

Objective

- Develop understanding of what "Computational Finance" means
- Learn who uses Computational Finance
 - Why do the users need it?
 - What do they do with the information?
- Take a look at some typical algorithms
- Consider the challenges and benefits of adoption

Who's Who

AGENDA

Modeling

Algorithms

Adoption

Summary

Who's Who

AGENDA

Modeling

Algorithms

Adoption

Summary

Cash Instruments

Equities

Commodities

Fixed Income

Foreign Exchange

Derivatives

Exchange-traded

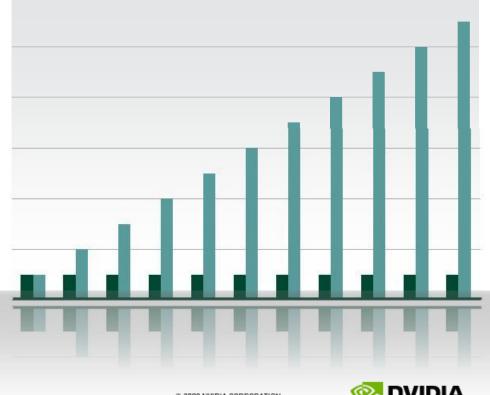
Over-the-counter

Equities

- Share ownership
- Value determined by market
- Dividends

J.UIU	טטוים		MAN 10	
.1123	1.1601	_	1.16%	0.186
	1.662	+	0.16%	11.600
0.118			010%	N/A
1.121	0.1201	+	0,10 /0	10.201
	1.0233	-	1,53%	13.203
20.232	1.1611	+	1.15%	
0.186	1000		0.87%	N/A
1.1601	0.1602		0.11%	20.160
1.662	0,105	1	011%	N/A
1.002	1.230		112%	N/A 1.662 1.6
0.1201	1.1577	+	3 23%	10.201 10.2
1 1.0233	m 1773		2.14%	0.873 20
2 1.161	2 0.1150	-	2.18%	1.123
01 0.160	2 1112	+	1.16%	N/A O
01 0.160 0.10	0.118 0.118			20.232 800
123 0.12	30			0.186 1.100
			- 10 M	

NVIDIA.


Commodities

- Raw resource
 - Agriculture: corn, rice
 - Livestock: pork bellies
 - Energy: oil, gas
 - Metals: precious, industrial
- Supply and demand

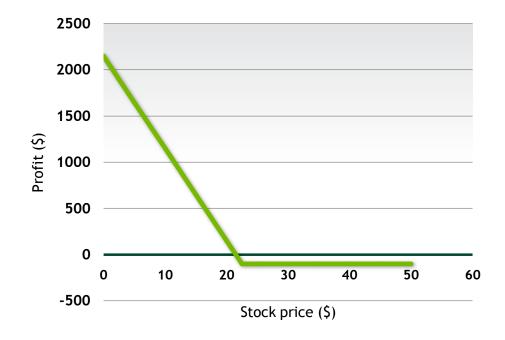
Fixed Income

- Also: Credit
- Loans and bonds
- Different rates according to duration

Foreign Exchange

- Also: Forex or FX
- Take advantage of changes in rates

Derivatives


- Based on one or more underlying assets
 - Equities, FX, credit
- Many types of contract
 - Forwards and futures
 - Options
 - Swaps
- Exchange-traded or Over-the-Counter (OTC)

Example: Options

- Holder has the right to buy (call) or sell (put) the underlying asset
 - By a certain date
 - At a certain price

$$Payoff_{put} = \max(K - S, 0)$$

where $K = \text{strike price}$
 $S = \text{spot price}$

Who's Who

AGENDA

Modeling

Algorithms

Adoption

Summary

Traders

- Trading:
 - Standardised instruments
 - New (often complex) instruments
- Requires models:
 - Pricing
 - Prediction
 - Risk analysis

Traders Backoffice Quants Developers

Backoffice

- Monitoring the banks exposure
- Model all trades
 - Value
 - Risk
- Value-at-Risk (VaR) required for regulation

Quants

- Develop and implement models for traders
- Develop independent models for validation
- Research
- Modelling exposure and capital

Traders Backoffice Quants Developers

Developers

- Implement models from quants
- Integrate into larger applications
 - Interface to other models
 - Interface to database
 - Interface to user

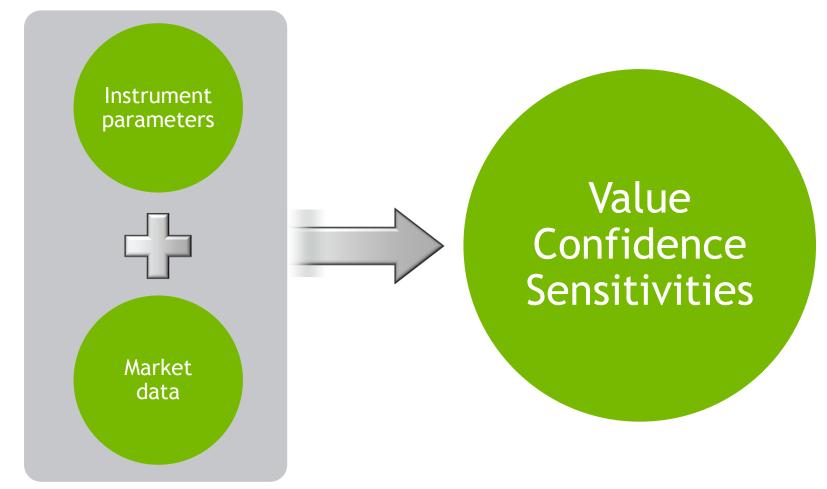
Traders Backoffice Quants Developers

© 2009 NVIDIA CORPORATION

Who's Who

AGENDA

Modeling


Algorithms

Adoption

Summary

Inputs/Outputs

Traders

- Determine price for trade
 - Negotiate over the phone, require results fast
 - Minimize out-trades (errors)
- Run positions
 - Sensitivities allow trader to predict response to changes in underlying assets
 - Run often to allow trader to react quickly

Backoffice

- Manage risk and capital reserves for regulation
 - Large runs can take days to complete
 - Accurate results allow greater control, and hence more trades
- Monitor traders' exposure
 - Run intra-day
- Greater accuracy requires longer run times

Who's Who

AGENDA

Modeling

Algorithms

Adoption

Summary

Analytic

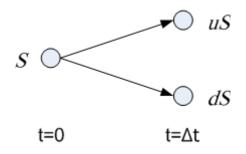
Some derivatives have an analytic solution

$$\frac{\partial f}{\partial t} + rS \frac{\partial f}{\partial S} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 f}{\partial S^2} = rf$$

$$\text{Black - Scholes Formula}$$

$$\Rightarrow \begin{cases} f = Ke^{-rT}\Phi(-d_2) - S_0\Phi(-d_1) \\ d_1 = \frac{\ln(S_0/K) + (r + \sigma^2/2)T}{\sigma\sqrt{T}} \\ d_2 = \frac{\ln(S_0/K) + (r - \sigma^2/2)T}{\sigma\sqrt{T}} = d_1 - \sigma\sqrt{T} \end{cases}$$
Price for European Put Option

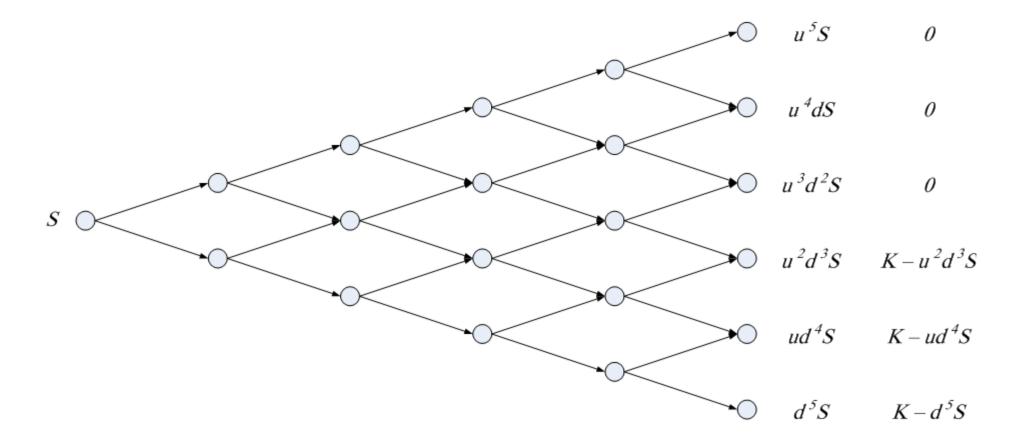
- Compare analytical result with numerical result
 - Provides a Control Variate



Binomial Trees

- Represent possible paths of stock
- Assumptions:
 - Stock has a probability p of moving up by a certain percentage u
 - Stock has a probability (1-p) of moving down by a certain percentage d

Binomial Trees



Construct the tree

- Create a branch for each time step
- At each node the stock can either go up u% or down d%

Binomial Trees

Derivative

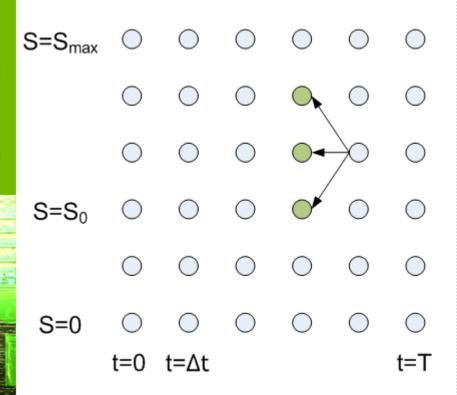
payoff

Stock

price

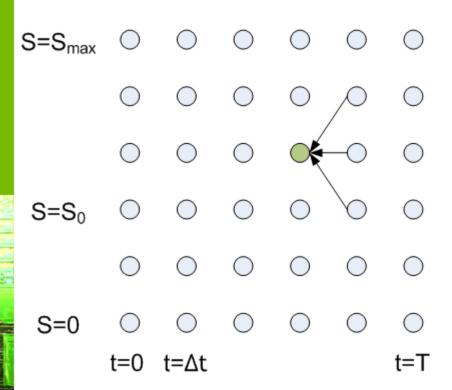
Binomial Trees on the GPU

- Work backwards in time
 - Compute value at each node
- Partition the work across the SMs
 - Overlap input data
 - Fit input partition in smem

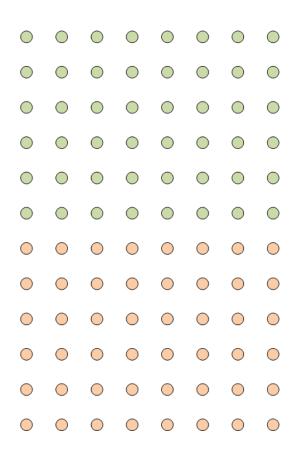


Finite Differences

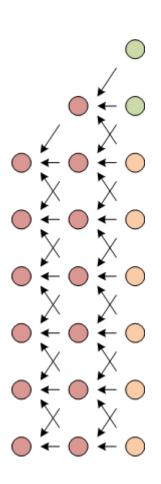
- Solve the Partial Differential Equation iteratively
 - Divide the life of the derivative into equal intervals of length Δt
 - Divide the range of stock prices $[0,S_{max}]$ into equal intervals of size ΔS
- Work backwards in time, compute the value at each node


Finite Differences - Implicit

- Relationship:
 - Three values at t and one value at $t + \Delta t$
- Always converges to solution
- Requires solving simultaneous equations

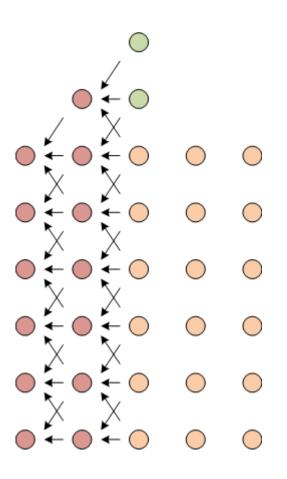

Finite Differences - Explicit

- Relationship:
 - One value at t and three values at $t + \Delta t$
- Compute nodes in parallel
- Can diverge from solution



Explicit Finite Differences on the GPU

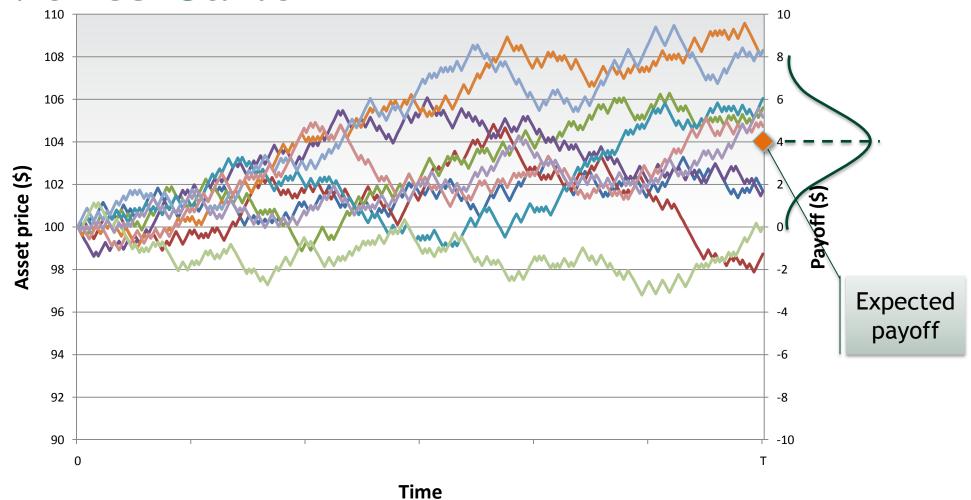
 Partition the grid across the SMs


Explicit Finite Differences on the GPU

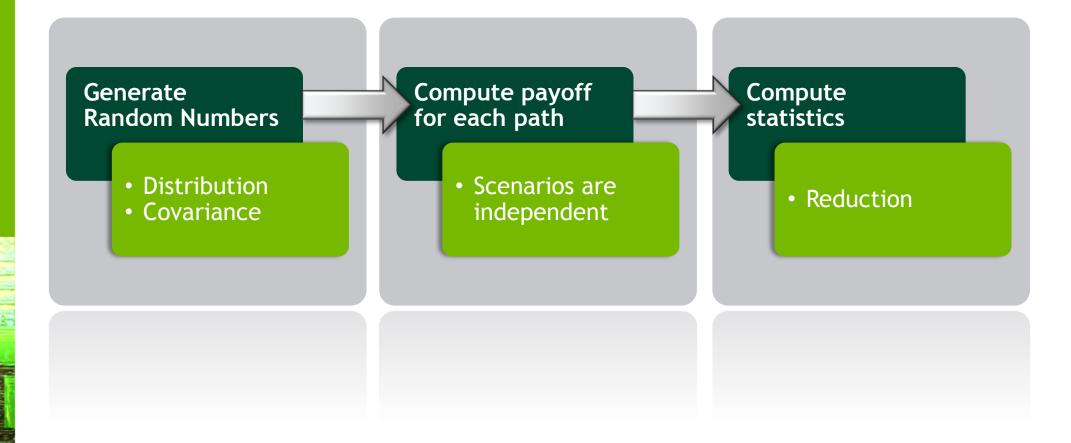
- Partition the grid across the SMs
- Each SM requires a "halo"
 - Halo size determines how many time steps in batch

Explicit Finite Differences on the GPU

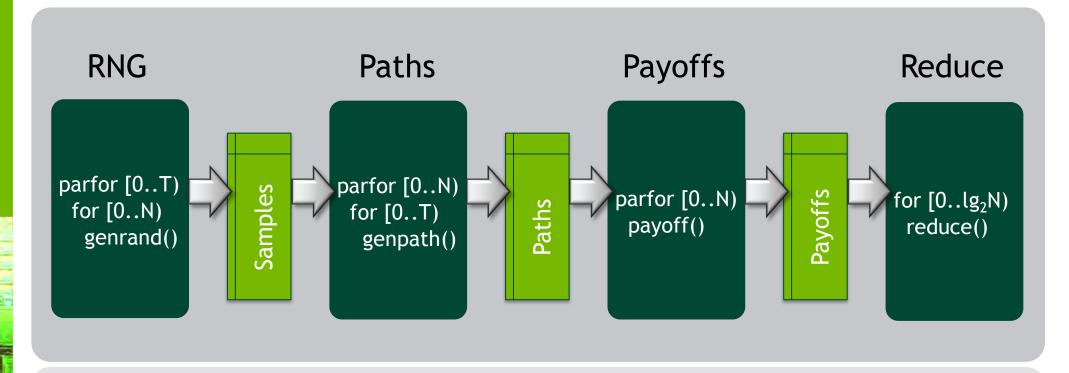
- Partition the grid across the SMs
- Each SM requires a "halo"
 - Halo size determines how many time steps in batch
 - After each batch,
 distribute new halos



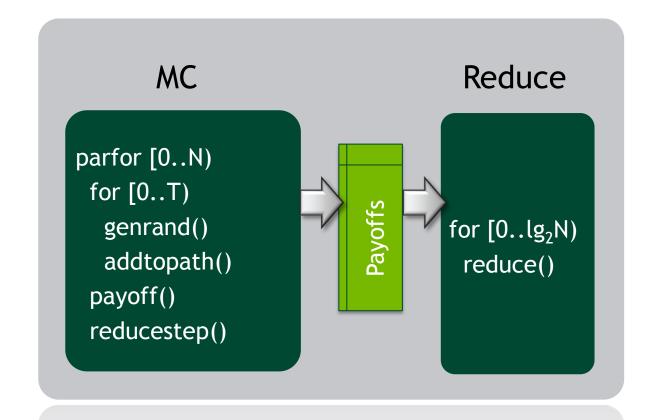
Monte Carlo


- Sample a random walk for the asset(s)
- Calculate the payoff of the derivative
- Repeat to get many sample payoff values
- Calculate the mean payoff

Monte Carlo



Monte Carlo on the GPU



Monte Carlo - Multiple Kernels

Monte Carlo - Single Kernel

Who's Who

AGENDA

Modeling

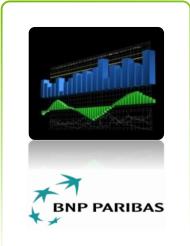
Algorithms

Adoption

Summary

Software legacy

- Millions of lines of code
- Complex relationships between code blocks
 - E.g. Primary algorithm generates paths which are reused in multiple payoff models
- Hundreds of man-years of work
- Significant refactoring of application required
 - Support/feed the parallelized algorithms



Education

- Parallel programming is paradigm shift
 - Quants are starting to rethink algorithms
 - Designing or reusing different algorithms/strategies
- Reuse of libraries and frameworks
 - Concentrate on the core algorithm
 - Increasing number of libraries for random numbers, linear algebra, reduction etc.

Case Study: Equity Derivatives

15	15x Faster	1
2 Tesla S1070	16x Less Space	500 CPU Cores
\$24 K	10x Lower Cost	\$250 K
2.8 KWatts	13x Lower Power	37.5 KWatts

No need to compromise

15

2 Tesla \$1070

\$24 K

190x Lower Power in Total

15x Faster

16x Less Space

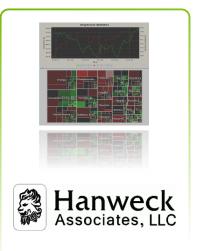
10x Lower Cost

13x Lower Power

1

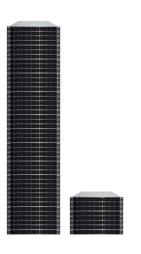
500 CPU Cores

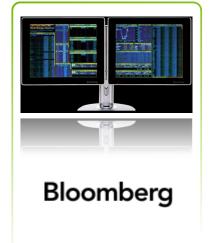
\$250 K

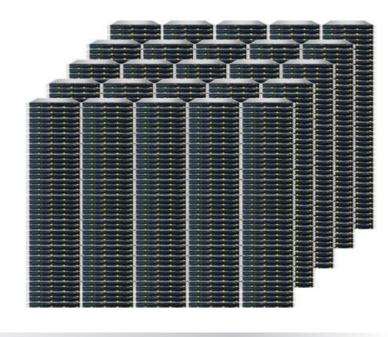

37.5 kWatts

Source: BNP Paribas, March 4, 2009

Case Study: Real-time Options


1	Same Performance	1	
3 Tesla S870	9x Less Space	600 CPU Cores	
\$42 K	6x Lower Cost	\$262 K	
\$140 K	9x Lower Annual Cost	\$1,200 K	


Figures assume:


- NVIDIA Tesla S870s with one 8-core host server per unit
- CPUs are 8-core blade servers; 10 blades per 7U
- \$1,800/U/month rack and power charges, 5-year depreciation

Case Study: Security Pricing

2 hours	8x Faster
48 Tesla S1070	10x Less Space

8000 CPU Cores

16 hours

Who's Who

AGENDA

Modeling

Algorithms

Adoption

Summary

Conclusion

- Computers are used to model financial instruments for price, sensitivity and risk
- Algorithms include Finite Differences and Monte Carlo
- Parallelising algorithms requires structural support from the application
 - Benefit is substantial on all measures
 - GPUs are transforming the industry
- Opportunities for algorithmic development

Resources

- GTC presentations
 - Finance presentations, Thursday from 2pm, Atherton Room
 - 3D Finite Differences on GPU, Friday 10.30am, Empire Room
 - Tridiagonal solvers on GPU, Friday 2pm, Atherton Room
- SDK examples
 - binomialOptions, 3DFD, MonteCarlo/MonteCarloMultiGPU
- NVIDIA finance page (links to online resources)
 - http://www.nvidia.com/object/computational_finance.html

