
San Jose| 02/10/09 | Timo Stich

Graph Cuts with CUDA

Outline

ÅIntroduction

ÅAlgorithms to solve Graph Cuts

ÅCUDA implementation

ÅImage processing application

ÅSummary

Problems solvable with Graphcuts

Stereo Depth Estimation Binary Image Segmentation

Photo Montage (aka Image Stitching)
Source: MRF Evaluation, Middlebury College

Energy Minimization

ÅGraphcut finds global minimum

),(

|)(|)()(
yx

yx

x

xx LLVLDLE

Sum over all Pixels of an Image

Data Term:

Measures fitting of

label to pixel

Neighborhood Term:

Penalizes different labelings

for neighbors

Sum over all neighborhoods

Example:
Binary Segmentation Problem

0 0 0 0

? ? ? ?

? ? ? ?

? ? ? 1

User marks some pixels as

Background and Foreground

Compute for all pixels if they

are Background or Foreground

Building a Flow Graph for the Problem

)1(,baV)1(,cbV)1(,dcV)1(,edV

Source

Sink

cba d ePixels

)1(aD

)1(bD)1(cD)1(dD

)1(eD

)0(aD

)0(bD
)0(cD

)0(dD

)0(eD

....

Maximum Flow = Minimum Cut

Source

Sink

cba d ePixels

Graph Cut Solution

Pixels

Source

Sink

....

Graph Cut Solution

Input Result

Graph Cut Algorithms

ÅFord-Fulkerson

ïFind augmenting paths from source to sink

ïGlobal scope, based on search trees

ïMost used implementation today by Boykovet al.

ÅGoldberg-Tarjan (push-relabel)

ïConsiders one node at a time

ïLocal scope, only direct neighbors matter

ïInherently parallel, good fit for CUDA

Push-Relabel in a nutshell

ÅSome definitions

ïEach node x:

ÅHas excess flow u(x) and height h(x)

ÅOutgoing edges to neighbors (x,*) with capacity c(x,*)

ïNode x is active: if u(x)> 0 and h(x)< HEIGHT_MAX

ïActive node x

Åcan push to neighbor y: if c(x,y) > 0, h(y) = h(x) ð1

Åis relabeled : if for all c(x,*) > 0, h(*) >= h(x)

Push Pseudocode

void push(x, excess_flow, capacity, const height)

if active(x) do

foreach y=neighbor(x)

if height(y) == height(x) ð1 do // check height

flow = min(capacity(x,y), excess_flow(x)); // pushed flow

excess_flow(x) -= flow; excess_flow(y) += flow; // update excess flow

capacity(x,y) -= flow; capacity(y,x) += flow; // update edge cap.

done

end

done

Relabel Pseudocode

void relabel (x, height, const excess_flow, const capacity)

if active(x) do

my_height = HEIGHT_MAX; // init to max height

foreach y=neighbor(x)

if capacity(x,y) > 0 do

my_height = min(my_height, height(y)+1); // minimum height + 1

done

end

height(x) = my_height; // update height

done

Push-Relabel Pseudocode

while any_active(x) do

foreach x

relabel (x);

end

foreach x

push(x);

end

done

Graph setup

Source

Sink

0/00/00/0 0/0 0/0

3
9 5 6

2

3/3 3/3 4/4 1/1

10
2 1

8

9

Excess Flow Height

1

1

Direct Push

Source

Sink

0/00/00/0 0/0 0/0

3
9 10 6

2

3/3 3/3 4/4 1/1

10
2 1

8

9

-7/0

10 - 3 = -7

Total flow = 0Total flow = 3

Initialized

Source

Sink

4/07/0-7/0 -2/0 -7/0
3/3 3/3 4/4 1/1

HEIGHT_MAX = 5

active

Total flow = 14

After Relabel

Source

Sink

4/ 17/ 1-7/0 -2/0 -7/0
3/3 3/3 4/4 1/1

Total flow = 14

After Push

Source

Sink

0/14/1-4/0 2/0 -7/0
6/0 3/3 0/8 1/1

Total flow = 19

2nd iteration

Source

Sink

0/14/1-4/0 2/0 -7/0
6/0 3/3 0/8 1/1

Total flow = 19

After Relabel

Source

Sink

0/ 14/ 2-4/0 2/ 1 -7/0
6/0 3/3 0/6 1/1

Total flow = 19

After Push

Source

Sink

3/ 11/ 2-4/0 1/ 1 -6/0
6/0 0/6 0/6 0/2

Total flow = 20

After 3 more Iterations, Terminated

Source

Sink

3/ 51/ 5-4/0 1/ 5 -6/0
6/0 0/6 0/6 0/2

Total flow = 20

Inverse BFS from Sink

Source

Sink

3/ 51/ 5-4/0 1/ 1 -6/0
6/0 0/2

X X

Total flow = 20

Graph Cut and Solution

Source

Sink

cba d e

3
9 5 6

2

3 3 4 1

10
2 1

8

9

Total flow = 20

Minimum Cut = 20 = Maximum Flow

Graph Cuts for Image Processing

ÅRegular Graphs with 4-Neighborhood

ÅIntegers

ÅNaive approach

ïOne thread per node

ïPush Kernel

ïRelabel Kernel

S

T

CUDA Implementation

ÅDatastructures

ï4 WxHarrays for residual edge capacities

ï2 WxHarray for heights (double buffering)

ïWxHarray for excess flow

Push Data Access Patterns

ÅRead/Write: Excess Flow, Edge capacities

ÅRead only : Height

Excess Flow Data

Relabel Data Access Patterns

ÅRead/Write: Height (Texture, double buffered)

ÅRead only : Excess Flow, Edge capacities

Height Data

Data Access Patterns

ÅPush does scattered write:

Needs global atomics to avoid RAW Hazard!

Naive CUDA Implementation

ÅIterative approach:

ÅRepeat

ïPush Kernel (Updates excess flow & edge capacities)

ïRelabel Kernel (Updates height)

ÅUntil no active pixels are left

Naive CUDA Implementation

ÅBoth kernels are memory-bound

ÅObservations on the naive implementation

ïPush: Atomic memory bandwidth is lower

ïRelabel: 1-bit per edge would be sufficient

Addressing these bottlenecks improves overall performance

Push, improved

ÅIdea:

ïWork on tiles in shared memory

ÅShare data between threads of a block

ïEach thread updates M pixels

ÅPush first M times in first edge direction

ÅThen M times in next edge direction

Wave Push

Excess Flow Data-Tile in Shared Memory

M

Active Thread

Push direction

ef = 0;

for k=0...M-1

ef += s_ef(k)

flow = min(right(x+k),ef)

right(x+k)-=flow;

s_ef(k)=ef-flow;

ef = flow;

end

Wave Push

Flow is carried along by each thread

Active Thread

Push direction

ef = 0;

for k=0...M-1

ef += s_ef(k)

flow = min(right(x+k),ef)

right(x+k)-=flow;

s_ef(k)=ef-flow;

ef = flow;

end

Wave Push

Active Thread

Push direction

ef = 0;

for k=0...M-1

ef += s_ef(k)

flow = min(right(x+k),ef)

right(x+k)-=flow;

s_ef(k)=ef-flow;

ef = flow;

end

Wave Push

Border

Active Thread

Push direction

Wave Push

Do the same for other directions

Active Thread

Push direction

Wave Push

ÅAfter tile pushing, border is added

ÅBenefits

ïNo atomics necessary

ïShare data between threads

ïFlow is transported over larger distances

Relabel

ÅBinary decision: capacity > 0 ? 1 : 0

ÅIdea: Compress residual edges as bit-vectors

ïCompression computed during push

Relabel

ÅCompression Ratio: 1:32 (int capacities)

5

0

3

9

0

0

1

7

1

0

1

1

0

0

1

1

CUDA Implementation

ÅAlgorithmic observations

ïMost parts of the graph will converge early

ïPeriodic global relabeling significantly reduces

necessary iterations

Tile based push -relabel

0%

10%

20%

30%

40%

50%

60%

70%

80%

1 2 3 4 5 6 7 8 9

Active Pixels per Iteration

