Quantifi I

Developing CUDA Accelerated .NET Plugins for Excel
NVIDIA 2010 Conference

Quantifi Q)

Monday, September 20, 2010



Cuda Development

XLDeveloper-Cuda enabled

Cuda in a larger organization/codebase

Quantifi Q)

Monday, September 20, 2010



XLDeveloper: Motivation S

* Provide productive environment for quants to develop Excel user-defined functions
» Take care of the details of memory management, data marshaling, and exception handling
* Provide tools for drilling down into complex data structures such as curves and surfaces

* Support side-by-side deployment of multiple versions of Quantifi XL

Quantifi Q)

Monday, September 20, 2010



History

» 2003 - Original version developed
+ 2005 - Major iteration to apply lessons learned and take advantage of .NET 2.0

2008 — Add support for Excel 2007 Ribbon bar

Quantifi Q)

Monday, September 20, 2010



Architecture Overview

Excel

Office PIA’s I Excel ‘C’ SDK I

quantifi.xml Quantifi Addin Manager
addin.settings

Managed Addin Managed Addin

Quantifi Q)

Monday, September 20, 2010



Supported Languages/Platforms

- OS

- Windows XP/Vista/7

- Windows Server 2003/2008
* Excel

- 2002/2003/2007/2010
* Programming Languages

- Any .NET language that supports custom attributes
* e.g. C#,VB.NET, F#, C++/CLI

- Easy to call C/C++

Quantifi Q)

Monday, September 20, 2010



Key Features

+ Simple Declarative Markup
- Automated memory management
- Automated data marshaling / validation
- Automated generation of docs

+ Object browsing

* Extensible Excel menu/ribbon bar

+ Optional add on modules provides seamless integration with CUDA and Grid frameworks

Quantifi Q)

Monday, September 20, 2010



SImple Declarative Markup

/ /7 <summary>

/// simple addin class
[/ </summary>

[X11Class ("SimpleAddin") ]
public class SimplelAddin

/// <summary>

/// Return the average of the specified array of doubles

/// </summary>

/// <param name="data">An array of doubles</param>

/// <returns></returns>
[X11lFunction ("Reduce™) ]

pukblic double Reduce (doubkle[] data)

{
double total = 0.0;

for( int 1 = 0; i1 < data.Length;
total += datal[i]:

return total/data.Length;

i++ )

Quantifi Q)

Monday, September 20, 2010



Automated Generation of

* Function Wizard Help

- Brief help for each arguments

* Detailed Function Help

- Generated from code comments

- Supports embedded Latex formulas

Create a Bond

Function Arguments
gbond
NameOfBond | | =
BondType '7 . =
EffectiveDate | =
[firstCouponDate] (] =
MaturityDate | | =
Create a Bond.
EffectiveDate Effective date (date coupon starts accrual).
Back to top Quan
gBond
Summary

Parameters
Parameter Parameter
Name Type Description
ObjectName string Name of returned Bond object
bondType BondIvpe Bond Type
effactiveDate date Effective date (date coupon starts accrual)
firstCouponDate date First coupon date (Default value: No Date )
(optional)
maturityDate date Maturity Date
currency currency Currency of coupon and principal payments (Def
(optional) value: Currency.None )
dayCount RayCount Coupon accrual daycount
frequency Erequency Coupon payment frequency per year
calendar Calendar Coupon payment calendar
roll BDConvention Coupon payment business day convention
coupon double Coupon (annualised in percent) or floating rate s
(in bp)
floating bool True if floating rate coupon (Default value: False
(optional)

AniimannMuntan

Amtal)

Maiunan mbmen s dmbonn FPnlniidd iimbiina Ban Mnba )

Quantifi Q)

Monday, September 20, 2010



-xtensive Datatype Support

Type Excal .NET
Doubla NUM Doubla
Char Character Char
Intagar INTEGER Int32, Int64
String STRING String

Date DATE DateTims Doubls
Enum STRING Enum

DatsTable RANGE DatsTable

Object STRING Uszar Dafinad Type
Arravs ARFRAY, RANGE Array

Quantifi Q)

Monday, September 20, 2010



Object Browsing

* Integrated Object Browser
allows user to inspect any
cached object

« Can view value of any
public property

&) Object Browser m—
Object Name ( p) _Cache Information '
4 15.CDO Pricer Pricing using 14 | Created 91372010 527:12PM
' - nmmﬁ_m&”“'“ -— ‘ || CreatedByCel '[COO Pricer (Bespoke Pricing using Base Correlation:
. . 2 Name ACE
I [pBaseCorelationJointSurface| = | :
| pBaseCorrelstionTermStruct | Version 2
I pIndexScalingCalibrator Base
4 ([, Guantifi Base CorrelationCalibri AsOf 26-Jul-2010
b iBaseComelntionParam @ Calibeator Type = SunivalFitCalibrator. AsOf = 26-Jul-2010; Sett
— nQJaffhﬁ.Cune Category Financaals
i »DiscountCurve Coy USD
4 DSurwalCurve
E)AA Count 4
) ABY DayCount Actusl365Foed
=) ACCOR Defaulted NotDefaulted
) ACE Determanistc False
AEGON ExtrapMethod Const
£ AEP Freguency Continuous
| [ AES InitialVal 1
AET nibalValue
5 pe & Interp Quantifi Numerics \Weighted
F) AlG-IntLeaseFin InterpMethod Weighted
[5) AKS-Corp JumpDate <null>
) AKZO Name ACE
)AL = Ponts Quantifi Curves CurvePointisray
FEALL # (0] 9212013 0.9485228
EJALTEL ® (1) 9222015 0.8997795
g:’fg”i (2] 92172017 0.8602108
AMGN 1 @ [3] 92272020 0.7950211
— s aairm ' Sneead 0 =
‘ " | » |l ’

[qum] oK

Quantifi Q)

Monday, September 20, 2010



Log Message Window

* Addin can log message
at different levels

* Menu Configurable by the user

 The context information
(i.e. calculating Cell) is
auto captured.

-~
>
~.

. Rl e
©) Log Window - - — lo @ B J|T
" LogLevel + 8 Refresh 3 Clear [B) Close

Tire Level  [w] Message Cortet [w] *

120213 PM NP irko MiFuncion: qCasiowCDOWated sl Sarmple PrincpalCastiowC 0 ods) AS Watedal -

120212 PM "Drko | MiFunction: qCastiowCDOWatedalFromExcel(Range cef) AS Watedal n

120213 PM Do | MIFunction: qCashowCDOWated i romFle(Sng flename) AS Watedal nt

120213PM @ emr | Two dfferert versons of sssembly Quanth XCommon’ are koaded: 9.4.0.0'fom He ///C/Quertfi/9.4 0/bin/Quartfi X¥Conmon... int

120214 PM @ emr | Faled when process the adde asserblyOuanth, Excel XExcestion | is lely St o \dev \Quantih 'tk of on\Debug\Simpled. |t

120216 PM \Pifo | Semng up menu for addins.

120307 PM YV o Completed qltAdd Teror n 00156001 seconds

120308 PM NP irfo Comgleted qimmNext 1 0.0156001 seconds KCDS Pricerxs

120308PM \Pife | Completed qDwcount BoctarapEx in 01872012

120008 PM Difo | Completed qDiscount Boctstrap i 003120024 ¥ FormLogMessageDetaits

120010PM NPrfo | Completed qDiscourt Boctstrap in 0.0156001 44

120310PM NDirfo | Completed qDtAddDeys in 0.0156001 Lop Message Detals

120311 PM efe | Complated aSuvivaiRtFemCOS 1 0 Dota. 4000 S Daatchmickior

120311 PM NPt |Completed (COSSandarcPricern 00156001} | o oo p—ree—

1203:11 PM zrfo |Completed bump i 0s . T

1203:11 PM N rfo Completed repacing n 0.01 ) { .
[1203117M \Dite | Completed seead sermtiviy i 00 9 S = J
Tr20311pm Dete | Completed aSpread01 n 00336005 seconds | | Campleted aOtAdTance n 0.0156001 seconds =

120211 PM D rfo Completed bump n 0s ‘ |

120011 PM \Drfo | Completed repacing n 0s

120311 PM "Peto | Completed burmp in Os :

120311PM \Pifo | Completed sepricng in 0 b 2

120011 PM Difo | Completed spread serstivey in 0s )

f120011 7 \Defe  Completed mpncng i s | -

1203117 Dk | Conpleted curve senetiviy in O ) ! )

120311 Dte | Completed VOO n 00156001 seconds |

120311 pm D eko | Completed bump n 0.0150000000000006

1120311 pm D ko | Completed seprcing in s

120311 PM \Difo | Completed rate senstvty i 0.01500000000000068 K0S Prcarde
120311PM \Dife | Completed qRate01 in 0.0156001 secends 1005 Pricar s
120211 PM ko | Completed recovery senstivty in 0.016000000000005% | YCDS Pricerxés
120011 PM \Drfo | Completed qRecovend! in 0.0156001 seconds DS Pricer s
120311 PM NDrfe | Completedtmtan Os KOS Proscds |

120311 PM " Peto Comgleted qTheta in 0,0156001 seconds

QuantifiQ)

Monday, September 20, 2010



Ribbon Bar

-xcel Menu/

-xtensible

Extension points provided to allow for easy addition of custom menus

In addition to user-defined functions, entire applications can be built

fmgien -

If using Excel 2007, men

\-/ Home insert Page Layout Formulas Data Review View Developer Add.Ins load Test = Quantifi | Team
; o = Help Desk & a4 ‘ ¢
QB i V& REG Q. g @ ) W) coIs I h e
&msuned Update
V9410 Recently Functions Examples Templates Hedge Object Settings Log Settings Dailly IntraDay Import Ticker Worksheets Applkmom Waterfall Examples  Dewice
Used * . . - Tool Cache~ &3 Tutorials Report Report Changes - Editor . Query
About | Functions [ Worksheets System Support Markit Risk CLo CUDA
| Al v fe
A B8 C D E F G H I J K L M N o P Q R
1

us are displayed in Ribbon Bar

QuantifiQ)

Monday, September 20, 2010



Hybrid CPU/GPU Development >

 The challenge:
Creating Maintainable Code
Allow for Specialized Development
Allow for CPU and GPU Hardware
Compilation with or without Cuda Hardware
* The tools:
Templates

Classes (Fermi)

14 © Quantifi 2010 Quantiﬁ O

Monday, September 20, 2010



An example N

|5

Lots of modeling is around Normal Distributions;

For example Uniformly (0,1) numbers need to be mapped to a
normal distribution:

Function below is not invertible
So polynomial approximations...

Monte Carlo example has one million paths, 40 time slices

Cumulative distribution function k [edn)

The cumulative distribution function (cdf) describes probabilities for a random variable 1o fall in the intervals of the form (-, x]. The cdf of the standard normal distribution is denoted with
the capital Greek letter @ (phi), and can be computed as an integral of the probability density function:

TR .
4)(_.1'):\/')_./ ¢! “‘(Hz;[l+01‘f(%)]. rcR.

This integral can only be expressed in terms of a special function erf, called the eror function. The numerical methods for calculation of the standard normal caf are discussed below. For
a generic normal rancom variable with mean u and variance o > 0 the cdf will be equal to

. - 1 T -
F[.t':/l.02)=q’( /)=_—[l-+-vrf( ,’)] x € R.
o 2 oV2
For a normal distribution with zero variance, the cdf is the Heaviside step function:
F(z; 1,0) = 1{z > pn}.

The complement of the standard normal cdf, Q(x) = 1 - ®(x), is referred to as the Q-function, especially in engineering texts."""”! This represents the tail probability of the Gaussian
distribution, that is the probability that a standard normal random variable X is greater than the number x. Other definitions of the Q-function, all of which are simple transformations of ®,

e e i Source Wikipedia

0

© Quantifi 2010 Quantiﬁ O

Monday, September 20, 2010



CPU/GPU Development 2

<> Cuda Expert

| math_utils.h
. Quant
Application
) Developer
T — T———
16 © Quantifi 2010 Quantiﬁ O

Monday, September 20, 2010



Math_utils.h S

 Mapping of functions

e Separate implementations on CPU and GPU
* |n single precision and double precision

* Maintained by hardware expert

e device_math.h is CUDA implementation

* host_math.h is CPU implementation

17 © Quantifi 2010 Quantiﬁ 0

Monday, September 20, 2010



math utils.h =

#ifdef  CUDA ARCH

# 1include "details/device math.h"
#else //! CUDA ARCH

# 1include "details/host math.h"

#endif // CUDA ARCH

18 © Quantifi 2010 Quantiﬁ 0

Monday, September 20, 2010



GPU-device math.h R

/* -
* device math.h 3
*

* Mathematical functions available on the device.

*

* Copyright (c) Quantifi Inc 2002-2011. All rights reserved.
*

*/

#ifndef ON DEVICE MATH H
#define ON DEVICE MATH H

#include <host defines.h>
#include <math constants.h>

namespace gn { namespace cuda { namespace math {
template<typename T> struct math limits { };

template<> struct math limits<float>

{
device inline static float infinity() { return CUDART INF F; }

device inline static float gquiet NaN() { return CUDART NAN F; }

device inline static float denorm min() { return CUDART MIN DENORM F; }

}i

template<> struct math limits<double>

{
device inline static double infinity () { return CUDART INF; }

device inline static double quiet NaN() { return CUDART NAN; }

device inline static double denorm min() { return CUDART MIN DENORM; }

b

19 © Quantifi 2010 Quantiﬁ O

Monday, September 20, 2010



GPU continued

template<class T> device  inline T

return pow(x,vVy);

}

template<class T> device inline T

return exp (x);

}

template<class T> device  inline T

return log(x);

}

template<class T> device inline T

return sin(x);

}

template<class T> device  inline T

return cos(x);

}

device inline float

return  powf (x,Vy);

}

__device  inline float
return  expf (x);

}

__device  inline float
return _ logf (x);

}

__device  inline float
return  sinf (x);

}

__device  inline float
return _ cosf (x);

}

20

fast pow(float

fast exp(float

fast log(float

fast sin(float

fast cos(float

fast pow (T

fast exp (T

fast log(T

fast sin(T

fast cos(T

x, T y) {
x) A
x) A
x) A
x) A

x, float y) {

x) A
x) A
x) A
x) A

© Quantifi 2010

Quantifi QY

L

Monday, September 20, 2010



Cpu version:; host_math.h

host math.h

X % o X ok X %

/
#ifndef ON HOST MATH H
#define ON HOST MATH H

#include <cmath>
#include <limits>
#include <algorithm>

namespace gn { namespace cuda
template<typename T> struct

using std::abs;
using std::fabs;
using std::ceil;
using std::floor;
using std::sqgrt;
using std::pow;
using std::log;
using std::10gl0;
using std::fmod;
using std::modf;
using std::exp;
using std::frexp;
using std::ldexp;
using std::asin;
using std::sin;
using std::sinh;

21

math limits

Mathematical functions available on the host.

Copyright (c) Quantifi Inc 2002-2011. All rights reserved.

{ namespace math {

public std::numeric limits<T>{};

© Quantifi 2010

b

Quantifi QY

Monday, September 20, 2010



Cpu version:; host_math.h ~

using std::tanh; -
using std::max;
using std::min;

static inline unsigned MUL(unsigned a, unsigned b){
return axb;

}

// overloads to match the device definitions

template<class T> inline T fast_pow(T x, T y) {
return pow(x,y);

I3

template<class T> inline T fast_exp(T x) {
return exp(x);

I3

template<class T> inline T fast_log(T x) {
return log(x);

I3

template<class T> inline T fast_sin(T x) {
return sin(x);

I3

template<class T> inline T fast_cos(T x) {
return cos(x);

}

}}} // namespace qn::cuda::details

#endif // QN_HOST_MATH_H

22 © Quantifi 2010 Quantiﬁ O

Monday, September 20, 2010



normal Inverse cdf.h X

e The actual inverse normal calculation =

* Maintained by analytical expert

e Standard c++ code

e CPU/GPU agnostic

e Can be debugged on CPU

* We will show 3 implementations:
- ShawBrickman:

Moro:

- Acklam:

23 © Quantifi 2010 Quantiﬁ 0

Monday, September 20, 2010



40 Million Calls(in millisec.) C2050

24

256x256

ShawBrickman 9.97896

Moro 10.2861
Wichura 18.1781
Acklam 25.5947

ﬁ
512x512

ShawBrickman 9.78561

Moro 10.0949

Wichura 17.8182

Acklam 24.8159

I —

128x128

ShawBrickman 12.6027

Moro 13.3601
Wichura 18.1781
Acklam 30.7807

o

e

BGM: one million paths, 40 timeslices

As a 3.1 sidenote: erfinv float is really fast but double....

© Quantifi 2010

Quantifi QY

Monday, September 20, 2010



CPU (one core) versus GPUX=

CPU timing of normal_inverse_cdf: GPU Timing of normal_mverse_cdf:

ErfInv 2877.03 Erflnv 45177

ShawBrickman 4381.32 ShawBrickman 9.74522

Moro 2632.27 Moro 10.6267
Wichura 3160.79 Wichura 19.2429
Acklam 2028.23 Acklam 25.4905
L — ———— B — ——
CPU Time/GPU Time

Erflnv 636.51

ShawBrickman 449 .37

Moro 247.63

Wichura 164.29

Acklam 79.57

25 © Quantifi 2010 Quantiﬁ o

Monday, September 20, 2010



ShawBrickman

include <host defines.h>
include “math utils.h”

namespace dgn { namespace cuda
namespace ShawBrickman ({
template <typename Real>

__device = inline Real normal inverse cdf (Real y)
{
const Real Pl = Real(1.2533136835212087879) ;
const Real P2 = Real(1.97971542232292674771) ;
const Real P3 = Real(0.80002295072483916762) ;
const Real P4 = Real (0.087403248265958578062) ;
const Real P5 = Real(0.0020751409553756572917) ;
const Real P6 = Real (4.74482073242°7972462e-0) ;
const Real Q1 = Real(1.0);
const Real Q2 = Real(2.0795584360534589311);
const Real 03 = Real(1.2499328117341603014) ;
const Real Q4 = Real(0.23668431621373705623);
const Real Q5 = Real (0.0120098270559197768) ;
const Real Q6 = Real (0.00010590620919921025259) ;
Real z;
int sgn = (y >= Real(0.5));
sgn = sgn - !sgn;
z = —-1log(Real (1.0) - (sgn * ((Real(2.0) * y) - Real(1.0))));

return sgn * z * (Pl+z*

{ namespace math {

(P2+z* (P3+z* (P4+ (P5+P6*z) *z))))

/ (Ql+z* (Q2+z* (Q3+z* (Q4+ (Q5+Q6*z) *z)))) ;

}

} // namespace ShawBrickman

NS

26

© Quantifi 2010

Quantifi QY

Monday, September 20, 2010



Moro 4

. namespace Moro { -

b

1177777777777 7777777777777777777777777777777777777777777777777777777777777777777
// Moro's Inverse Cumulative Normal Distribution function approximation
1177777777777 7777777777777777777777777777777777777777777777777777777777777777777
template<class Real>
__device  inline Real normal inverse cdf(Real P){

using namespace gn::cuda::math;

const Real al = Real(2.50662823884);

const Real a2 Real(-18.61500062529);
const Real a3 Real(41.39119773534);
const Real a4 Real(-25.44106049637);
const Real bl Real(-8.4735109309);

const Real b2 Real(23.08336743743);
const Real b3 Real(-21.06224101826);
const Real b4 Real(3.13082909833);

const Real cl Real(0.337475482272615);
const Real c2 Real(0.976169019091719);
const Real c3 Real(0.160797971491821);
const Real c4 Real(2.76438810333863E-02);
const Real c¢5 Real(3.8405729373609E-03);
const Real c6 Real(3.951896511919E-04);
const Real c7 Real(3.21767881768E-05);
const Real c8 Real(2.888167364E-07);
const Real c9 = Real(3.960315187E-07);

if(P <= 0 || P >= Real(1l.0))
return F::invalid value();

Real y, z;
y = P - Real(0.5);
if(fabsf(y) < Real(0.42)){

zZ =y *y;
z =y * (((ad * z + a3) * z + a2) * z + al) / ((((b4d * z + b3) * z + b2) * z + bl) * z + Real(1l.0));
}else{
if(y > 0)
z = fast log(-fast_log(Real(l1.0) - P));
else

z = fast log(-fast_log(P));
z=c¢cl +2z * (c2+ 2z * (¢c3 + 2 * (cd + 2 * (¢cb + 2 * (c6+ 2 * (¢c7+ 2 * (c8 + 2 * c9)))))));
if(y < 0) z = -z;
}

return z;

27 © Quantifi 2010 Quantiﬁ O

Monday, September 20, 2010



Acklam

. namespace Acklam {

[1177777777777777777777777777777777777777777777777777777777777777777777777777777
// Acklam's Inverse Cumulative Normal Distribution function approximation
[1177777777777777777777777777777777777777777777777777777777777777777777777777777
template<class Real>
__device__ inline Real normal_inverse_cdf(Real P){

using namespace gn::cuda::math;

const Real al = Real(-39.6968302866538);
const Real a2 Real(220.946098424521);
const Real a3 Real (-275.928510446969);
const Real a4 Real (138.357751867269);
const Real ab Real(-30.6647980661472);
const Real a6 Real(2.50662827745924);
const Real bl Real (-54.4760987982241);
const Real b2 Real(161.585836858041);
const Real b3 Real (-155.698979859887);
const Real b4 Real (66.8013118877197);
const Real b5 Real(-13.2806815528857);
const Real cl Real (-7.78489400243029E-03);
const Real c2 Real (-0.322396458041136);
const Real c3 Real (-2.40075827716184);
const Real c4 Real (-2.54973253934373);
const Real c5 Real(4.37466414146497);
const Real c6 Real(2.93816398269878);
const Real dl Real (7.78469570904146E-03);
const Real d2 Real(0.32246712907004);
const Real d3 Real (2.445134137143);
const Real d4 Real (3.75440866190742);
const Real low Real(0.02425);

const Real high = Real(1.0) - low;

Real z, R;

if(P <= 0 || P >= 1.0f)
return math limits<Real>::quiet.NaN();

if(P < low){
z = sqrt(Real(-2.0) * log(P));
z = (((((cl * 2z +c2) * 2+ c3) *z +cd4) *z +ch) *z +c6) /
((((dl * z + d2) * 2z + d3) * z + d4) * z + Real(1.0));
}else{
if (P > high){
z = sqrt(-2.0 * log(l.0 - P));
z = =(((((cl * z +c2) * z +c3) * z+cd) * 2z + c5) * z +c6) /
((((dl * z + d2) * 2z + d3) * z + d4) * z + Real(1.0));
}else{
z = P - Real(0.5);
R =2z * z;
28 z = (((((al * R + a2) * R + a3) * R + a4) * R + a5) * R ©deuanuzfli/2010
(((((bl * R + b2) * R + b3) * R + b4d) * R + b5) * R + Real(1.0));
}
}

Quantifi QY

Monday, September 20, 2010



normal_variate_cpu.cpp

#include <cutil inline.h>

#include "normal inverse cdf.h"

namespace qn { namespace cuda {
void normal inverse cdf cpu(float *h Output, float *h Input, unsigned int N)

{
using gn::cuda::details::normal inverse cdf;
for (unsigned int i = 0; 1 < N; ++1i)
h Output[i] = normal inverse cdf(h Input[i]);
}

}} // namespace gn::cuda

29 © Quantifi 2010

Quantifi QY

Monday, September 20, 2010



normal_variate_gpu.cpp 3

e sets up the kernel calls
* has kernel which calls common code

* maintained by cuda expert

30 © Quantifi 2010 Quantiﬁ o

Monday, September 20, 2010



normal_variate_gpu ~

#include <cutil inline.h>
#include "normal inverse cdf.h" K

namespace gn { namespace cuda {namespace details {
L1117 77 7777777777777 777777 7777777777 7777 7777777777 777777777777
// Main kernel. Choose between transforming
// 1input sequence and uniform ascending (0, 1) sequence
L1777 7707777777777 7777777777777 7777777777777 7777777777777 7777777777777 777777777
template<class Real, class InvE>
static  global  void inverseCNDKernel (
Real *d Output, Real *d Input, unsigned int pathN, InvF inverse)
{
using gn::cuda::math::MUL;

Real g = Real(1.0) / (Real) (pathN + 1);
unsigned int tid = MUL(blockDim.x, blockIdx.x) + threadIdx.x;
unsigned int threadN = MUL (blockDim.x, gridDim.x) ;

//Transform input number sequence if it's supplied
if (d Input) {
for (unsigned int pos = tid; pos < pathN; pos += threadN) {
Real d = d Input[pos];
d Output[pos] = (Real)inverse(d);
}
}
//Else generate input uniformly placed samples on the fly
//and write to destination

else{
for (unsigned int pos = tid; pos < pathN; pos += threadN) {
Real d = (Real) (pos + 1) * qg;
d Output[pos] = (Real)inverse(d);

}
}
}

}}} // namespace gn::cuda::details

31 © Quantifi 2010 Quantiﬁ O

Monday, September 20, 2010



normal_variate_gpu

namespace gqn { namespace cuda {
namespace details {
template<typename Real>
struct Moro {
__device  inline Real operator()(Real x) const {
return gn::cuda::math::Moro::normal_ inverse cdf(x);

}
}i

template<typename Real>
struct ShawBrickman {
__device  inline Real operator()(Real x) const {
return gn::cuda::math::ShawBrickman::normal_ inverse_ cdf(x);
}
}i

template<typename Real>
struct Acklam {
__device  inline Real operator()(Real x) const {
return gn::cuda::math::Acklam::normal inverse cdf(x);

const int NBLOCK = 512;

void normal inverse cdf gpu(float *d Output, float *d Input, unsigned int N)

{
gn::cuda: :details::inverseCNDKernel<<<NBLOCK, NBLOCK>>>(

d Output, d_Input, N, details::ShawBrickman<float>());
cutilCheckMsg("inverseCNDKernel() execution failed.\n");

}

void normal_inverse cdf gpu Moro(float *d_Output, float *d_Input, unsigned int N)

{
gn::cuda: :details::inverseCNDKernel<<<NBLOCK, NBLOCK>>>(

d Output, d Input, N, details::Moro<float>());
cutilCheckMsg("inverseCNDKernel() execution failed.\n");

}

void normal inverse cdf gpu Acklam(float *d Output, float *d Input, unsigned int N)

{
gn::cuda::details::inverseCNDKernel<<<NBLOCK, NBLOCK>>>(

d Output, d Input, N, details::Acklam<float>());
cutilCheckMsg("inverseCNDKernel() execution failed.\n");

}}é/?! namespace gn::cuda © Quantifi 2010

Quantifi QY

Monday, September 20, 2010



In conclusion 28

e With the right development tools, cuda can be easily integrated in a
production development environment;

e Cuda has matured enough to co-exist with a large code base.

Significant parts of development can be agnostic of the hardware
platform it will be deployed on;

* Gpu development can organizationally co-exist within an
organization;

33 © Quantifi 2010 Quantiﬁ 0

Monday, September 20, 2010



Contact Detalls S

Europe North America Asia Pacific

Quantifi Limited Quantifi Inc. Quantifi Pty Ltd
|6 Martin’s Le Grand 230 Park Avenue | || Elizabeth St
London, ECIA 4EN New York, NY 10169 Sydney, NSWV 2000

UK USA Australia
Ph: +44 20 7397 8788 Ph:+1 212 784 6815 Ph:+61 29221 0133
Web: www.quantifisolutions.com Email: enquire(@gquantifisolutions.com
34 © Quantifi 2010 Quantiﬁ 0

Monday, September 20, 2010


http://www.quantifisolutions.com
http://www.quantifisolutions.com
mailto:enquire@quantifisolutions.com
mailto:enquire@quantifisolutions.com

