

Have You Heard What a GPU Can Do? A Revolution in Audio Processing

- State of the Art for Digital Audio Processing Ian
 - Background
 - Isn't Digital Audio a solved problem?
 - How the GPU can help?
- Integrating the GPU into the Professional Audio Workflow Rudy
 - Professional Digital Audio tools and the workflow
 - Key problems with Digital Audio
 - How the GPU can revolutionize Digital Audio Processing

Digital Audio Processing is Ubiquitous

- Digital Audio is integrated into all areas of life
 - iPods, Media Players etc
 - Phones, Cellphones etc
 - Home Theater Systems, Digital TVs etc
 - PCs Media Players, Audio Clean up software etc.

- Audio processors cover spectrum of size and form factors
 - Dedicated ASICs, Engines, FPGAs, CPUs
- A wide range of Audio Editing Software
 - DAW software, Plugins etc.

Linear Convolution

- Current Digital Audio processing mostly based on Linear Convolution
 - Finite Impulse Response (FIR) filter $y(j) = \sum_{i=0}^{N-1} x(j-i) \cdot h(i)$
 - Samples of input waveform multiplied by samples of impulse response and summed
 - Stable settles to zero after N+1 input samples
 - Doesn't require feedback errors don't propagate
- Works well in a wide range of situations

Why use a GPU for Digital Audio?

Source: Hitch Hikers Guide to The Galaxy

What would Marvin say if he were a GPU:

"I have a Brain the size of a planet and you want me to convolve two buffers?"

Realism & Quality Drive Up Computational Complexity

- Linear assumptions have key limitations:
 - Can frequently sound "dry" & "unnatural"
- Some desirable characteristics occur because of non-linearities
 - e.g. harmonic distortion
- Many effects are also time variant, e.g. flanging, Phasing etc.
 - modeling these significantly increase computational complexity
- Multi-channel
 - Allows greater control over sound placement & mix => better experience

Co-Processing for Digital Audio

An Orchestra needs a great conductor

• However....the conductor shouldn't play each instrument!

 Historically professional Digital Audio Editing has required dedicated Audio DSPs

and its already in the system!

Image courtesy of Digidesign

Emulating Non-Linear Characteristics in Digital Audio

- Impulse Response (IR) Switching
 - IR measured for different amplitudes of signal
 - IR selected based on input amplitude
- Focusrite Liquid Technology using "Dynamic Convolution"
 Focusrite LIQUID 4 Pre Preamp

Focusrite LIQUID 4 Pre

Emulating Non-Linear Characteristics in Digital Audio (cont.)

- Volterra Series
 - Volterra Series similar to Taylor Series
 - Taylors series output depends strictly on the input at a particular time
 - Volterra series output depends on the input to the system at all other times

Emulating Non-Linear Characteristics in Digital Audio (cont.)

Volterra Series

- Volterra Series similar to Taylor Series
- Taylors series output depends strictly on the input at a particular time
- Volterra series output depends on the input to the system at all other times

Diagonal Volterra Kernels

- Convolve 1st (linear) order IR, 2nd order IR, 3rd order IR, etc separately then sum the result
- Each order IR is convolved with the input signal raised to the appropriate power:

$$y(n) = \sum_{i=0}^{M-1} h_1(i) \cdot x(n-i) + \sum_{i=0}^{M-1} h_2(i) \cdot x^2(n-i) + \sum_{i=0}^{M-1} h_3(i) \cdot x^3(n-i) + \dots$$

State of the Art Digital Audio Processing

ACUSTICA Audio - Nebula 3

- VST based plug-in implementing Vectorial Volterra Kernel Technology
- Multiple simultaneous, non-Linear, time varying, level dependent effects

ACUSTICA Audio - Nebula 3

- Kernel Engine
 - Processes large number of kernels simultaneously
 - Controlled by the Vectorial Engine
- Vectorial Engine
 - Operates at defined rate (PROG RATE)
 - Many IR samples continually swapped in and out:
 - Multiple IRs per effect
 - Multiple simultaneous effects
 - Time dependent IRs
 - Settings within effects
- Accurate Modeling of Complex Sophisticated Effects
 - Dynamic harmonic distortion valve preamps & compressors

ACUSTICA Audio - Nebula Sampler

- Comes with Nebula 3
- Automates measurement of IRs
 - Including level and time and dependent Irs
- Easy to create new libraries of complex sophisticated effects

http://www.alessandroboschi.eu/html/en/alexb.htm

How Nebula 3 Uses NVIDIA CUDA

- Vectorial Engine currently operates on the CPU
- Kernel Engine implemented entirely on the GPU
 - CUDA Streams
 - Efficient algorithm leaves partial results for each harmonic on the GPU, only final results transferred off GPU:

Uses CU FFT library as well as hand tuned Vasily Volkov FFT algorithms

Rudy Sarzo

Digital Audio - "The Process"

Shrinking the recording studio into a computer

Studio Tour

Source: www.vai.com

Sony Acid Pro 7

How does a Professional Musician use Digital Audio?

Recording

- Highest quality very important bit depth, sample rate etc
- Balancing what's practical for editing
- No Clicks!!

Editing

- Retaining high quality is still crucial
- Need to be able to work with many effects
- Evaluate alternative mixes stereo->mono, low bit rate mp3

Playback

Create multiple delivery formats/mixes - MP3, AC3, 2.0, 5.1 etc.

Key Problems in Digital Audio

- Overloading / Insufficient headroom during recording
 - Clicks (relying to heavily on CPU cycle overload)
- Poor quality effects/algorithms/HW
 - Just sound bad
 - Captures clicks (again relying to heavily on CPU cycle overload)
- Hard limits on the number of simultaneous effects
 - Not enough CPU cycles for processing
 - Mixing takes longer
 - Workflow changes depending on platform (laptop, deskside DAW)

•

The Benefits the GPU brings to Digital Audio

Demonstration of CUDA Processing for Audio

Sony Acid Pro + Nebula3 VST Plug-in built on CUDA Technology

A Revolution in Audio Processing

Digital Audio is here to stay

- The GPU is the perfect co-processor
 - And its already in the system
- The CUDA Architecture is the catalyst

• Fermi Architecture introduces new key features to benefit audio

Thanks!

• Questions?

