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Herschel Space Telescope

Sensitive to the far infrared and submillimeter wavebands

Capable of seeing the coldest and most obscure objects in
space

Projects approximate cost over 450 million (4 yr mission)
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Taking measurements

Why go through all the effort of aquiring data that will be lost
anyway?

Why can we not just measure the parts that are not thrown
away?

Is there a way to take advantage of structure and redundancy?
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Compressive Sensing (CS)

CS encodes a signal into a relatively small number of linear
measurements.

Exploits structure and redundancy in the majority of
interested signal.

Recovers sparse compressible signals using
k < Shannon-Nyquist sample rate.

No information loss if we sample at 2x the bandwidth
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Applications of Compressive Sensing

Advantages:

faster sampling

higher-dimensional data

lower energy
consumption

Real-World applications:

MRI images

Image reconstruction

Face recognition

Infared spectroscopy
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GPU computation

Use of a GPU (graphics processing unit) to do general
purpose computing.

Use a CPU and GPU together in a heterogeneous computing
model.

Major difference:
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Jacket

Brings speed and visual computing capability of GPUs to
MATLAB programs.

NOT a collection of GPU functions.

Allows the use of multiple GPUs simultaneously.
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Disadvantages of the GPU

Recursion is not allowed.

Double precision computation CANNOT reach card peak
performance (78 v. 933).

The bus bandwidth and latency between the CPU and the
GPU becomes a bottleneck.

Branching may impact performance significantly.
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Reconstruction from Partial Fourier data (RecPF)

min
u

TV (u) + λ‖Ψu‖+ µ‖Fp(u)− fp‖2

where we have

u is the signal/image to be reconstructed

TV(u) is the total variation regularization term

Ψ is a sparsifying basis

Fp is a partial Fourier matrix

fp is a vector of partial Fourier coefficients

9



RecPF using ciculant matrices (RecPC)

min
u

TV (u) + λ‖Ψu‖+
µ

2
‖PCu − b‖2

where we have

u is the signal/image to be reconstructed

TV(u) is the total variation regularization term

Ψ is a sparsifying basis

P is a selection operator

C is a block-circulant matrix
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RecPF ⇒ gRecPF (using Jacket)

RecPF uses an alternating minimization scheme where the
main computation involves shrinkage and fast Fourier
transforms (FFTs)
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With avg. time taken before instantition
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RecPC ⇒ gRecPC (using Jacket)

However, hardware realizations make it difficult and costly to
implement random matrices.

Sol’n: use circulant matrices as basis matrix
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Future work

Need to finish the anisotropic cases for both gRecPF &
gRecPC.

Try and make new algorithms (Median formula).

Make CUDA prototypes.
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gRecPF

Using only 22% of measurements we can reconstruct images to
single precision.
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gRecPC
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