlo example has one million paths, 40 time slices

15

Source Wikipedia

Monday, September 20, 2010

© Quantifi 2010

CPU/GPU Development

16

Monday, September 20, 2010

© Quantifi 2010

Math_utils.h

• Mapping of functions

• Separate implementations on CPU and GPU

• In single precision and double precision

• Maintained by hardware expert

• device_math.h is CUDA implementation

• host_math.h is CPU implementation

17

Monday, September 20, 2010

© Quantifi 2010

math_utils.h
QN_MATH_TRAITS_H

#ifdef __CUDA_ARCH__

include "details/device_math.h"

#else //!__CUDA_ARCH__

include "details/host_math.h"

#endif //__CUDA_ARCH__

18

Monday, September 20, 2010

© Quantifi 2010

GPU-device_math.h
/*
 * device_math.h
 *
 * Mathematical functions available on the device.
 *
 * Copyright (c) Quantifi Inc 2002-2011. All rights reserved.
 *
 */
#ifndef QN_DEVICE_MATH_H
#define QN_DEVICE_MATH_H

#include <host_defines.h>
#include <math_constants.h>

namespace qn { namespace cuda { namespace math {

 template<typename T> struct math_limits { };

 template<> struct math_limits<float>
 {
 __device__ inline static float infinity() { return CUDART_INF_F; }
 __device__ inline static float quiet_NaN() { return CUDART_NAN_F; }
 __device__ inline static float denorm_min() { return CUDART_MIN_DENORM_F; }
 };

 template<> struct math_limits<double>
 {
 __device__ inline static double infinity() { return CUDART_INF; }
 __device__ inline static double quiet_NaN() { return CUDART_NAN; }
 __device__ inline static double denorm_min() { return CUDART_MIN_DENORM; }
 };

19

Monday, September 20, 2010

© Quantifi 2010

GPU continued

 template<class T> __device__ inline T fast_pow(T x, T y) {
 return pow(x,y);
 }
 template<class T> __device__ inline T fast_exp(T x) {
 return exp(x);
 }
 template<class T> __device__ inline T fast_log(T x) {
 return log(x);
 }
 template<class T> __device__ inline T fast_sin(T x) {
 return sin(x);
 }
 template<class T> __device__ inline T fast_cos(T x) {
 return cos(x);
 }

 __device__ inline float fast_pow(float x, float y) {
 return __powf(x,y);
 }
 __device__ inline float fast_exp(float x) {
 return __expf(x);
 }
 __device__ inline float fast_log(float x) {
 return __logf(x);
 }
 __device__ inline float fast_sin(float x) {
 return __sinf(x);
 }
 __device__ inline float fast_cos(float x) {
 return __cosf(x);
 }

20

Monday, September 20, 2010

© Quantifi 2010

Cpu version: host_math.h
/*
 * host_math.h
 *
 * Mathematical functions available on the host.
 *
 * Copyright (c) Quantifi Inc 2002-2011. All rights reserved.
 *
 */
#ifndef QN_HOST_MATH_H
#define QN_HOST_MATH_H

#include <cmath>
#include <limits>
#include <algorithm>

namespace qn { namespace cuda { namespace math {

 template<typename T> struct math_limits : public std::numeric_limits<T>{};

 using std::abs;
 using std::fabs;
 using std::ceil;
 using std::floor;
 using std::sqrt;
 using std::pow;
 using std::log;
 using std::log10;
 using std::fmod;
 using std::modf;
 using std::exp;
 using std::frexp;
 using std::ldexp;
 using std::asin;
 using std::sin;
 using std::sinh;

21

Monday, September 20, 2010

© Quantifi 2010

Cpu version: host_math.h
 using std::tanh;

 using std::max;

 using std::min;

 static inline unsigned MUL(unsigned a, unsigned b){
 return a*b;
 }

 // overloads to match the device definitions
 template<class T> inline T fast_pow(T x, T y) {
 return pow(x,y);
 }
 template<class T> inline T fast_exp(T x) {
 return exp(x);
 }
 template<class T> inline T fast_log(T x) {
 return log(x);
 }
 template<class T> inline T fast_sin(T x) {
 return sin(x);
 }
 template<class T> inline T fast_cos(T x) {
 return cos(x);
 }

}}} // namespace qn::cuda::details

#endif // QN_HOST_MATH_H

22

Monday, September 20, 2010

© Quantifi 2010

normal_inverse_cdf.h
• The actual inverse normal calculation

• Maintained by analytical expert

• Standard c++ code

• CPU/GPU agnostic

• Can be debugged on CPU

• We will show 3 implementations:

- ShawBrickman:

- Moro:

- Acklam:

23

Monday, September 20, 2010

© Quantifi 2010

40 Million Calls(in millisec.) C2050

24

128x128

ShawBrickman	
 12.6027

Moro	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 13.3601

Wichura	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 18.1781

Acklam	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 30.7807

256x256

ShawBrickman	
 9.97896

Moro	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 10.2861

Wichura	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 18.1781

Acklam	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 25.5947

512x512

ShawBrickman	
 	
 	
 9.78561

Moro 10.0949

Wichura 17.8182

Acklam	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 24.8159 As a 3.1 sidenote: erfinv float is really fast but double....

BGM: one million paths, 40 timeslices

Monday, September 20, 2010

© Quantifi 2010

CPU (one core) versus GPU

25

GPU Timing of normal_inverse_cdf:

 ErfInv 4.5177

 ShawBrickman 9.74522

 Moro 10.6267

 Wichura 19.2429

 Acklam 25.4905

CPU timing of normal_inverse_cdf:

 ErfInv 2877.03

 ShawBrickman 4381.32

 Moro 2632.27

 Wichura 3160.79

 Acklam 2028.23

ErfInv 636.51

ShawBrickman 449.37

Moro 247.63

Wichura 164.29

Acklam 79.57

CPU Time/GPU Time

Monday, September 20, 2010

© Quantifi 2010

ShawBrickman
include <host_defines.h>
include “math_utils.h”

namespace qn { namespace cuda { namespace math {
namespace ShawBrickman {
 template <typename Real>
 __device__ inline Real normal_inverse_cdf(Real y)
 {
 const Real P1 = Real(1.2533136835212087879);
 const Real P2 = Real(1.9797154223229267471);
 const Real P3 = Real(0.80002295072483916762);
 const Real P4 = Real(0.087403248265958578062);
 const Real P5 = Real(0.0020751409553756572917);
 const Real P6 = Real(4.744820732427972462e-6);
 const Real Q1 = Real(1.0);
 const Real Q2 = Real(2.0795584360534589311);
 const Real Q3 = Real(1.2499328117341603014);
 const Real Q4 = Real(0.23668431621373705623);
 const Real Q5 = Real(0.0120098270559197768);
 const Real Q6 = Real(0.00010590620919921025259);
 Real z;
 int sgn = (y >= Real(0.5));
 sgn = sgn - !sgn;
 z = -log(Real(1.0) - (sgn * ((Real(2.0) * y) - Real(1.0))));
 return sgn * z * (P1+z*(P2+z*(P3+z*(P4+(P5+P6*z)*z))))
 / (Q1+z*(Q2+z*(Q3+z*(Q4+(Q5+Q6*z)*z))));
 }
 } // namespace ShawBrickman

}}}

26

Monday, September 20, 2010

© Quantifi 2010

Moro
• namespace Moro {

 //
 // Moro's Inverse Cumulative Normal Distribution function approximation
 //
 template<class Real>
 __device__ inline Real normal_inverse_cdf(Real P){
 using namespace qn::cuda::math;

 const Real a1 = Real(2.50662823884);
 const Real a2 = Real(-18.61500062529);
 const Real a3 = Real(41.39119773534);
 const Real a4 = Real(-25.44106049637);
 const Real b1 = Real(-8.4735109309);
 const Real b2 = Real(23.08336743743);
 const Real b3 = Real(-21.06224101826);
 const Real b4 = Real(3.13082909833);
 const Real c1 = Real(0.337475482272615);
 const Real c2 = Real(0.976169019091719);
 const Real c3 = Real(0.160797971491821);
 const Real c4 = Real(2.76438810333863E-02);
 const Real c5 = Real(3.8405729373609E-03);
 const Real c6 = Real(3.951896511919E-04);
 const Real c7 = Real(3.21767881768E-05);
 const Real c8 = Real(2.888167364E-07);
 const Real c9 = Real(3.960315187E-07);

 if(P <= 0 || P >= Real(1.0))
 return F::invalid_value();

 Real y, z;
 y = P - Real(0.5);
 if(fabsf(y) < Real(0.42)){
 z = y * y;
 z = y * (((a4 * z + a3) * z + a2) * z + a1) / ((((b4 * z + b3) * z + b2) * z + b1) * z + Real(1.0));
 }else{
 if(y > 0)
 z = fast_log(-fast_log(Real(1.0) - P));
 else
 z = fast_log(-fast_log(P));

 z = c1 + z * (c2 + z * (c3 + z * (c4 + z * (c5 + z * (c6 + z * (c7 + z * (c8 + z * c9)))))));
 if(y < 0) z = -z;
 }

 return z;

27

Monday, September 20, 2010

© Quantifi 2010

Acklam
• namespace Acklam {

 //
 // Acklam's Inverse Cumulative Normal Distribution function approximation
 //
 template<class Real>
 __device__ inline Real normal_inverse_cdf(Real P){
 using namespace qn::cuda::math;

 const Real a1 = Real(-39.6968302866538);
 const Real a2 = Real(220.946098424521);
 const Real a3 = Real(-275.928510446969);
 const Real a4 = Real(138.357751867269);
 const Real a5 = Real(-30.6647980661472);
 const Real a6 = Real(2.50662827745924);
 const Real b1 = Real(-54.4760987982241);
 const Real b2 = Real(161.585836858041);
 const Real b3 = Real(-155.698979859887);
 const Real b4 = Real(66.8013118877197);
 const Real b5 = Real(-13.2806815528857);
 const Real c1 = Real(-7.78489400243029E-03);
 const Real c2 = Real(-0.322396458041136);
 const Real c3 = Real(-2.40075827716184);
 const Real c4 = Real(-2.54973253934373);
 const Real c5 = Real(4.37466414146497);
 const Real c6 = Real(2.93816398269878);
 const Real d1 = Real(7.78469570904146E-03);
 const Real d2 = Real(0.32246712907004);
 const Real d3 = Real(2.445134137143);
 const Real d4 = Real(3.75440866190742);
 const Real low = Real(0.02425);
 const Real high = Real(1.0) - low;
 Real z, R;

 if(P <= 0 || P >= 1.0f)
 return math_limits<Real>::quiet.NaN();

 if(P < low){
 z = sqrt(Real(-2.0) * log(P));
 z = (((((c1 * z + c2) * z + c3) * z + c4) * z + c5) * z + c6) /
 ((((d1 * z + d2) * z + d3) * z + d4) * z + Real(1.0));
 }else{
 if(P > high){
 z = sqrt(-2.0 * log(1.0 - P));
 z = -(((((c1 * z + c2) * z + c3) * z + c4) * z + c5) * z + c6) /
 ((((d1 * z + d2) * z + d3) * z + d4) * z + Real(1.0));
 }else{
 z = P - Real(0.5);
 R = z * z;
 z = (((((a1 * R + a2) * R + a3) * R + a4) * R + a5) * R + a6) * z /
 (((((b1 * R + b2) * R + b3) * R + b4) * R + b5) * R + Real(1.0));
 }
 }

28

Monday, September 20, 2010

© Quantifi 2010

normal_variate_cpu.cpp
#include <cutil_inline.h>

#include "normal_inverse_cdf.h"

namespace qn { namespace cuda {
 void normal_inverse_cdf_cpu(float *h_Output, float *h_Input, unsigned int N)
 {
 using qn::cuda::details::normal_inverse_cdf;
 for (unsigned int i = 0; i < N; ++i)
 h_Output[i] = normal_inverse_cdf(h_Input[i]);
 }
}} // namespace qn::cuda

29

Monday, September 20, 2010

© Quantifi 2010

normal_variate_gpu.cpp

• sets up the kernel calls

• has kernel which calls common code

• maintained by cuda expert

30

Monday, September 20, 2010

© Quantifi 2010

normal_variate_gpu
#include <cutil_inline.h>

#include "normal_inverse_cdf.h"

namespace qn { namespace cuda {namespace details {
 //
 // Main kernel. Choose between transforming
 // input sequence and uniform ascending (0, 1) sequence
 //
 template<class Real, class InvF>
 static __global__ void inverseCNDKernel(
 Real *d_Output, Real *d_Input, unsigned int pathN, InvF inverse)
 {
 using qn::cuda::math::MUL;

 Real q = Real(1.0) / (Real)(pathN + 1);
 unsigned int tid = MUL(blockDim.x, blockIdx.x) + threadIdx.x;
 unsigned int threadN = MUL(blockDim.x, gridDim.x);

 //Transform input number sequence if it's supplied
 if(d_Input){
 for(unsigned int pos = tid; pos < pathN; pos += threadN){
 Real d = d_Input[pos];
 d_Output[pos] = (Real)inverse(d);
 }
 }
 //Else generate input uniformly placed samples on the fly
 //and write to destination
 else{
 for(unsigned int pos = tid; pos < pathN; pos += threadN){
 Real d = (Real)(pos + 1) * q;
 d_Output[pos] = (Real)inverse(d);
 }
 }
 }
}}} // namespace qn::cuda::details

31

Monday, September 20, 2010

© Quantifi 2010

normal_variate_gpu
 namespace qn { namespace cuda {
 namespace details {
 template<typename Real>
 struct Moro {
 __device__ inline Real operator()(Real x) const {
 return qn::cuda::math::Moro::normal_inverse_cdf(x);
 }
 };

 template<typename Real>
 struct ShawBrickman {
 __device__ inline Real operator()(Real x) const {
 return qn::cuda::math::ShawBrickman::normal_inverse_cdf(x);
 }
 };

 template<typename Real>
 struct Acklam {
 __device__ inline Real operator()(Real x) const {
 return qn::cuda::math::Acklam::normal_inverse_cdf(x);
 }
 };
 }

 const int NBLOCK = 512;

 void normal_inverse_cdf_gpu(float *d_Output, float *d_Input, unsigned int N)
 {
 qn::cuda::details::inverseCNDKernel<<<NBLOCK, NBLOCK>>>(
 d_Output, d_Input, N, details::ShawBrickman<float>());
 cutilCheckMsg("inverseCNDKernel() execution failed.\n");
 }

 void normal_inverse_cdf_gpu_Moro(float *d_Output, float *d_Input, unsigned int N)
 {
 qn::cuda::details::inverseCNDKernel<<<NBLOCK, NBLOCK>>>(
 d_Output, d_Input, N, details::Moro<float>());
 cutilCheckMsg("inverseCNDKernel() execution failed.\n");
 }

 void normal_inverse_cdf_gpu_Acklam(float *d_Output, float *d_Input, unsigned int N)
 {
 qn::cuda::details::inverseCNDKernel<<<NBLOCK, NBLOCK>>>(
 d_Output, d_Input, N, details::Acklam<float>());
 cutilCheckMsg("inverseCNDKernel() execution failed.\n");
 }
}} // namespace qn::cuda32

Monday, September 20, 2010

© Quantifi 2010

In conclusion

• With the right development tools, cuda can be easily integrated in a
production development environment;

• Cuda has matured enough to co-exist with a large code base.
Significant parts of development can be agnostic of the hardware
platform it will be deployed on;

• Gpu development can organizationally co-exist within an
organization;

33

Monday, September 20, 2010

© Quantifi 2010

Contact Details

3416

Europe

Quantifi Limited

16 Martin’s Le Grand

London, EC1A 4EN

UK

Ph: +44 20 7397 8788

North America

Quantifi Inc.

230 Park Avenue

New York, NY 10169

USA

Ph: +1 212 784 6815

Asia Pacific

Quantifi Pty Ltd

111 Elizabeth St

Sydney, NSW 2000

Australia

Ph: +61 2 9221 0133

Web: www.quantifisolutions.com Email: enquire@quantifisolutions.com

Monday, September 20, 2010

http://www.quantifisolutions.com
http://www.quantifisolutions.com
mailto:enquire@quantifisolutions.com
mailto:enquire@quantifisolutions.com

