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Cuda Development

XLDeveloper-Cuda enabled

Cuda in a larger organization/codebase
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XLDeveloper: Motivation

• Provide productive environment for quants to develop Excel user-defined functions

• Take care of the details of memory management, data marshaling, and exception handling

• Provide tools for drilling down into complex data structures such as curves and surfaces

• Support side-by-side deployment of multiple versions of Quantifi XL

Monday, September 20, 2010



History

• 2003 - Original version developed

• 2005 - Major iteration to apply lessons learned and take advantage of .NET 2.0

• 2008 – Add support for Excel 2007 Ribbon bar
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Architecture Overview
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Supported Languages/Platforms

• OS

- Windows XP/Vista/7

- Windows Server 2003/2008

• Excel

- 2002/2003/2007/2010

• Programming Languages

- Any .NET language that supports custom attributes
• e.g. C#, VB.NET, F#, C++/CLI

- Easy to call C/C++
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Key Features

• Simple Declarative Markup

- Automated memory management

- Automated data marshaling / validation

- Automated generation of docs

• Object browsing

• Extensible Excel menu/ribbon bar

• Optional add on modules provides seamless integration with CUDA and Grid frameworks
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Simple Declarative Markup
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Automated Generation of Docs
• Function Wizard Help

- Brief help for each arguments

• Detailed Function Help
- Generated from code comments

- Supports embedded Latex formulas
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Extensive Datatype Support
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Object Browsing

• Integrated Object Browser 
allows user to inspect any 
cached object

• Can view value of any 
public property
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Log Message Window
• Addin can log message 

at different levels

• Menu Configurable by the user 

• The context information 
(i.e. calculating Cell) is 
auto captured.
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Extensible Excel Menu/Ribbon Bar
• Extension points provided to allow for easy addition of custom menus

• In addition to user-defined functions, entire applications can be built

• If using Excel 2007, menus are displayed in Ribbon Bar
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Hybrid CPU/GPU Development

• The challenge:

Creating Maintainable Code

Allow for Specialized Development

Allow for CPU and GPU Hardware

Compilation with or without Cuda Hardware

• The tools:

Templates

Classes (Fermi)

14
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An example
• Lots of modeling is around Normal Distributions;

• For example Uniformly (0,1) numbers need to be mapped to a 
normal distribution;

• Function below is not invertible

• So polynomial approximations...

• Monte Carlo example has one million paths, 40 time slices

15

Source Wikipedia
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CPU/GPU Development

16
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Math_utils.h

• Mapping of functions

• Separate implementations on CPU and GPU

• In single precision and double precision

• Maintained by hardware expert

• device_math.h is CUDA implementation

• host_math.h is CPU implementation

17
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math_utils.h
QN_MATH_TRAITS_H

 
#ifdef __CUDA_ARCH__
 
#  include "details/device_math.h"
 
#else //!__CUDA_ARCH__
 
#  include "details/host_math.h"
 
#endif //__CUDA_ARCH__
 
 

18
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GPU-device_math.h
/*
 * device_math.h
 *
 * Mathematical functions available on the device.
 *
 * Copyright (c) Quantifi Inc 2002-2011. All rights reserved.
 *
 */
#ifndef QN_DEVICE_MATH_H
#define QN_DEVICE_MATH_H
 
#include <host_defines.h>
#include <math_constants.h>
 
namespace qn { namespace cuda { namespace math {
 
  template<typename T> struct math_limits { };
 
  template<> struct math_limits<float>
  {
    __device__ inline static float infinity() { return CUDART_INF_F; }
    __device__ inline static float quiet_NaN() { return CUDART_NAN_F; }
    __device__ inline static float denorm_min() { return CUDART_MIN_DENORM_F; }
  };
 
  template<> struct math_limits<double>
  {
    __device__ inline static double infinity() { return CUDART_INF; }
    __device__ inline static double quiet_NaN() { return CUDART_NAN; }
    __device__ inline static double denorm_min() { return CUDART_MIN_DENORM; }
  };
 
  

 

19

Monday, September 20, 2010



© Quantifi 2010

GPU continued
 

   
  template<class T> __device__ inline T fast_pow(T x, T y) {
    return pow(x,y);
  }
  template<class T> __device__ inline T fast_exp(T x) {
    return exp(x);
  }
  template<class T> __device__ inline T fast_log(T x) {
    return log(x);
  }
  template<class T> __device__ inline T fast_sin(T x) {
    return sin(x);
  }
  template<class T> __device__ inline T fast_cos(T x) {
    return cos(x);
  }
 
  __device__ inline float fast_pow(float x, float y) {
    return __powf(x,y);
  }
  __device__ inline float fast_exp(float x) {
    return __expf(x);
  }
  __device__ inline float fast_log(float x) {
    return __logf(x);
  }
  __device__ inline float fast_sin(float x) {
    return __sinf(x);
  }
  __device__ inline float fast_cos(float x) {
    return __cosf(x);
  }
 

20
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Cpu version: host_math.h
/*
 * host_math.h
 *
 * Mathematical functions available on the host.
 *
 * Copyright (c) Quantifi Inc 2002-2011. All rights reserved.
 *
 */
#ifndef QN_HOST_MATH_H
#define QN_HOST_MATH_H
 
#include <cmath>
#include <limits>
#include <algorithm>
 
namespace qn { namespace cuda { namespace math {
 
  template<typename T> struct math_limits : public std::numeric_limits<T>{};
 
  using std::abs;
  using std::fabs;
  using std::ceil;
  using std::floor;
  using std::sqrt;
  using std::pow;
  using std::log;
  using std::log10;
  using std::fmod;
  using std::modf;
  using std::exp;
  using std::frexp;
  using std::ldexp;
  using std::asin;
  using std::sin;
  using std::sinh;

21
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Cpu version: host_math.h
  using std::tanh;

  using std::max;

  using std::min;
 
  static inline unsigned MUL(unsigned a, unsigned b){
    return a*b;
  }
 
  // overloads to match the device definitions
  template<class T> inline T fast_pow(T x, T y) {
    return pow(x,y);
  }
  template<class T> inline T fast_exp(T x) {
    return exp(x);
  }
  template<class T> inline T fast_log(T x) {
    return log(x);
  }
  template<class T> inline T fast_sin(T x) {
    return sin(x);
  }
  template<class T> inline T fast_cos(T x) {
    return cos(x);
  }
 
}}} // namespace qn::cuda::details
 
#endif // QN_HOST_MATH_H

22
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normal_inverse_cdf.h
• The actual inverse normal calculation

• Maintained by analytical expert

• Standard c++ code

• CPU/GPU agnostic

• Can be debugged on CPU

• We will show 3 implementations:

- ShawBrickman:

- Moro:                                          

- Acklam:                                        

23
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40 Million Calls(in millisec.) C2050

24

128x128

ShawBrickman	
  12.6027

Moro	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  13.3601

Wichura	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  18.1781

Acklam	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  30.7807

256x256

ShawBrickman	
  9.97896

Moro	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  10.2861

Wichura	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  18.1781

Acklam	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  25.5947

512x512

ShawBrickman	
  	
  	
  9.78561

Moro       10.0949

Wichura    17.8182

Acklam	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  24.8159 As a 3.1 sidenote: erfinv float is really fast but double....

BGM: one million paths, 40 timeslices
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CPU (one core) versus GPU

25

GPU Timing of normal_inverse_cdf:

        ErfInv                  4.5177

        ShawBrickman    9.74522

        Moro                  10.6267

        Wichura              19.2429

        Acklam               25.4905

CPU timing of normal_inverse_cdf:

        ErfInv                   2877.03

        ShawBrickman    4381.32

        Moro                   2632.27

        Wichura              3160.79

        Acklam               2028.23

ErfInv 636.51

ShawBrickman 449.37

Moro 247.63

Wichura 164.29

Acklam 79.57

CPU Time/GPU Time
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ShawBrickman
include <host_defines.h>
include “math_utils.h”

namespace qn { namespace cuda { namespace math {
namespace ShawBrickman {
    template <typename Real>
    __device__  inline Real normal_inverse_cdf(Real y)
    {
      const Real P1 = Real(1.2533136835212087879);
      const Real P2 = Real(1.9797154223229267471);
      const Real P3 = Real(0.80002295072483916762);
      const Real P4 = Real(0.087403248265958578062);
      const Real P5 = Real(0.0020751409553756572917);
      const Real P6 = Real(4.744820732427972462e-6);
      const Real Q1 = Real(1.0);
      const Real Q2 = Real(2.0795584360534589311);
      const Real Q3 = Real(1.2499328117341603014);
      const Real Q4 = Real(0.23668431621373705623);
      const Real Q5 = Real(0.0120098270559197768);
      const Real Q6 = Real(0.00010590620919921025259);
      Real z;
      int sgn = (y >= Real(0.5));
      sgn = sgn - !sgn;
      z = -log(Real(1.0) - (sgn * ((Real(2.0) * y) - Real(1.0))));
      return sgn * z * (P1+z*(P2+z*(P3+z*(P4+(P5+P6*z)*z))))
        / (Q1+z*(Q2+z*(Q3+z*(Q4+(Q5+Q6*z)*z))));
    }
  } // namespace ShawBrickman

}}}

26
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Moro
•  namespace Moro {

    ////////////////////////////////////////////////////////////////////////////////
    // Moro's Inverse Cumulative Normal Distribution function approximation
    ////////////////////////////////////////////////////////////////////////////////
    template<class Real>
    __device__ inline Real normal_inverse_cdf(Real P){
      using namespace qn::cuda::math;

      const Real a1 = Real(2.50662823884);
      const Real a2 = Real(-18.61500062529);
      const Real a3 = Real(41.39119773534);
      const Real a4 = Real(-25.44106049637);
      const Real b1 = Real(-8.4735109309);
      const Real b2 = Real(23.08336743743);
      const Real b3 = Real(-21.06224101826);
      const Real b4 = Real(3.13082909833);
      const Real c1 = Real(0.337475482272615);
      const Real c2 = Real(0.976169019091719);
      const Real c3 = Real(0.160797971491821);
      const Real c4 = Real(2.76438810333863E-02);
      const Real c5 = Real(3.8405729373609E-03);
      const Real c6 = Real(3.951896511919E-04);
      const Real c7 = Real(3.21767881768E-05);
      const Real c8 = Real(2.888167364E-07);
      const Real c9 = Real(3.960315187E-07);

      if(P <= 0 || P >= Real(1.0))
        return F::invalid_value();

      Real y, z;
      y = P - Real(0.5);
      if(fabsf(y) < Real(0.42)){
        z = y * y;
        z = y * (((a4 * z + a3) * z + a2) * z + a1) / ((((b4 * z + b3) * z + b2) * z + b1) * z + Real(1.0));
      }else{
        if(y > 0)
          z = fast_log(-fast_log(Real(1.0) - P));
        else
          z = fast_log(-fast_log(P));

        z = c1 + z * (c2 + z * (c3 + z * (c4 + z * (c5 + z * (c6 + z * (c7 + z * (c8 + z * c9)))))));
        if(y < 0) z = -z;
      }

      return z;

27
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Acklam
• namespace Acklam {

    ////////////////////////////////////////////////////////////////////////////////
    // Acklam's Inverse Cumulative Normal Distribution function approximation
    ////////////////////////////////////////////////////////////////////////////////
    template<class Real>
    __device__ inline Real normal_inverse_cdf(Real P){
      using namespace qn::cuda::math;

      const Real   a1 = Real(-39.6968302866538);
      const Real   a2 = Real(220.946098424521);
      const Real   a3 = Real(-275.928510446969);
      const Real   a4 = Real(138.357751867269);
      const Real   a5 = Real(-30.6647980661472);
      const Real   a6 = Real(2.50662827745924);
      const Real   b1 = Real(-54.4760987982241);
      const Real   b2 = Real(161.585836858041);
      const Real   b3 = Real(-155.698979859887);
      const Real   b4 = Real(66.8013118877197);
      const Real   b5 = Real(-13.2806815528857);
      const Real   c1 = Real(-7.78489400243029E-03);
      const Real   c2 = Real(-0.322396458041136);
      const Real   c3 = Real(-2.40075827716184);
      const Real   c4 = Real(-2.54973253934373);
      const Real   c5 = Real(4.37466414146497);
      const Real   c6 = Real(2.93816398269878);
      const Real   d1 = Real(7.78469570904146E-03);
      const Real   d2 = Real(0.32246712907004);
      const Real   d3 = Real(2.445134137143);
      const Real   d4 = Real(3.75440866190742);
      const Real  low = Real(0.02425);
      const Real high = Real(1.0) - low;
      Real z, R;

      if(P <= 0 || P >= 1.0f)
        return math_limits<Real>::quiet.NaN();

      if(P < low){
        z = sqrt(Real(-2.0) * log(P));
        z = (((((c1 * z + c2) * z + c3) * z + c4) * z + c5) * z + c6) /
          ((((d1 * z + d2) * z + d3) * z + d4) * z + Real(1.0));
      }else{
        if(P > high){
          z = sqrt(-2.0 * log(1.0 - P));
          z = -(((((c1 * z + c2) * z + c3) * z + c4) * z + c5) * z + c6) /
            ((((d1 * z + d2) * z + d3) * z + d4) * z + Real(1.0));
        }else{
          z = P - Real(0.5);
          R = z * z;
          z = (((((a1 * R + a2) * R + a3) * R + a4) * R + a5) * R + a6) * z /
            (((((b1 * R + b2) * R + b3) * R + b4) * R + b5) * R + Real(1.0));
        }
      }

28
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normal_variate_cpu.cpp
#include <cutil_inline.h>

#include "normal_inverse_cdf.h"

namespace qn { namespace cuda {
  void normal_inverse_cdf_cpu(float *h_Output, float *h_Input, unsigned int N)
  {
    using qn::cuda::details::normal_inverse_cdf;
    for (unsigned int i = 0; i < N; ++i)
      h_Output[i] = normal_inverse_cdf(h_Input[i]);
  }
}} // namespace qn::cuda

29
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normal_variate_gpu.cpp

• sets up the kernel calls

• has kernel which calls common code

• maintained by cuda expert

30
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normal_variate_gpu
#include <cutil_inline.h>
 
#include "normal_inverse_cdf.h"
 
namespace qn { namespace cuda {namespace details {
  ////////////////////////////////////////////////////////////////////////////////
  // Main kernel. Choose between transforming
  // input sequence and uniform ascending (0, 1) sequence
  ////////////////////////////////////////////////////////////////////////////////
  template<class Real, class InvF>
  static __global__ void inverseCNDKernel(
    Real *d_Output, Real *d_Input, unsigned int pathN, InvF inverse)
  {
    using qn::cuda::math::MUL;
 
    Real q = Real(1.0) / (Real)(pathN + 1);
    unsigned int     tid = MUL(blockDim.x, blockIdx.x) + threadIdx.x;
    unsigned int threadN = MUL(blockDim.x, gridDim.x);
 
    //Transform input number sequence if it's supplied
    if(d_Input){
      for(unsigned int pos = tid; pos < pathN; pos += threadN){
        Real d = d_Input[pos];
        d_Output[pos] = (Real)inverse(d);
      }
    }
    //Else generate input uniformly placed samples on the fly
    //and write to destination
    else{
      for(unsigned int pos = tid; pos < pathN; pos += threadN){
        Real d = (Real)(pos + 1) * q;
        d_Output[pos] = (Real)inverse(d);
      }
    }
  }
}}} // namespace qn::cuda::details
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normal_variate_gpu
    namespace qn { namespace cuda {
    namespace details {
    template<typename Real>
    struct Moro {
      __device__ inline Real operator()(Real x) const {
        return qn::cuda::math::Moro::normal_inverse_cdf(x);
      }
    };
 
    template<typename Real>
    struct ShawBrickman {
      __device__ inline Real operator()(Real x) const {
        return qn::cuda::math::ShawBrickman::normal_inverse_cdf(x);
      }
    };
 
    template<typename Real>
    struct Acklam {
      __device__ inline Real operator()(Real x) const {
        return qn::cuda::math::Acklam::normal_inverse_cdf(x);
      }
    };
  }
 
  const int NBLOCK = 512;
 
  void normal_inverse_cdf_gpu(float *d_Output, float *d_Input, unsigned int N)
  {
    qn::cuda::details::inverseCNDKernel<<<NBLOCK, NBLOCK>>>(
      d_Output, d_Input, N, details::ShawBrickman<float>());
    cutilCheckMsg("inverseCNDKernel() execution failed.\n");
  }
 
  void normal_inverse_cdf_gpu_Moro(float *d_Output, float *d_Input, unsigned int N)
  {
    qn::cuda::details::inverseCNDKernel<<<NBLOCK, NBLOCK>>>(
      d_Output, d_Input, N, details::Moro<float>());
    cutilCheckMsg("inverseCNDKernel() execution failed.\n");
  }
 
  void normal_inverse_cdf_gpu_Acklam(float *d_Output, float *d_Input, unsigned int N)
  {
    qn::cuda::details::inverseCNDKernel<<<NBLOCK, NBLOCK>>>(
      d_Output, d_Input, N, details::Acklam<float>());
    cutilCheckMsg("inverseCNDKernel() execution failed.\n");
  }
}} // namespace qn::cuda32
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In conclusion

• With the right development tools, cuda can be easily integrated in a 
production development environment;

• Cuda has matured enough to co-exist with a large code base.  
Significant parts of development can be agnostic of the hardware 
platform it will be deployed on;

• Gpu development can organizationally co-exist within an 
organization; 
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