GPU Metaprogramming using PyCUDA: Methods & Applications

Andreas Klöckner

Division of Applied Mathematics
Brown University

Nvidia GTC · October 2, 2009
Thanks

- Tim Warburton (Rice)
- Jan Hesthaven (Brown)
- Nicolas Pinto (MIT)
- PyCUDA contributors
- Nvidia Corporation
Outline

1. Why GPU Scripting?
2. Scripting CUDA
3. GPU Run-Time Code Generation
4. DG on GPUs
5. Perspectives
Outline

1. Why GPU Scripting?
 - Combining two Strong Tools

2. Scripting CUDA

3. GPU Run-Time Code Generation

4. DG on GPUs

5. Perspectives
How are High-Performance Codes constructed?

- "Traditional" Construction of High-Performance Codes:
 - C/C++/Fortran
 - Libraries

- "Alternative" Construction of High-Performance Codes:
 - Scripting for ‘brains’
 - GPUs for ‘inner loops’

- Play to the strengths of each programming environment.
Scripting: Means

A scripting language...
- is discoverable and interactive.
- has comprehensive built-in functionality.
- manages resources automatically.
- is dynamically typed.
- works well for “gluing” lower-level blocks together.
Scripting: Interpreted, not Compiled

Program creation workflow:

1. **Edit**
2. **Compile**
3. **Link**
4. **Run**
Scripting: Interpreted, not Compiled

Program creation workflow:

1. Edit
2. Link
3. Run
4.

Andreas Klöckner
Applied Math · Brown University

GPU Metaprogramming using PyCUDA: Methods & Applications
Scripting: Interpreted, not Compiled

Program creation workflow:

1. Edit
2. Compile (crossed out)
3. Link (crossed out)
4. Run
Scripting: Python

One example of a scripting language: Python

- Mature
- Large and active community
- Emphasizes readability
- Written in widely-portable C
- A ‘multi-paradigm’ language
Why do Scripting for GPUs?

- GPUs are everything that scripting languages are not.
 - Highly parallel
 - Very architecture-sensitive
 - Built for maximum FP/memory throughput

→ complement each other
Why do Scripting for GPUs?

- GPUs are everything that scripting languages are not.
 - Highly parallel
 - Very architecture-sensitive
 - Built for maximum FP/memory throughput
 → complement each other
- CPU: largely restricted to control tasks (∼1000/sec)
 - Scripting fast enough
Why do Scripting for GPUs?

- GPUs are everything that scripting languages are not.
 - Highly parallel
 - Very architecture-sensitive
 - Built for maximum FP/memory throughput
 → complement each other
- CPU: largely restricted to control tasks (~1000/sec)
 - Scripting fast enough
- Python + CUDA = PyCUDA
Questions?
Outline

1 Why GPU Scripting?

2 Scripting CUDA
 - PyCUDA in Detail
 - Do More, Faster with PyCUDA

3 GPU Run-Time Code Generation

4 DG on GPUs

5 Perspectives
1. import pycuda.driver as cuda
2. import pycuda.autoinit
3. import numpy
4. a = numpy.random.randn(4,4).astype(numpy.float32)
5. a_gpu = cuda.mem Alloc(a.nbytes)
6. cuda.memcpy_htod(a_gpu, a)

[This is examples/demo.py in the PyCUDA distribution.]
Whetting your appetite

```python
9  mod = cuda.SourceModule('"
10   __global__  void doublify ( float *a)
11   {
12    int idx = threadIdx.x + threadIdx.y*4;
13    a[idx] *= 2;
14   }
15  ""
16
17  func = mod.get_function("doublify")
18  func(a_gpu, block=(4,4,1))
19
20  a_doubled = numpy.empty_like(a)
21  cuda.memcpy_dtoh(a_doubled, a_gpu)
22  print  a_doubled
23  print  a
```
Why GPU Scripting?

Scripting CUDA

GPU RTCG

DG on GPUs

Perspectives

PyCUDA in Detail

Whetting your appetite

```python
mod = cuda.SourceModule('"
    __global__ void doublify(float *a)
    {
        int idx = threadIdx.x + threadIdx.y*4;
        a[idx] *= 2;
    }
"
')

func = mod.get_function('doublify')

func(a_gpu, block=(4,4,1))

a_doubled = numpy.empty_like(a)
cuda.memcpy_dtoh(a_doubled, a_gpu)
print a_doubled
print a
```
Whetting your appetite, Part II

Did somebody say “Abstraction is good”?
Whetting your appetite, Part II

```python
1 import numpy
2 import pycuda.autoinit
3 import pycuda.gpuarray as gpuarray
4
5 a_gpu = gpuarray.to_gpu(
6     numpy.random.randn(4,4).astype(numpy.float32))
7 a_doubled = (2*a_gpu).get()
8 print a_doubled
9 print a_gpu
```
PyCUDA Philosophy

- Provide complete access
- Automatically manage resources
- Provide abstractions
- Allow interactive use
- Check for and report errors automatically
- Integrate tightly with numpy
PyCUDA exposes *all* of CUDA.

For example:

- Arrays and Textures
- Pagelocked host memory
- Memory transfers (asynchronous, structured)
- Streams and Events
- Device queries
- GL Interop
PyCUDA supports every OS that CUDA supports.

- Linux
- Windows
- OS X
Why GPU Scripting?

PyCUDA in Detail

PyCUDA: Documentation

Welcome to PyCuda’s documentation!

PyCuda gives you easy, Pythonic access to Nvidia's CUDA parallel computation API. Several wrappers of the CUDA API already exist—so why the need for PyCuda?

- Object cleanup tied to lifetime of objects. This idiom, often called RAII in C++, makes it much easier to write correct, leak- and crash-free code. PyCuda knows about dependencies, too, so (for example) it won’t detach from a context before all memory allocated in it is also freed.
- Convenience. Abstractions like `pycuda.driver`, `SourceModule` and `pycuda.gpudarray.GPUArray` make CUDA programming even more convenient than with Nvidia’s C-based runtime.
- Completeness. PyCuda puts the full power of CUDA’s driver API at your disposal, if you wish.
- Automatic Error Checking. All CUDA errors are automatically translated into Python exceptions.
- Speed. PyCuda’s base layer is written in C++, so all the niceties above are virtually free.
- Helpful Documentation. You’re looking at it :)!

Here’s an example, to give you an impression:

```python
import pycuda.autoinit
import pycuda.driver as drv
import numpy

mod = drv.SourceModule('''
__global__ void multiply_them(float *dest, float *a, float *b)
{
    const int i = threadIdx.x;
    dest[i] = a[i] * b[i];
}
''', compile_options=['-arch=compute_20', '-xcompiler/--compiler=icc'])

multiply_them = mod.get_function('multiply_them')

a = numpy.random.randn(1000).astype(numpy.float32)

b = numpy.random.randn(1000).astype(numpy.float32)

dest = numpy.zeros_like(a)

multiply_them(a, b, dest, block=(1024, 1, 1), grid=(1, 1, 1))
```

Andreas Klöckner
Applied Math · Brown University
PyCUDA: Workflow

Edit → Run
PyCUDA: Workflow

1. **Edit**
2. **Run**

```
SourceModule("...")
```
PyCUDA: Workflow

1. Edit
2. Run

SourceModule("...")
PyCUDA: Workflow

Edit

Run

SourceModule("...")

Cache?

PyCUDA
PyCUDA: Workflow

1. **Edit**
2. **Run**
 - `SourceModule("...")`
3. **Cache?**
 - `nvcc`

PyCUDA
PyCUDA: Workflow

1. Edit
2. Run
3. SourceModule("...")
4. Cache?
5. nvcc
6. .cubin

PyCUDA
PyCUDA: Workflow

Edit

Run

SourceModule("...")

Cache!

nvcc

.cubin

PyCUDA
PyCUDA: Workflow

Edit

Run

SourceModule("...")

Cache!

nvcc

.cubin

Upload to GPU

PyCUDA
Why GPU Scripting?

Scripting CUDA

GPU RTCG

DG on GPUs

Perspectives

PyCUDA in Detail

PyCUDA: Workflow

Edit

Run

SourceModule("...")

Run on GPU

Cache!

nvcc

.cubin

Upload to GPU

PyCUDA
Automatic Cleanup

- Reachable objects (memory, streams, ...) are never destroyed.
- Once unreachable, released at an unspecified future time.
- Scarce resources (memory) can be explicitly freed. (obj.free())
- Correctly deals with multiple contexts and dependencies.
Why GPU Scripting?

Scripting CUDA

GPU RTCG

DG on GPUs

Perspectives

PyCUDA in Detail

gpuarray: Simple Linear Algebra

pycuda.gpuarray:

- Meant to look and feel just like *numpy*.

  ```python
gpuarray.to_gpu(numpy_array)
numpy_array = gpuarray.get()
```

- +, -, *, /, fill, sin, exp, rand, basic indexing, norm, inner product, ...

- Mixed types (int32 + float32 = float64)

- print *gpuarray* for debugging.

- Allows access to raw bits

 - Use as kernel arguments, textures, etc.
Avoiding extra store-fetch cycles for elementwise math:

```python
from pycuda.curandom import rand as curand
a_gpu = curand((50,))
b_gpu = curand((50,))

from pycuda.elementwise import ElementwiseKernel
lin_comb = ElementwiseKernel(
    " float a, float *x, float b, float *y, float *z",
    "z[i] = a*x[i] + b*y[i]"
)

c_gpu = gpuarray.empty_like(a_gpu)
lin_comb(5, a_gpu, 6, b_gpu, c_gpu)

assert la.norm((c_gpu - (5*a_gpu+6*b_gpu)).get()) < 1e-5
```
gpuarray: Reduction made easy

Example: A scalar product calculation

```python
from pycuda.reduction import ReductionKernel
dot = ReductionKernel(dtype_out=numpy.float32, neutral="0",
                      reduce_expr="a+b", map_expr="x[i]*y[i]",
                      arguments="const float *x, const float *y")

from pycuda.curandom import rand as curand
x = curand((1000*1000), dtype=numpy.float32)
y = curand((1000*1000), dtype=numpy.float32)

x_dot_y = dot(x, y).get()
x_dot_y_cpu = numpy.dot(x.get(), y.get())
```

Andreas Klöckner
Applied Math · Brown University

GPU Metaprogramming using PyCUDA: Methods & Applications
Sparse Matrix-Vector on the GPU

- In development version: Sparse matrix-vector multiplication
- Uses “packeted format” by Garland and Bell (also includes parts of their code)
- Integrates with scipy.sparse.
- Optimized conjugate-gradients solver included
Why GPU Scripting?

Scripting CUDA

GPU RTCG

DG on GPUs

Perspectives

Do More, Faster with PyCUDA

PyCUDA: Vital Information

- http://mathema.tician.de/software/pycuda
- Complete documentation
- X Consortium License (no warranty, free for all use)
- Requires: numpy, Boost C++, Python 2.4+.
- Support via mailing list.
Questions?
Outline

1. Why GPU Scripting?

2. Scripting CUDA

3. GPU Run-Time Code Generation
 - Programs that write Programs

4. DG on GPUs

5. Perspectives
In GPU scripting, GPU code does not need to be a compile-time constant.
In GPU scripting, GPU code does *not* need to be a compile-time constant.

(Key: Code is data—it *wants* to be reasoned about at run time)
Metaprogramming

In GPU scripting, GPU code does not need to be a compile-time constant.

(Key: Code is data—it wants to be reasoned about at run time)
Metaprogramming

In GPU scripting, GPU code does *not* need to be a compile-time constant.

(Key: Code is data—it *wants* to be reasoned about at run time)
Metaprogramming

In GPU scripting, GPU code does not need to be a compile-time constant.

(Key: Code is data—it wants to be reasoned about at run time)
In GPU scripting, GPU code does not need to be a compile-time constant.

(Key: Code is data—it wants to be reasoned about at run time)
In GPU scripting, GPU code does not need to be a compile-time constant.

(Key: Code is data—it wants to be reasoned about at run time)
In GPU scripting, GPU code does \textit{not} need to be a compile-time constant.

(Key: Code is data—it \textit{wants} to be reasoned about at run time)
Machine-generated Code

Why machine-generate code?

- Automated Tuning (cf. ATLAS, FFTW)
- Data types
- Specialize code for given problem
- Constants faster than variables (→ register pressure)
- Loop Unrolling
PyCUDA: Support for Metaprogramming

- Access properties of compiled code:
  ```
  func.{num_regs,shared_size_bytes,local_size_bytes}
  ```
- Exact GPU timing via events
- Can calculate hardware-dependent MP occupancy
- codepy:
 - Build C syntax trees from Python
 - Generates readable, indented C
- Or use a templating engine (many available)
RTCG via Templates

```python
from jinja2 import Template

tpl = Template('''
    __global__ void twice({{ type_name }}* tgt) {
        int idx = threadIdx.x +
            {{ thread_block_size }} * {{ block_size }} * blockIdx.x;

        {% for i in range(block_size) %}
            % set offset = i * thread_block_size %
            tgt[idx + {{ offset }}] *= 2;
            {% endfor %}
    }
''')

rendered_tpl = tpl.render(
    type_name="float",
    block_size=block_size,
    thread_block_size=thread_block_size)

smod = SourceModule(rendered_tpl)
```
RTCG via AST Generation

```python
from codepy.cgen import *
from codepy.cgen.cuda import CudaGlobal

mod = Module([  
    FunctionBody(  
        CudaGlobal(FunctionDeclaration(  
            Value("void", "twice"),  
            arg_decls=[Pointer(POD(dtype, "tgt"))],  
            Block([  
                Initializer (POD(numpy.int32, "idx"),  
                "threadIdx.x + %d*blockIdx.x"  
                % ( thread_block_size * block_size )),  
                ]+[
                Assign("tgt[idx+%d]" % (o*thread_block_size),  
                "2*tgt[idx+%d]" % (o*thread_block_size))  
                for o in range( block_size ))))])

smod = SourceModule(mod)
```
Questions?
Outline

1. Why GPU Scripting?
2. Scripting CUDA
3. GPU Run-Time Code Generation
4. DG on GPUs
 - Introduction
 - DG and Metaprogramming
 - Results
5. Perspectives
Discontinuous Galerkin Method

Let $\Omega := \bigcup_i D_k \subset \mathbb{R}^d$.

Introduction
Discontinuous Galerkin Method

Let $\Omega := \bigcup_i D_k \subset \mathbb{R}^d$.

Goal

Solve a conservation law on Ω:

$$u_t + \nabla \cdot F(u) = 0$$
Discontinuous Galerkin Method

Let $\Omega := \bigcup_i D_k \subset \mathbb{R}^d$.

Goal
Solve a *conservation law* on Ω: $u_t + \nabla \cdot F(u) = 0$

Example
Maxwell’s Equations: EM field: $E(x, t), H(x, t)$ on Ω governed by

\[
\begin{align*}
\partial_t E - \frac{1}{\varepsilon} \nabla \times H &= -\frac{j}{\varepsilon}, \\
\nabla \cdot E &= \frac{\rho}{\varepsilon}, \\
\partial_t H + \frac{1}{\mu} \nabla \times E &= 0, \\
\nabla \cdot H &= 0.
\end{align*}
\]
Discontinuous Galerkin Method

Multiply by test function, integrate by parts:

\[0 = \int_{D_k} u_t \varphi + [\nabla \cdot F(u)] \varphi \, dx \]

\[= \int_{D_k} u_t \varphi - F(u) \cdot \nabla \varphi \, dx + \int_{\partial D_k} (\hat{n} \cdot F)^* \varphi \, dS_x, \]

Integrate by parts again, substitute in basis functions, introduce elementwise differentiation and “lifting” matrices \(D, L \):

\[\partial_t u^k = - \sum_{\nu} D^{\partial \nu, k} [F(u^k)] + L^k [\hat{n} \cdot F - (\hat{n} \cdot F)^*]_{A \subset \partial D_k}. \]

For straight-sided simplicial elements:
Reduce \(D^{\partial \nu} \) and \(L \) to reference matrices.
Metaprogramming for GPU-DG

- Specialize code for user-given problem:
 - Flux Terms
Metaprogramming for GPU-DG

- Specialize code for user-given problem:
 - Flux Terms

- Automated Tuning:
 - Memory layout
 - Loop slicing
 - Gather granularity
Metaprogramming for GPU-DG

- Specialize code for user-given problem:
 - Flux Terms

- Automated Tuning:
 - Memory layout
 - Loop slicing
 - Gather granularity

- Constants instead of variables:
 - Dimensionality
 - Polynomial degree
 - Element properties
 - Matrix sizes
Metaprogramming for GPU-DG

- Specialize code for user-given problem:
 - Flux Terms
- Automated Tuning:
 - Memory layout
 - Loop slicing
 - Gather granularity
- Constants instead of variables:
 - Dimensionality
 - Polynomial degree
 - Element properties
 - Matrix sizes
- Loop Unrolling
Metaprogramming for GPU-DG

- Specialize code for user-given problem:
 - Flux Terms (*)
- Automated Tuning:
 - Memory layout
 - Loop slicing (*)
 - Gather granularity
- Constants instead of variables:
 - Dimensionality
 - Polynomial degree
 - Element properties
 - Matrix sizes
- Loop Unrolling
Metaprogramming DG: Flux Terms

\[0 = \int_{D_k} u_t \varphi + [\nabla \cdot F(u)] \varphi \, dx - \int_{\partial D_k} [\hat{n} \cdot F - (\hat{n} \cdot F)^*] \varphi \, dS_x \]

Flux term
Metaprogramming DG: Flux Terms

\[0 = \int_{D_k} u_t \varphi + [\nabla \cdot F(u)] \varphi \, dx - \int_{\partial D_k} [\hat{n} \cdot F - (\hat{n} \cdot F)^*] \varphi \, dS_x \]

Flux terms:

- vary by problem
- expression specified by user
- evaluated pointwise
Example: Fluxes for Maxwell’s Equations

\[\hat{n} \cdot (F - F^*)_E := \frac{1}{2} [\hat{n} \times ([H] - \alpha \hat{n} \times [E])] \]
Metaprogramming DG: Flux Terms Example

Example: Fluxes for Maxwell’s Equations

\[\hat{n} \cdot (F - F^*)_E := \frac{1}{2} [\hat{n} \times ([H] - \alpha \hat{n} \times [E])] \]

User writes: Vectorial statement in math. notation

```python
flux = 1/2*cross(normal, h.int - h.ext - alpha*cross(normal, e.int - e.ext))
```
Metaprogramming DG: Flux Terms Example

Example: Fluxes for Maxwell’s Equations

\[
\hat{n} \cdot (F - F^*)_E := \frac{1}{2} [\hat{n} \times ([H] - \alpha \hat{n} \times [E])]
\]

We generate: Scalar evaluator in C (6×)

```c
a_flux += ( ((( val_a_field5 - val_b_field5 )*fpair - normal[2] - ( val_a_field4 - val_b_field4 )*fpair - normal[0] ) + val_a_field0 - val_b_field0 )*fpair - normal[0] - ((( val_a_field4 - val_b_field4 ) *fpair - normal[1] - ( val_a_field1 - val_b_field1 )*fpair - normal[2] ) + val_a_field3 - val_b_field3 ) * fpair - normal[1] )*value_type (0.5);
```

Andreas Klöckner
Applied Math · Brown University

GPU Metaprogramming using PyCUDA: Methods & Applications
Loop Slicing on the GPU: A Pattern

Setting: \(N \) independent work units + preparation

Question: How should one assign work units to threads?
Loop Slicing on the GPU: A Pattern

Setting: N independent work units + preparation

Question: How should one assign work units to threads?

w_s: in sequence

w_p: in parallel

(aim to amortize preparation)

(aim to exploit register space)
Loop Slicing on the GPU: A Pattern

Setting: \(N \) independent work units + preparation

Question: How should one assign work units to threads?

\[w_s: \text{in sequence} \]

\[w_p: \text{in parallel} \]

Thread

\[t \]
Loop Slicing on the GPU: A Pattern

Setting: N independent work units + preparation

Question: How should one assign work units to threads?

- w_s: in sequence
- w_i: “inline-parallel”
- w_p: in parallel
Loop Slicing on the GPU: A Pattern

Setting: \(N \) independent work units + preparation

Question: How should one assign work units to threads?

- \(w_s \): in sequence
- \(w_i \): “inline-parallel”
- \(w_p \): in parallel

(ammortize preparation)
Loop Slicing on the GPU: A Pattern

Setting: N independent work units + preparation

Question: How should one assign work units to threads?

w_s: in sequence

w_i: “inline-parallel”

w_p: in parallel

(amortize preparation) (exploit register space)
Loop Slicing for Differentiation

Local differentiation, matrix-in-shared, order 4, with microblocking
point size denotes $w_i \in \{1, \ldots, 4\}$
Nvidia GTX280 vs. single core of Intel Core 2 Duo E8400

Andreas Klöckner
Applied Math · Brown University

GPU Metaprogramming using PyCUDA: Methods & Applications
16 T10s vs. 64 = $8 \times 2 \times 4$ Xeon E5472

Flop Rates and Speedups: 16 GPUs vs 64 CPU cores

- Red: GPU
- Blue: CPU
- Black dots: Speedup

Polynomial Order N
- 0
- 1000
- 2000
- 3000
- 4000

GFlops/s
- 0
- 5
- 10
- 15
- 20
- 25

Speedup Factor
- 0
- 5
- 10
- 15
- 20
- 25

Andreas Klöckner
Applied Math · Brown University

GPU Metaprogramming using PyCUDA: Methods & Applications
GPU DG Showcase

Eletromagnetism
Why GPU Scripting?

Scripting CUDA

GPU RTCG

DG on GPUs

Perspectives

Results

GPU DG Showcase

Eletromagnetism

Performance: Double Precision Poisson Solver
Unpreconditioned CG with IP DG on $K = 18068$ elements

Graph showing Speedup vs. Polynomial order N

Poisson

Andreas Klöckner

Applied Math · Brown University

GPU Metaprogramming using PyCUDA: Methods & Applications
GPU DG Showcase

Eletromagnetism

CFD

Performance: Double Precision Poisson Solver
Unpreconditioned CG with IP DG on $K = 18068$ elements

Graph showing speedup over polynomial order N.
GPU DG Showcase

Eletromagnetism

CFD

etc...

Performance: Double Precision Poisson Solver
Unpreconditioned CG with IP DG on $K=18068$ elements

GPU

CPU

Speedup

Polynomial order N

Iterations/s

Performance: Double Precision Poisson Solver
Unpreconditioned CG with IP DG on $K=18068$ elements

GPU

CPU

Speedup

Polynomial order N

Iterations/s
Outline

1. Why GPU Scripting?
2. Scripting CUDA
3. GPU Run-Time Code Generation
4. DG on GPUs
5. Perspectives
 - Conclusions
Introducing... PyOpenCL

- PyOpenCL is “PyCUDA for OpenCL”
- Complete, mature API wrapper
- Features like PyCUDA: not yet
- Tested on all available Implementations, OSs
- http://mathema.tician.de/software/pyopencl

OpenCL
Introducing... PyOpenCL

Same flavor, different recipe:

```python
ctx = cl.create_context_from_type(cl.device_type.ALL)
queue = cl.CommandQueue(ctx)

a = numpy.random.rand(50000).astype(numpy.float32)
a_buf = cl.Buffer(ctx, cl.mem_flags.COPY_HOST_PTR, hostbuf=a)

prg = cl.Program(ctx, """
    __kernel void twice(__global float *x)
    {
        x[get_global_id(0)] *= 2;
    }"")
prg.twice(queue, a.shape, a_buf)

twice_a = numpy.empty_like(a)
cl.enqueue_read_buffer(queue, a_buf, twice_a).wait()
```

Andreas Klöckner
Applied Math · Brown University

GPU Metaprogramming using PyCUDA: Methods & Applications
Automating GPU Programming

GPU programming can be time-consuming, unintuitive and error-prone.

- Obvious idea: Let the computer do it.
- One way: Smart compilers
Automating GPU Programming

GPU programming can be time-consuming, unintuitive and error-prone.

- **Obvious idea**: Let the computer do it.
- **One way**: Smart compilers
 - GPU programming requires complex tradeoffs
 - Tradeoffs require heuristics
 - Heuristics are fragile
Automating GPU Programming

GPU programming can be time-consuming, unintuitive and error-prone.

- Obvious idea: Let the computer do it.
- One way: Smart compilers
 - GPU programming requires complex tradeoffs
 - Tradeoffs require heuristics
 - Heuristics are fragile
- Another way: Dumb enumeration
 - Enumerate loop slicings
 - Enumerate prefetch options
 - Choose by running resulting code on actual hardware
Loo.py Example

Empirical GPU loop optimization:

```python
a, b, c, i, j, k = [var(s) for s in "abcijk"]
n = 500
k = make_loop_kernel(
    [LoopDimension("i", n),
     LoopDimension("j", n),
     LoopDimension("k", n),
    ],
    [c[i+n*j], a[i+n*k]*b[k+n*j]]
)
gen_kwargs = {
    "min_threads": 128,
    "min_blocks": 32,
}
```

→ Ideal case: Finds 160 GF/s kernel without human intervention.
Loo.py Status

- Limited scope:
 - Require input/output separation
 - Kernels must be expressible using “loopy” model (i.e. indices decompose into “output” and “reduction”)
 - Enough for DG, LA, FD, ...
Loo.py Status

- Limited scope:
 - Require input/output separation
 - Kernels must be expressible using “loopy” model (i.e. indices decompose into “output” and “reduction”)
 - Enough for DG, LA, FD, ...

- Kernel compilation limits trial rate
- Non-Goal: Peak performance
- Good results currently for dense linear algebra and (some) DG subkernels
Conclusions

- Fun time to be in computational science
Conclusions

- Fun time to be in computational science
- Use Python and PyCUDA to have even more fun :-)
 - With no compromise in performance
Conclusions

- Fun time to be in computational science
- Use Python and PyCUDA to have even more fun :-)
 - With no compromise in performance
- GPUs and scripting work well together
 - Enable Metaprogramming
Conclusions

- Fun time to be in computational science
- Use Python and PyCUDA to have even more fun :-)
 - With no compromise in performance
- GPUs and scripting work well together
 - Enable Metaprogramming
- Further work in GPU-DG:
 - Other equations (Euler, Navier-Stokes)
 - Curvilinear Elements
 - Local Time Stepping
Where to from here?

More at...

→ http://mathema.tician.de/

CUDA-DG

GPU RTCG
Why GPU Scripting?

Scripting CUDA

GPU RTCG

DG on GPUs

Perspectives

Conclusions

Questions?

Thank you for your attention!

http://mathema.tician.de/
Image Credits

- Circuitry: flickr.com/oskay [CC]
- Python logo: python.org
- C870 GPU: Nvidia Corp.
- Old Books: flickr.com/ppdigital [CC]
- CUDA Manual: Nvidia Corp.
- OS Platforms: flickr.com/aOliN.Tk
- Adding Machine: flickr.com/thomashawk [CC]
- Floppy disk: flickr.com/ethanhein [CC]
- Machine: flickr.com/13521837@N00 [CC]
- OpenCL logo: Ars Technica/Apple Corp.