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NVIDIA Performance Primitives &

Video Codecs on GPU



Overview

• Two presentations:

– NPP (Frank Jargstorff)

– Video Codes on NVIDIA GPUs (Anton Obukhov)

• NPP Overview

– NPP Goals

– How to use NPP?

– What is in NPP?

– Performance



What is NPP?

• C Library of functions (primitives) running on CUDA architecture

• API identical to IPP (Intel Integrated Performance Primitives)

• Speedups up to 32x over IPP

• Free distribution

– binary packages for Windows and Linux (32- and 64 bit), Mac OS X

• Release Candidate 1.0: Available to Registered Developers now.

– Final release in two weeks at http://www.nvidia.com/npp

http://www.nvidia.com/npp


NPP’s Goals

• Ease of use

– no knowledge of GPU architecture required

– integrates well with existing projects

• work well if added into existing projects

• work well in conjunction with other libraries 

• Runs on CUDA Architecture GPUs

• High Performance

– relieve developers from optimization burden

• Algorithmic Building Blocks (Primitives)

– recombine to solve wide range of problems



Ease of Use

• Implements Intel’s IPP API verbatim

– IPP widely used in high-performance software development

– well designed API

• Uses CUDA “runtime API”

– device memory is handled via simple C-style pointers

– pointers in the NPP API are device pointers

– but: host and device memory management left to user (for performance reasons)

• Pointer based API

– pointers facilitate interoperability with existing code (C for CUDA) and libraries (cuFFT, 

cuBLAS, etc.)

– imposes no “framework” on developers



Example
// allocate source image

int sp;

Ipp8u * pSI = ippiMalloc_8u_C1(w, h, &sp);

// fill with some image content

testPattern_8u_C1(pSI, sp, w, h);

// allocated destination image

int dp;

Ipp8u * pDI = ippiMalloc_8u_C1(w, h, &dp);

// Filter mask and achor

IppiSize  mask   = {5, 5};

IppiPoint anchor = {0, 0};

IppiSize  ROI    = {w - mask.width + 1, 

h - mask.height + 1};

// run box filter

ippiFilterBox_8u_C1R(pSI, sp, pDI, dp, 

ROI, mask, anchor);

// allocate host source image

int hp;

Ipp8u * pHI = ippiMalloc_8u_C1(w, h, &hp);

// fill with some image content

testPattern_8u_C1(pHI, hp, w, h); 

// allocated device source image

int sp;

Npp8u * pSI = nppiMalloc_8u_C1(w, h, &sp);

// copy test image up to device

cudaMemcpy2D(pSI, sp, pHI, hp, w, h, 

cudaMemcpyHostToDevice);

// allocate device result image

int dp;

Npp8u * pDI = nppiMalloc_8u_C1(w, h, &dp);

// Filter mask and achor

NppiSize  mask   = {5, 5};

NppiPoint anchor = {0, 0};

NppiSize  ROI    = {w - mask.width  + 1, 

h - mask.height + 1};

// run box filter

nppiFilterBox_8u_C1R(pSI, sp, pDI, dp, 

ROI, mask, anchor);



What is in NPP?

• Only Image-Processing Functions

– subset of “IPPI” library

– ~300 functions

• Limited set of data-types supported

– 8-bit per channel: 8u_C1, 8u_C4, 8u_AC4

– high bit depth: 32s_C1, 32f_C1

• Conversion functions to and from most other 

IPPI formats



What is in NPP?

• Data exchange & initialization

– Set, Convert, CopyConstBorder, Copy, 

Transpose, SwapChannels

• Arithmetic & Logical Ops

– Add, Sub, Mul, Div, AbsDiff

• Threshold & Compare Ops

– Threshold, Compare

• Color Conversion

– RGB To YCbCr (& vice versa), ColorTwist, 

LUT_Linear

• JPEG

– DCTQuantInv/Fwd, QuantizationTable

• Filter Functions

– FilterBox, Row, Column, Max, Min, Dilate, 

Erode, SumWindowColumn/Row

• Geometry Transforms

– Resize , Mirror, WarpAffine/Back/Quad, 

WarpPerspective/Back/Quad

• Statistics

– Mean, StdDev, NormDiff, MinMax, 

Histogram, SqrIntegral, RectStdDev

• Computer Vision

– Canny Edge Detector



Performance

• Relative performance compared to IPP

– Measuring methodology?

• Scalability

– Problem size

– Number of processor cores

• Some aggregated numbers

– Performance suite averages



Performance Measuring Methodology

• Each primitive under test:

– Is executed 25 times

– Each iteration uses same data and same parameters

– Data for GPU primitives is already on GPU (i.e. transfer times are not included in 

timings)

• All performance data gathered with single test application

– test~2800 performance tests

– most performance tests are simply repurposed functional tests

• testing offset and oddly sized ROIs

• testing various parameters

• performance tests usually run at 720p and 2k x 2k image sizes



Scalability with Problem Size (1)

• Primtive: ippi/nppiAbsDiff_32f_C1R

– computes per pixel absolute difference of two single-channel float image 

and stores result in third image

– performance scales linearly with problem size

– Time Plots: Lower is Better!

• Expected Results

– linear with offsets OCPU & OGPU

and slopes SCPU & SGPU

– 0 < OCPU < OGPU

– SCPU > SGPU > 0

• Where’s the cross over point?

Linear Algorithm
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Scalability with Problem Size (2)

• Size from 1024x4 (16kB) to 1024x204 (~800kB)

• Offset & Slope:

– CPU: O ~ 0 µs, S ~25 µs/100 lines

– GPU: O ~ 15 µs, S ~10 µs/100 lines

• Crossover:

– CPU slow:

• 48 lines = 48kPixel (4Byte) = 192kB

– CPU fast:

• 108 line = 108kPixel (4Byte) = 432kB

– Compare: 720p: 1280 x 720 = 900kPixel

Intel Core i7 Extreme Edition i7-965 

3.2 GHz, 4 (8) Core, 8MB Level 3 Cache
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Scalability with Problem Size (3)

• Going in size up to 4096 lines

• GPU scales linearly

• Asymptotically CPU ~7.5x GPU

• CPU: Slope transition

– Between ~1000 and ~3000 lines

– 1000 lines = 4MByte image

– 8MB level 3 cache size 0
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Scalability With Number of Cores (1)

• For GPU not easy to control number of cores used. 

• Compare two different GPUs/Graphics Cards:

– Geforce 9800 GTX+: 16 SMs, 738MHz => 11808

– Geforce GTX 285: 30 SMs, 648MHz => 19440

– 19440/11808 = 1.64

• Chart at max size:

– 9800 GTX: 480µs

– GTX 285: 260µs

– 4.8/2.6 = 1.84

• GPU scales linearly with number

of SMs (cores) across full range

of problem sizes.
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Scalability With Number of Cores (2)

• Use ippSetNumThreads(int n); to control number of cores 

used.

• Expected Result:
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Scalability With Number of Cores (3)

• CPU performance does not scale with number of cores, even 

for small problem sizes.

• Actual Result:
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Scalability With Number of Cores (4)

• Full range of 

image sizes on 

CPU

– Not clear how 

many threads are the best configuration for max performance.

• CPU does not scale with number of Cores.

ippiAbsDiff_32f_C1R
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Aggregate Performance Numbers (1)

• Average over 2800 

performance tests.

– each test gathers IPP and 

NPP processing times

– performance tests are 

repurposed functional tests

– run on 720p and 2k x 2k 

frames (mostly)
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Aggregate Performance Numbers (2)

• Put into perspective:

– NPP is 1.0 release

– has been developed in 6 months

– no processor specific optimizations*

• all code compiled for compute 1.0 or 1.1 

– for the most part only optimized for memory coalescing

• Intel Core i7 vs. GTX 285

– really different generations (GTX 285 uses 1.5 year old arch)

• That means there’s still a lot of room for improvement.

* Exception: some statistics functions 

use atomics from compute capability 

1.1. 



Summary

• NPP

– easy to integrate

– provides substantial performance gains over highly optimized x86 code

– 300 functions 

• GPU/NPP Performance

– scales extremely well with problem sizes and GPU type

– room for performance improvements

– particularly well suited for larger image sizes

• For questions regarding NPP please contact:

– npp@nvidia.com

mailto:npp@nvidia.com
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Video Codecs on GPU



Motivation for the talk

Video encoding and decoding tasks require 

speedups as never before:

Encoding hi-res movie takes tens 

of hours on modern desktops

Portable and mobile devices 

have unveiled processing power



Video capabilities evolution
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Video encoding with NVIDIA GPU

Facilities:

• SW H.264 codec designed for CUDA

– Baseline profile

– Main profile

– High profile

Interfaces:

• C library (NVCUVENC)

• Direct Show API

• Win7 MFT



Video decoding with NVIDIA GPU

Facilities:

• HW GPU acceleration of

– H.264

– VC1

– MPEG2

• SW MPEG2 decoder designed for CUDA

Interfaces:

• C library (NVCUVID), HW & SW

• DXVA and Win7 MFT, HW only

• VDPAU library, HW only



Video processing with NVIDIA GPU

Facilities:

• SW pre- and post-processing library designed for CUDA

– Noise Reduction

– Deinterlacing

– Polyphase Scaling

– Color Processing

– Deblocking

– Detail enhance

Interfaces:

• VMR/EVR API



Benefits of Decoding with GPU
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Video encoding with NVIDIA GPU

Commercial applications for video transcoding 

with CUDA

• Badaboom

• Nero Move it

• CyberLink PowerDirector

• Loilo SuperLoiloscope

• Tons of them!



Thoughts aloud 

• What about      and     ?

• What about multi-GPU systems?



Thoughts aloud 

• What about      and     ?

– Linux: only decoding acceleration with VDPAU

– Mac OSX: QuickTime API 



Thoughts aloud 

• What about multi-GPU systems?

– NVIDIA H.264 encoder is going to support dual-GPU 

systems



Thoughts aloud 

• Multi-GPU systems are 

commodity

• Programming for Multi-

GPU systems is 

challenging



GPU 0

GPU 1

GPU K-1

Work (N jobs)

K

N
jobs

Thoughts aloud 

CUDA provides access to 

every GPU. How to make 

them all work efficiently?



Thoughts aloud 

There is a need for an open-source video codecs 

that can accelerate the transcoding pipeline using 

GPUs 

Webinar 10/28/2009 9:00 AM - 11:00 AM PDT

• Multi-GPU techniques

• Application for video coding
https://www2.gotomeeting.com/register/628549827

https://www2.gotomeeting.com/register/628549827


Questions & Answers

?

E-mail: aobukhov@nvidia.com

“Introducing a new Multi-GPU framework” webinar, 10/28/2009 9:00 AM - 11:00 AM PDT

https://www2.gotomeeting.com/register/628549827

mailto:aobukhov@nvidia.com
https://www2.gotomeeting.com/register/628549827

