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Herschel Space Telescope

@ Sensitive to the far infrared and submillimeter wavebands

o Capable of seeing the coldest and most obscure objects in
space

@ Projects approximate cost over 450 million (4 yr mission)



Taking measurements

@ Why go through all the effort of aquiring data that will be lost
anyway?

o Why can we not just measure the parts that are not thrown
away?

@ Is there a way to take advantage of structure and redundancy?



Compressive Sensing (CS)

@ CS encodes a signal into a relatively small number of linear
measurements.

@ Exploits structure and redundancy in the majority of
interested signal.

@ Recovers sparse compressible signals using
k < Shannon-Nyquist sample rate.

o No information loss if we sample at 2x the bandwidth



Applications of Compressive Sensing

Advantages:
o faster sampling
o higher-dimensional data

o lower energy
consumption

Real-World applications:

o MRI images _ BEER . -
; (& T ]
@ Image reconstruction £33 iEd  ——
e Face recognition YER™  [A1|Az|...| A] zeR”
Test image Combined training coefficients
o Infared spectroscopy dictionary



GPU computation

@ Use of a GPU (graphics processing unit) to do general
purpose computing.

@ Use a CPU and GPU together in a heterogeneous computing
model.

@ Major difference:

240 cores

4 cores




@ Brings speed and visual computing capability of GPUs to
MATLAB programs.

@ NOT a collection of GPU functions.

@ Allows the use of multiple GPUs simultaneously.



Disadvantages of the GPU

Recursion is not allowed.

Double precision computation CANNOT reach card peak
performance (78 v. 933).

@ The bus bandwidth and latency between the CPU and the
GPU becomes a bottleneck.

Branching may impact performance significantly.



Reconstruction from Partial Fourier data (RecPF)

min TV (u) + AWl + p[ Fp(u) = Ak
where we have

u is the signal /image to be reconstructed

TV(u) is the total variation regularization term

°
°

@ W is a sparsifying basis

o F, is a partial Fourier matrix
°

fp is a vector of partial Fourier coefficients



RecPF using ciculant matrices (RecPC)

min TV (u) + \|Wul| + §||Pcu b2
u
where we have

@ u is the signal/image to be reconstructed
@ TV(u) is the total variation regularization term
o W is a sparsifying basis

@ P is a selection operator

°

C is a block-circulant matrix
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RecPF = gRecPF (using Jacket)

@ RecPF uses an alternating minimization scheme where the
main computation involves shrinkage and fast Fourier
transforms (FFTs)
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With avg. time taken before instantition

RecPF/gRecPF vs. Avg Time
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RecPC =- gRecPC (using Jacket)

@ However, hardware realizations make it difficult and costly to
implement random matrices.

@ Sol'n: use circulant matrices as basis matrix

RecPC/gRecPC vs. Time (256)
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@ Need to finish the anisotropic cases for both gRecPF &
gRecPC.

e Try and make new algorithms (Median formula).

o Make CUDA prototypes.
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Using only 22% of measurements we can reconstruct images to
single precision.
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