
Gold Room | Thursday 1st October 2009 | Anton Obukhov & Frank Jargstorff

NVIDIA Performance Primitives &

Video Codecs on GPU

Overview

• Two presentations:

– NPP (Frank Jargstorff)

– Video Codes on NVIDIA GPUs (Anton Obukhov)

• NPP Overview

– NPP Goals

– How to use NPP?

– What is in NPP?

– Performance

What is NPP?

• C Library of functions (primitives) running on CUDA architecture

• API identical to IPP (Intel Integrated Performance Primitives)

• Speedups up to 32x over IPP

• Free distribution

– binary packages for Windows and Linux (32- and 64 bit), Mac OS X

• Release Candidate 1.0: Available to Registered Developers now.

– Final release in two weeks at http://www.nvidia.com/npp

http://www.nvidia.com/npp

NPP’s Goals

• Ease of use

– no knowledge of GPU architecture required

– integrates well with existing projects

• work well if added into existing projects

• work well in conjunction with other libraries

• Runs on CUDA Architecture GPUs

• High Performance

– relieve developers from optimization burden

• Algorithmic Building Blocks (Primitives)

– recombine to solve wide range of problems

Ease of Use

• Implements Intel’s IPP API verbatim

– IPP widely used in high-performance software development

– well designed API

• Uses CUDA “runtime API”

– device memory is handled via simple C-style pointers

– pointers in the NPP API are device pointers

– but: host and device memory management left to user (for performance reasons)

• Pointer based API

– pointers facilitate interoperability with existing code (C for CUDA) and libraries (cuFFT,

cuBLAS, etc.)

– imposes no “framework” on developers

Example
// allocate source image

int sp;

Ipp8u * pSI = ippiMalloc_8u_C1(w, h, &sp);

// fill with some image content

testPattern_8u_C1(pSI, sp, w, h);

// allocated destination image

int dp;

Ipp8u * pDI = ippiMalloc_8u_C1(w, h, &dp);

// Filter mask and achor

IppiSize mask = {5, 5};

IppiPoint anchor = {0, 0};

IppiSize ROI = {w - mask.width + 1,

h - mask.height + 1};

// run box filter

ippiFilterBox_8u_C1R(pSI, sp, pDI, dp,

ROI, mask, anchor);

// allocate host source image

int hp;

Ipp8u * pHI = ippiMalloc_8u_C1(w, h, &hp);

// fill with some image content

testPattern_8u_C1(pHI, hp, w, h);

// allocated device source image

int sp;

Npp8u * pSI = nppiMalloc_8u_C1(w, h, &sp);

// copy test image up to device

cudaMemcpy2D(pSI, sp, pHI, hp, w, h,

cudaMemcpyHostToDevice);

// allocate device result image

int dp;

Npp8u * pDI = nppiMalloc_8u_C1(w, h, &dp);

// Filter mask and achor

NppiSize mask = {5, 5};

NppiPoint anchor = {0, 0};

NppiSize ROI = {w - mask.width + 1,

h - mask.height + 1};

// run box filter

nppiFilterBox_8u_C1R(pSI, sp, pDI, dp,

ROI, mask, anchor);

What is in NPP?

• Only Image-Processing Functions

– subset of “IPPI” library

– ~300 functions

• Limited set of data-types supported

– 8-bit per channel: 8u_C1, 8u_C4, 8u_AC4

– high bit depth: 32s_C1, 32f_C1

• Conversion functions to and from most other

IPPI formats

What is in NPP?

• Data exchange & initialization

– Set, Convert, CopyConstBorder, Copy,

Transpose, SwapChannels

• Arithmetic & Logical Ops

– Add, Sub, Mul, Div, AbsDiff

• Threshold & Compare Ops

– Threshold, Compare

• Color Conversion

– RGB To YCbCr (& vice versa), ColorTwist,

LUT_Linear

• JPEG

– DCTQuantInv/Fwd, QuantizationTable

• Filter Functions

– FilterBox, Row, Column, Max, Min, Dilate,

Erode, SumWindowColumn/Row

• Geometry Transforms

– Resize , Mirror, WarpAffine/Back/Quad,

WarpPerspective/Back/Quad

• Statistics

– Mean, StdDev, NormDiff, MinMax,

Histogram, SqrIntegral, RectStdDev

• Computer Vision

– Canny Edge Detector

Performance

• Relative performance compared to IPP

– Measuring methodology?

• Scalability

– Problem size

– Number of processor cores

• Some aggregated numbers

– Performance suite averages

Performance Measuring Methodology

• Each primitive under test:

– Is executed 25 times

– Each iteration uses same data and same parameters

– Data for GPU primitives is already on GPU (i.e. transfer times are not included in

timings)

• All performance data gathered with single test application

– test~2800 performance tests

– most performance tests are simply repurposed functional tests

• testing offset and oddly sized ROIs

• testing various parameters

• performance tests usually run at 720p and 2k x 2k image sizes

Scalability with Problem Size (1)

• Primtive: ippi/nppiAbsDiff_32f_C1R

– computes per pixel absolute difference of two single-channel float image

and stores result in third image

– performance scales linearly with problem size

– Time Plots: Lower is Better!

• Expected Results

– linear with offsets OCPU & OGPU

and slopes SCPU & SGPU

– 0 < OCPU < OGPU

– SCPU > SGPU > 0

• Where’s the cross over point?

Linear Algorithm

0

5

10

15

20

25

1 4 7 10 13 16 19

Problem size

T
im

e CPU

GPU

Scalability with Problem Size (2)

• Size from 1024x4 (16kB) to 1024x204 (~800kB)

• Offset & Slope:

– CPU: O ~ 0 µs, S ~25 µs/100 lines

– GPU: O ~ 15 µs, S ~10 µs/100 lines

• Crossover:

– CPU slow:

• 48 lines = 48kPixel (4Byte) = 192kB

– CPU fast:

• 108 line = 108kPixel (4Byte) = 432kB

– Compare: 720p: 1280 x 720 = 900kPixel

Intel Core i7 Extreme Edition i7-965

3.2 GHz, 4 (8) Core, 8MB Level 3 Cache

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Ti
m

e
[m

s]

Lines in Image (1024 x N)

AbsDiff_32f_C1R

Nehalem
1 Thread

GTX 285

Scalability with Problem Size (3)

• Going in size up to 4096 lines

• GPU scales linearly

• Asymptotically CPU ~7.5x GPU

• CPU: Slope transition

– Between ~1000 and ~3000 lines

– 1000 lines = 4MByte image

– 8MB level 3 cache size 0

0.5

1

1.5

2

2.5

4
1
8
4

3
6
4

5
4
4

7
2
4

9
0
4

1
0
8
4

1
2
6
4

1
4
4
4

1
6
2
4

1
8
0
4

1
9
8
4

2
1
6
4

2
3
4
4

2
5
2
4

2
7
0
4

2
8
8
4

3
0
6
4

3
2
4
4

3
4
2
4

3
6
0
4

3
7
8
4

3
9
6
4

Ti
m

e
[m

s]

Lines in Image (1024 x N)

AbsDiff_32f_C1R

Nehalem
1 Thread

Geforce
GTX 285

Scalability With Number of Cores (1)

• For GPU not easy to control number of cores used.

• Compare two different GPUs/Graphics Cards:

– Geforce 9800 GTX+: 16 SMs, 738MHz => 11808

– Geforce GTX 285: 30 SMs, 648MHz => 19440

– 19440/11808 = 1.64

• Chart at max size:

– 9800 GTX: 480µs

– GTX 285: 260µs

– 4.8/2.6 = 1.84

• GPU scales linearly with number

of SMs (cores) across full range

of problem sizes.

0

0.1

0.2

0.3

0.4

0.5

0.6

4

2
2
0

4
3
6

6
5
2

8
6
8

1
0
8
4

1
3
0
0

1
5
1
6

1
7
3
2

1
9
4
8

2
1
6
4

2
3
8
0

2
5
9
6

2
8
1
2

3
0
2
8

3
2
4
4

3
4
6
0

3
6
7
6

3
8
9
2

Ti
m

e
[m

s]

Lines in Image (1024 x N)

nppiAbsDiff_32f_C1R

Geforce
9800 GTX+

Geforce
GTX 285

Scalability With Number of Cores (2)

• Use ippSetNumThreads(int n); to control number of cores

used.

• Expected Result:

0

0.01

0.02

0.03

0.04

0.05

0.06

4 20 36 52 68 84 100 116 132 148 164 180 196

Ti
m

e
[m

s]

Lines in Image (1024 x N)

ippiAbsDiff_32f_C1R

1 Core

2 Cores

4 Cores

8 Cores

Scalability With Number of Cores (3)

• CPU performance does not scale with number of cores, even

for small problem sizes.

• Actual Result:

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

4 20 36 52 68 84 100 116 132 148 164 180 196

Ti
m

e
[m

s]

Lines in Image (1024 x N)

ippiAbsDiff_32f_C1R: Intel Core i7 Extreme

1 Core

2 Cores

4 Cores

8 Cores

Scalability With Number of Cores (4)

• Full range of

image sizes on

CPU

– Not clear how

many threads are the best configuration for max performance.

• CPU does not scale with number of Cores.

ippiAbsDiff_32f_C1R

0

0.5

1

1.5

2

2.5

4

2
6

0

5
1

6

7
7

2

1
0

2
8

1
2

8
4

1
5

4
0

1
7

9
6

2
0

5
2

2
3

0
8

2
5

6
4

2
8

2
0

3
0

7
6

3
3

3
2

3
5

8
8

3
8

4
4

Lines in Image (1024 x N)

Ti
m

e
 [

m
s]

Nehalem
1 Thread

Nehalem
2 Threads

Nehalem
4 Threads

Nehalem
8 Threads

Aggregate Performance Numbers (1)

• Average over 2800

performance tests.

– each test gathers IPP and

NPP processing times

– performance tests are

repurposed functional tests

– run on 720p and 2k x 2k

frames (mostly)
1 1.020285405

1.832500823 2.023517787

6.028039072

10.65771656

0

2

4

6

8

10

12

Core2Duo t=1 Core2Duo t=2 Nehalem t=1 Nehalem t=8 Geforce 9800
GTX+

Geforce GTX
285

R
e
la

ti
v
e
 A

g
re

g
a
te

 S
p

e
e
d

Processor

NPP Performance Suite Grand Totals

Aggregate Performance Numbers (2)

• Put into perspective:

– NPP is 1.0 release

– has been developed in 6 months

– no processor specific optimizations*

• all code compiled for compute 1.0 or 1.1

– for the most part only optimized for memory coalescing

• Intel Core i7 vs. GTX 285

– really different generations (GTX 285 uses 1.5 year old arch)

• That means there’s still a lot of room for improvement.

* Exception: some statistics functions

use atomics from compute capability

1.1.

Summary

• NPP

– easy to integrate

– provides substantial performance gains over highly optimized x86 code

– 300 functions

• GPU/NPP Performance

– scales extremely well with problem sizes and GPU type

– room for performance improvements

– particularly well suited for larger image sizes

• For questions regarding NPP please contact:

– npp@nvidia.com

mailto:npp@nvidia.com

Fairmont Hotel, San Jose | 10.01.2009 | Anton Obukhov

Video Codecs on GPU

Motivation for the talk

Video encoding and decoding tasks require

speedups as never before:

Encoding hi-res movie takes tens

of hours on modern desktops

Portable and mobile devices

have unveiled processing power

Video capabilities evolution

Bitstream

Processing

CAVLC CABAC

Inverse

Transform

Motion

Compenstation
Deblocking

Bitstream

Processing

CAVLC CABAC

Inverse

Transform

Motion

Compenstation
Deblocking

Bitstream

Processing

CAVLC CABAC

Inverse

Transform

Motion

Compenstation
Deblocking

Without PureVideo™ HD

Geforce 7 Series

Geforce 8 Series

High CPU Utilization

Reduced CPU Utilization

Minimal CPU Utilization

Video encoding with NVIDIA GPU

Facilities:

• SW H.264 codec designed for CUDA

– Baseline profile

– Main profile

– High profile

Interfaces:

• C library (NVCUVENC)

• Direct Show API

• Win7 MFT

Video decoding with NVIDIA GPU

Facilities:

• HW GPU acceleration of

– H.264

– VC1

– MPEG2

• SW MPEG2 decoder designed for CUDA

Interfaces:

• C library (NVCUVID), HW & SW

• DXVA and Win7 MFT, HW only

• VDPAU library, HW only

Video processing with NVIDIA GPU

Facilities:

• SW pre- and post-processing library designed for CUDA

– Noise Reduction

– Deinterlacing

– Polyphase Scaling

– Color Processing

– Deblocking

– Detail enhance

Interfaces:

• VMR/EVR API

Benefits of Decoding with GPU

Bitstream

Processing

CAVLC

CABAC

Inverse

Transform

Motion

Compenstation
DeblockingH.264 High CPU Utilization

Bitstream

Processing

CAVLC

CABAC

Inverse

Transform

Motion

Compenstation
Deblocking

Bitstream

Processing

CAVLC

CABAC

Inverse

Transform

Motion

Compenstation

Bitstream

Processing

CAVLC

CABAC

Inverse

Transform

Motion

Compenstation
Deblocking

Bitstream

Processing

CAVLC

CABAC

Inverse

Transform

Motion

Compenstation
Deblocking

Bitstream

Processing

CAVLC

CABAC

Inverse

Transform

Motion

Compenstation

Minimal CPU Utilization

VC-1

MPEG-2

H.264

VC-1

MPEG-2

Without

NVIDIA GPU

~100% Offload of 3 Major Video CODECs

17.82 17.25

24.15

19.74

35.59

20.39

40.03
42.30

45.00

49.72 50.57 51.50

0.00

10.00

20.00

30.00

40.00

50.00

60.00

riverbed tractor sunflower 1080i2997_stockholm_ter 1080i2997_mobcal_ter pedestrian_area

fr
a
m

e
s

p
e
r

se
c
o
n
d

CPU Encode GPU Encode

Encode performance

Frame size: 1080p

Platform: 3.2 GHz quad core Nehalem, GeForce GTX 280 (240 core) GPU

CPU encoder is x264

GPU encoder is NVIDIA H.264 CUDA encoder.

Video encoding with NVIDIA GPU

Commercial applications for video transcoding

with CUDA

• Badaboom

• Nero Move it

• CyberLink PowerDirector

• Loilo SuperLoiloscope

• Tons of them!

Thoughts aloud

• What about and ?

• What about multi-GPU systems?

Thoughts aloud

• What about and ?

– Linux: only decoding acceleration with VDPAU

– Mac OSX: QuickTime API

Thoughts aloud

• What about multi-GPU systems?

– NVIDIA H.264 encoder is going to support dual-GPU

systems

Thoughts aloud

• Multi-GPU systems are

commodity

• Programming for Multi-

GPU systems is

challenging

GPU 0

GPU 1

GPU K-1

Work (N jobs)

K

N
jobs

Thoughts aloud

CUDA provides access to

every GPU. How to make

them all work efficiently?

Thoughts aloud

There is a need for an open-source video codecs

that can accelerate the transcoding pipeline using

GPUs

Webinar 10/28/2009 9:00 AM - 11:00 AM PDT

• Multi-GPU techniques

• Application for video coding
https://www2.gotomeeting.com/register/628549827

https://www2.gotomeeting.com/register/628549827

Questions & Answers

?

E-mail: aobukhov@nvidia.com

“Introducing a new Multi-GPU framework” webinar, 10/28/2009 9:00 AM - 11:00 AM PDT

https://www2.gotomeeting.com/register/628549827

mailto:aobukhov@nvidia.com
https://www2.gotomeeting.com/register/628549827

