Unlocking Biologically-Inspired Computer Vision: a High-Throughput Approach

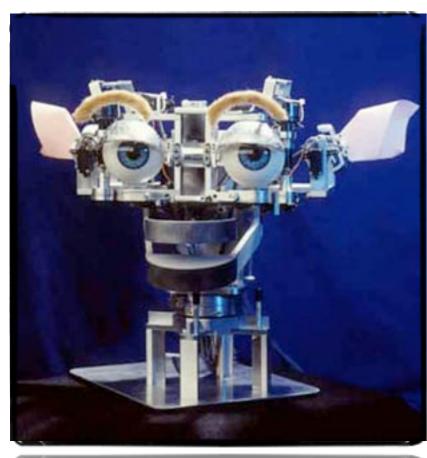
Nicolas Pinto, David Cox and James DiCarlo

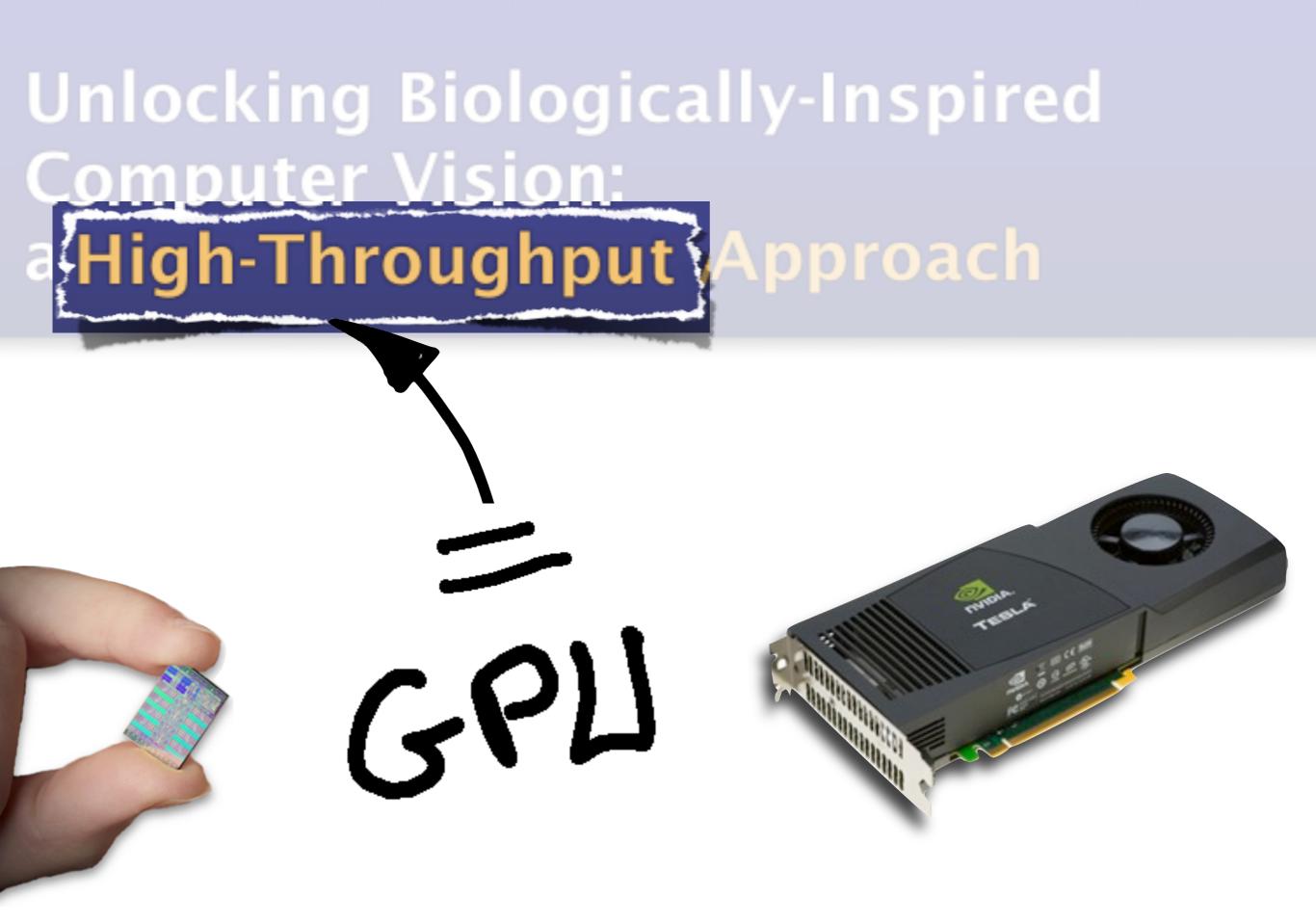
NVIDIA GTC | October, 2009

Unlocking Biologically-Inspired Computer Vision: a High-Th oughput Approach

(NEUROSCIENCES)

Unlocking Biologically-Inspired Computer Vision: a high-I hroughput Approach





Quote to remember...

Friend: So, what are you studying for your PhD?

Me: I study biological and artificial vision.

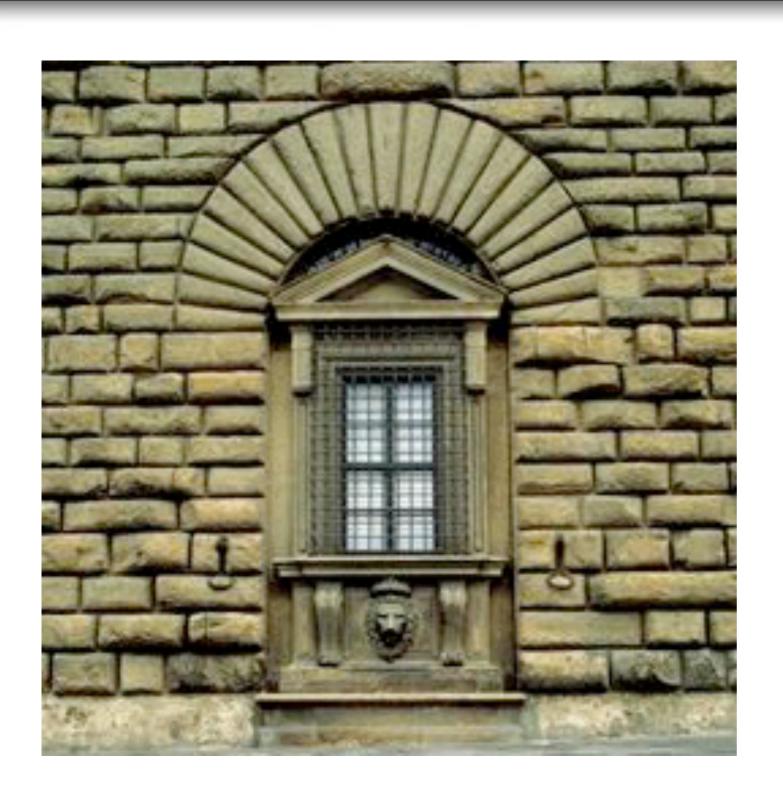
Friend: What?!? But vision is super easy!

Fast

- Fast
- Accurate

- Fast
- Accurate
- Tolerant to variation

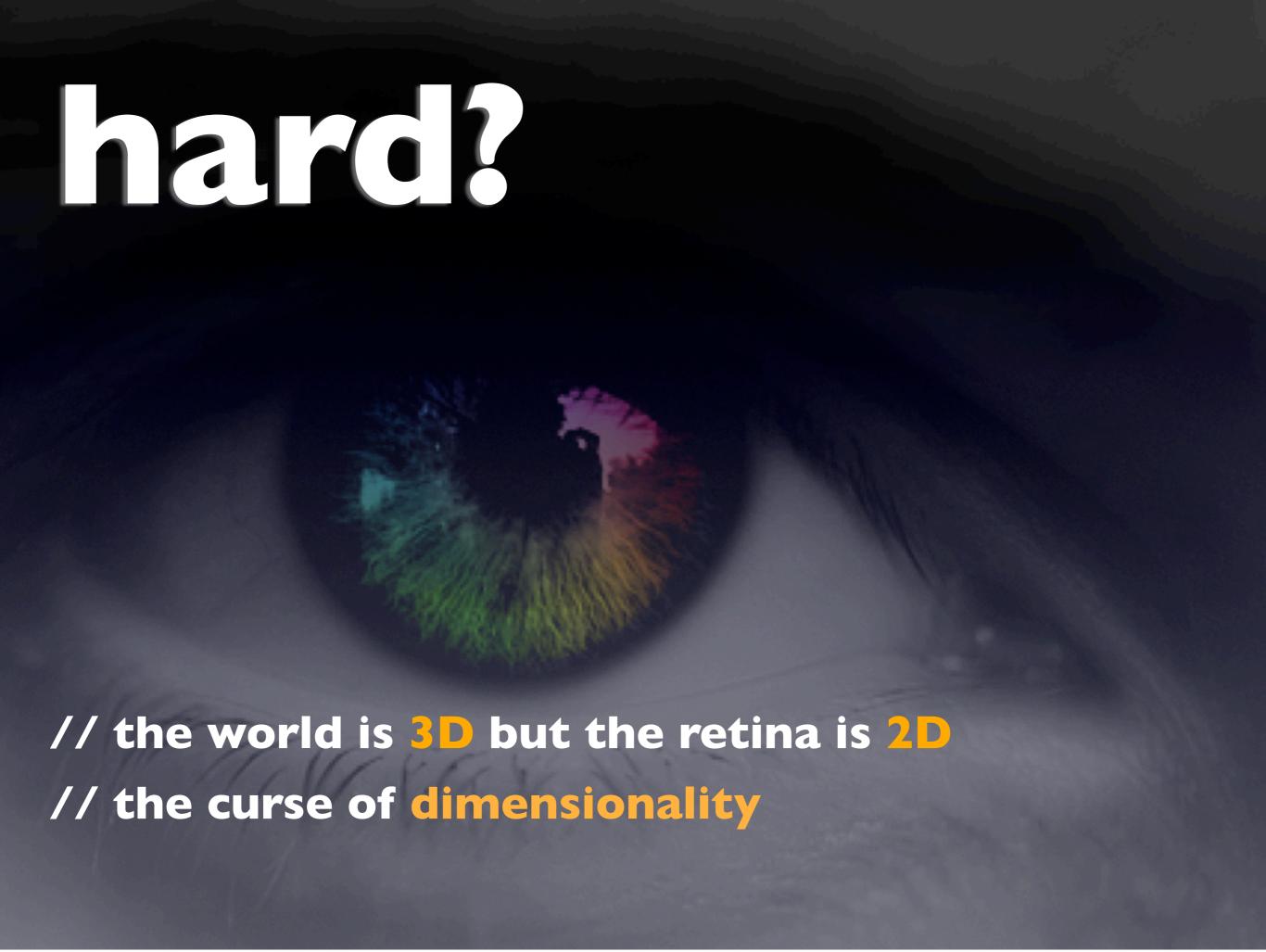
- Fast
- Accurate
- Tolerant to variation
- Effortless



- Fast
- Accurate
- Tolerant to variation
- Effortless
- Critical to survival

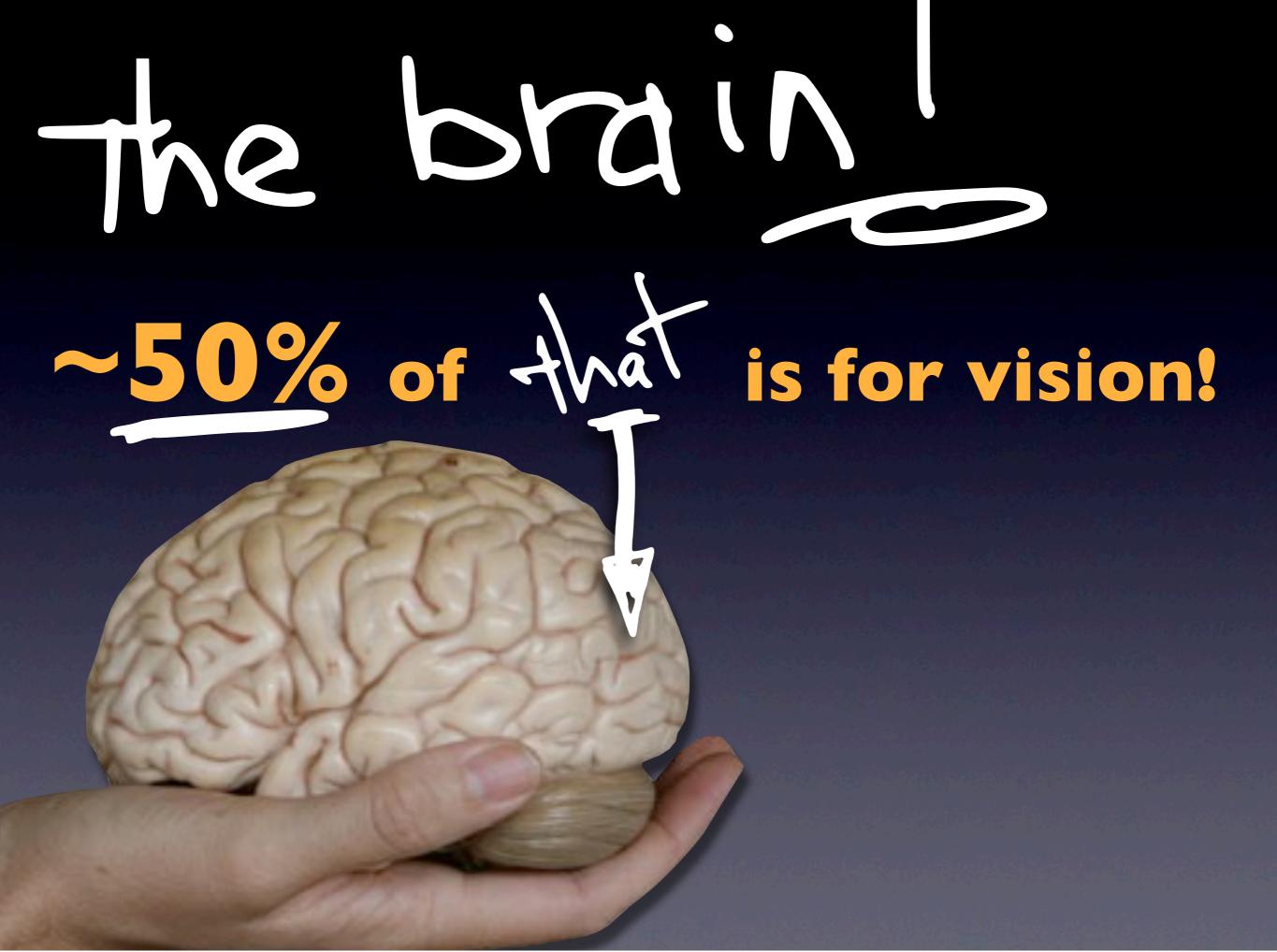
- Fast
- Accurate
- Tolerant to variation
- Effortless
- Critical to survival

(for primates)



nard! // the world is 3D but the retina is 2D // the curse of dimensionality // considerable image variation

image variation!



Need for speed Hardware Software Science

The Approach: Reverse Engineering the Brain

REVERSE

Study Natural System

The Approach: Reverse Engineering the Brain

REVERSE

Study Natural System **FORWARD**

BuildArtificial System

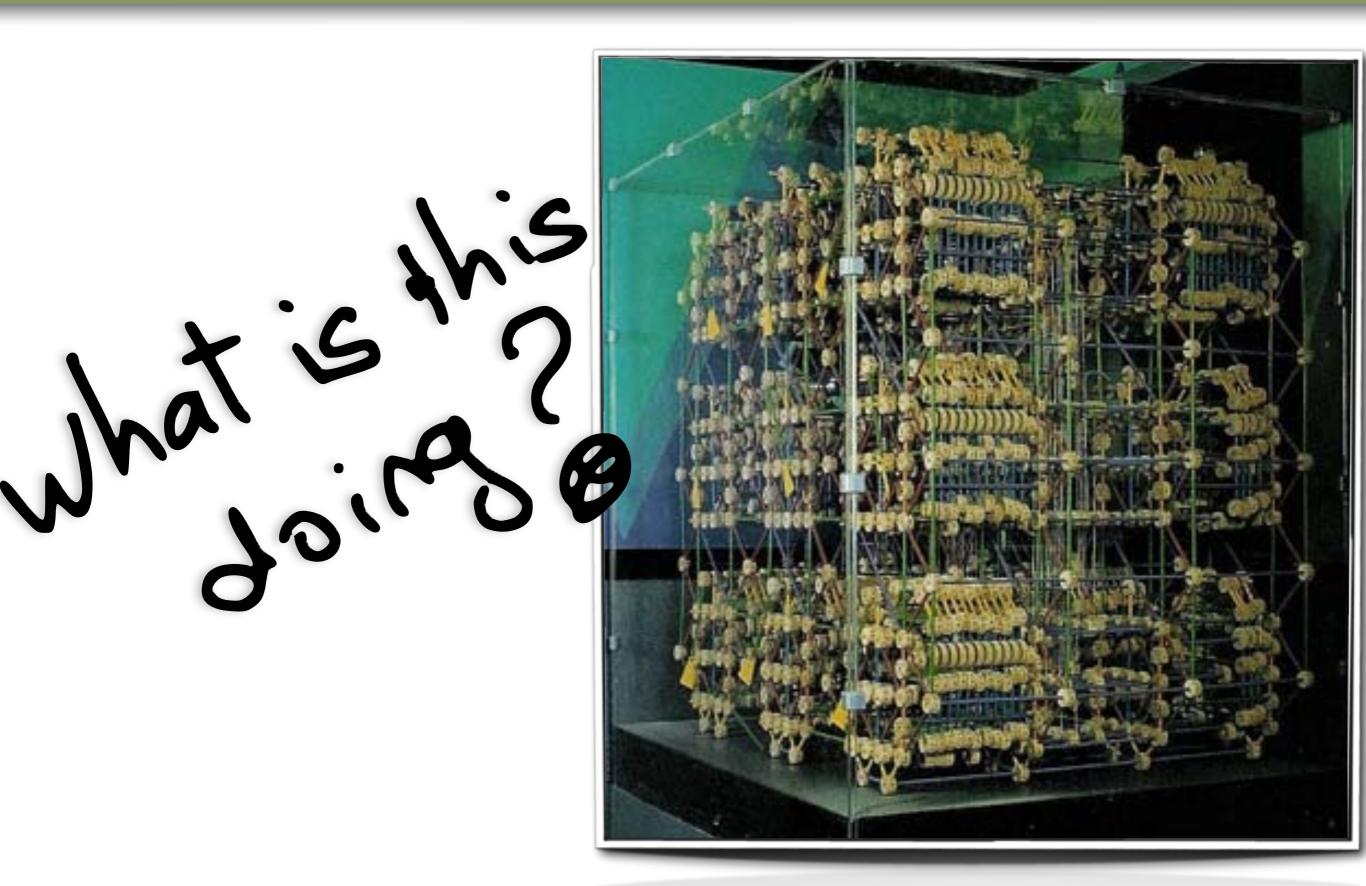
The Approach: Reverse Engineering the Brain

REVERSE

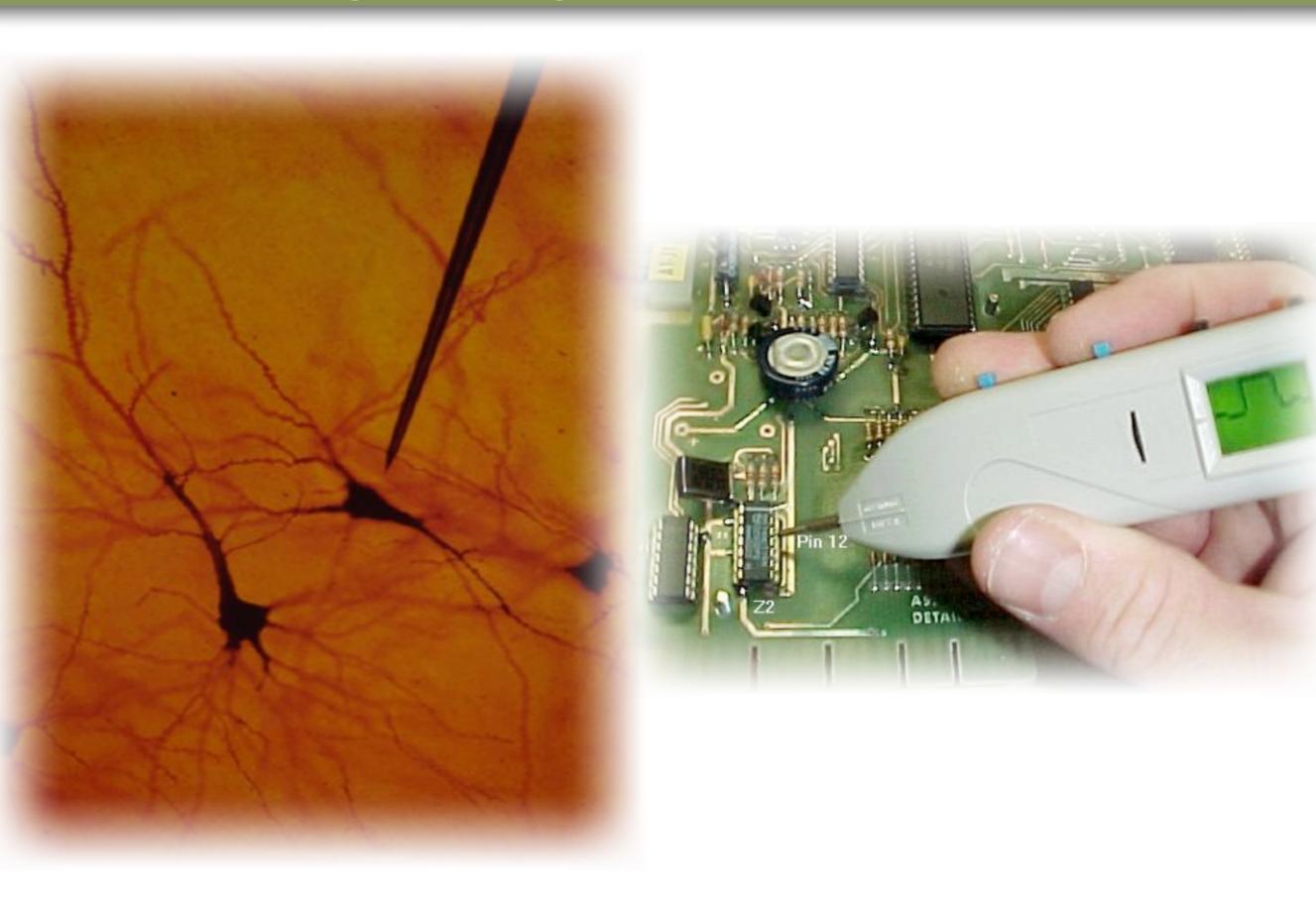
Study Natural System

BuildArtificial System

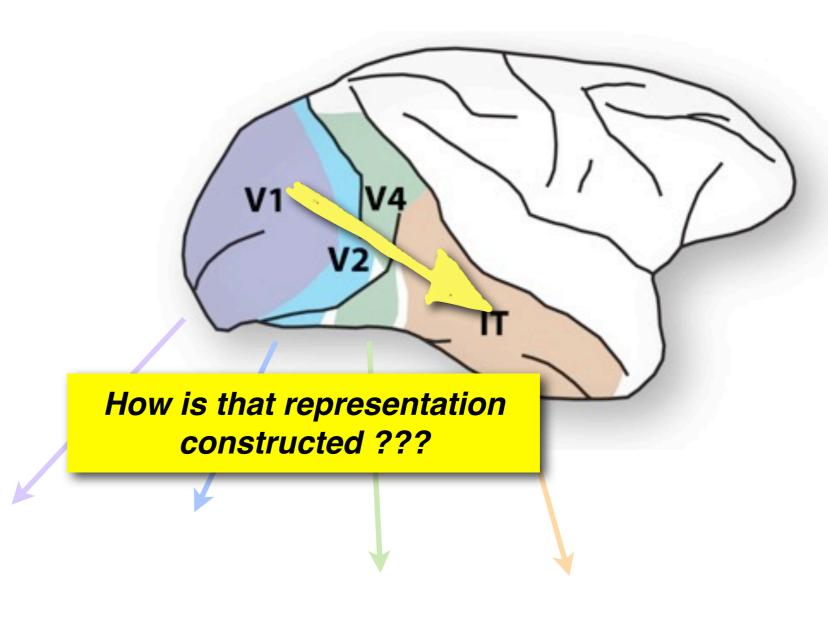
Reverse Engineering ...



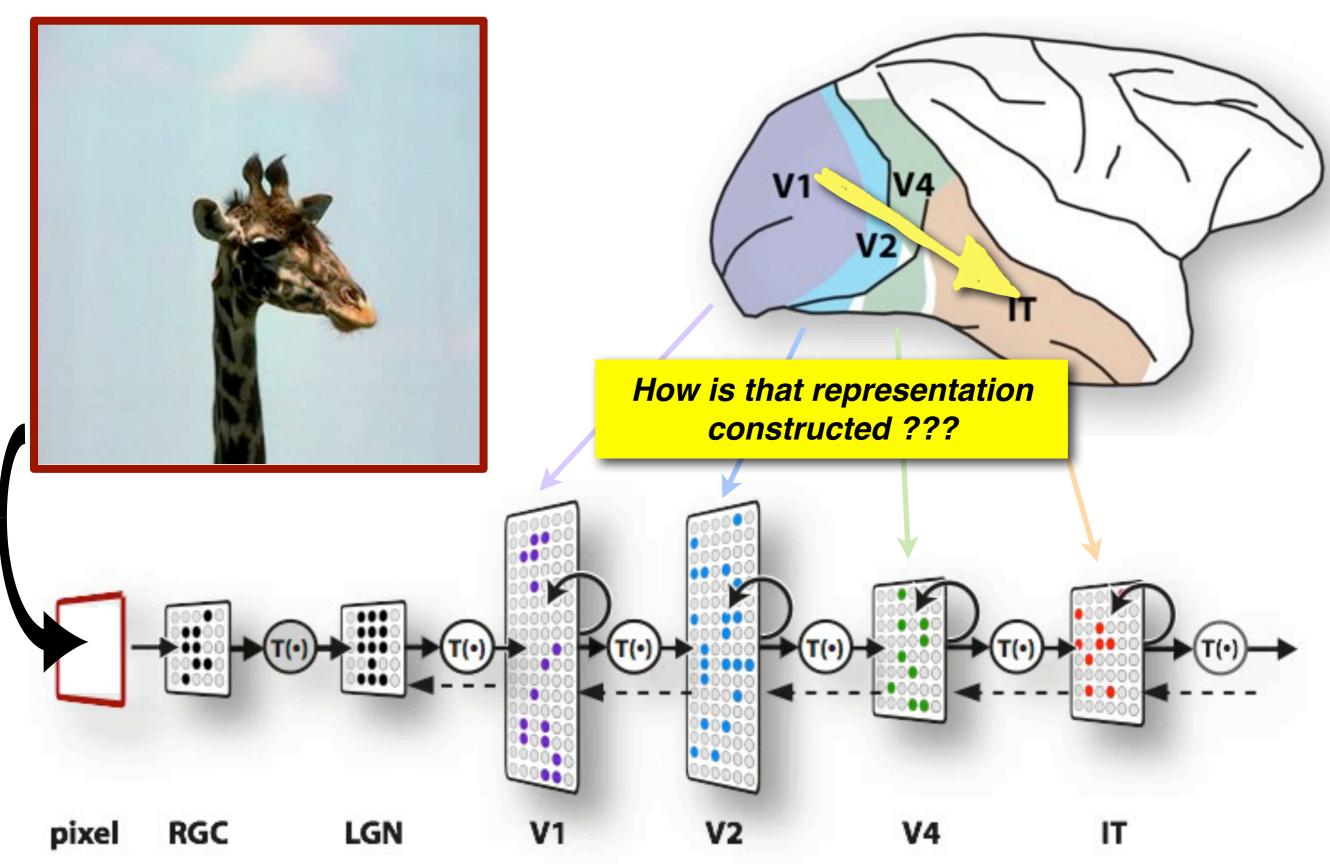
Reverse Engineering the Brain!



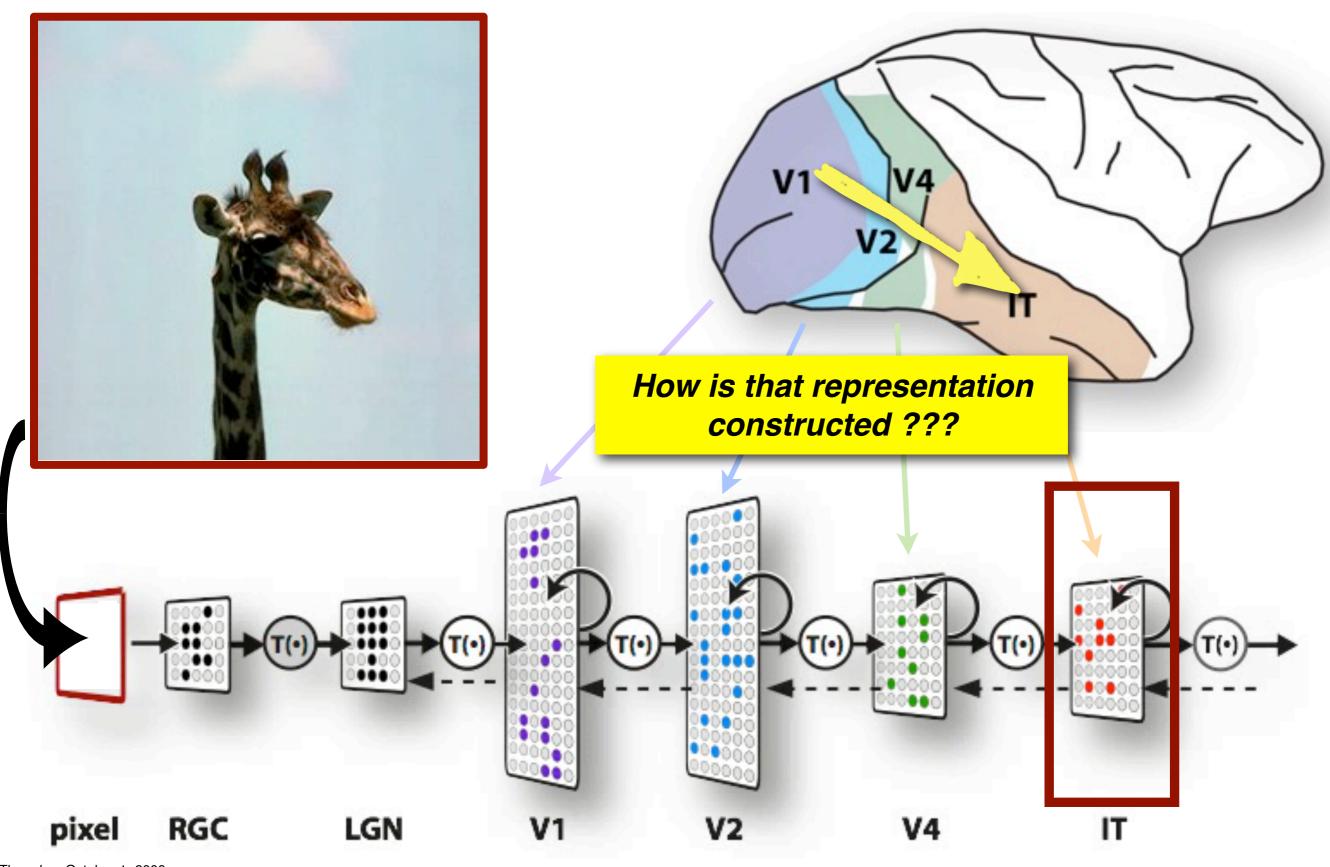
The Ventral Visual Stream



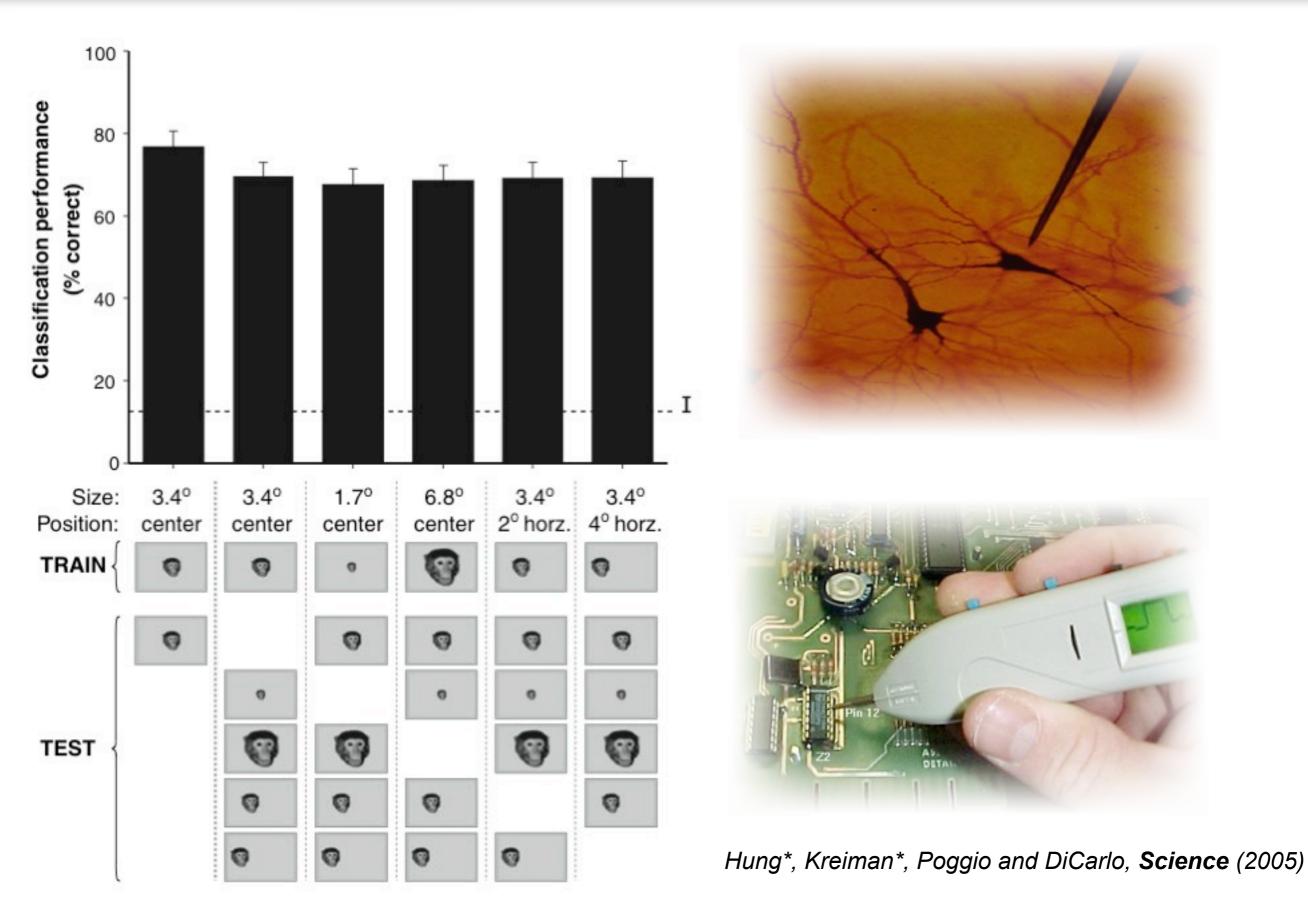
The Ventral Visual Stream



The Ventral Visual Stream



IT Cortex can do object recognition



Visual Cortex brain = 20 petaflops! 10 mm pixel RGC LGN V2 **V4**

- billions of neurons and synapses

- billions of neurons and synapses

 large-scale natural evolution ("highthroughput screening" of neural architectures)

- billions of neurons and synapses

 large-scale natural evolution ("highthroughput screening" of neural architectures)

- hours of unsupervised learning experience

- billions of neurons and synapses

 large-scale natural evolution ("highthroughput screening" of neural architectures)

- hours of unsupervised learning experience

faithful reproduction of other models
 (i.e. blend many highly tuned techniques)

Wanna Play with The Big Guys?

But it's too expensive !!!

Capitalizing on non-scientific high-tech markets and their \$billions of R&D...

Capitalizing on non-scientific high-tech markets and their \$billions of R&D...

- Gaming: GPUs, PlayStation 3 (CellBE)

Capitalizing on non-scientific high-tech markets and their \$billions of R&D...

- Gaming: GPUs, PlayStation 3 (CellBE)
- Web 2.0: Cloud Computing (Amazon, Google)

Need for speed Hardware Software Science

GPUs (since 2006)

7800 GTX (2006) Monster I 6 GPU (2008)

Tesla Cluster (2009)

OpenGL/Cg

CUDA

CUDA/OpenCL

C++/Python

Python

Python

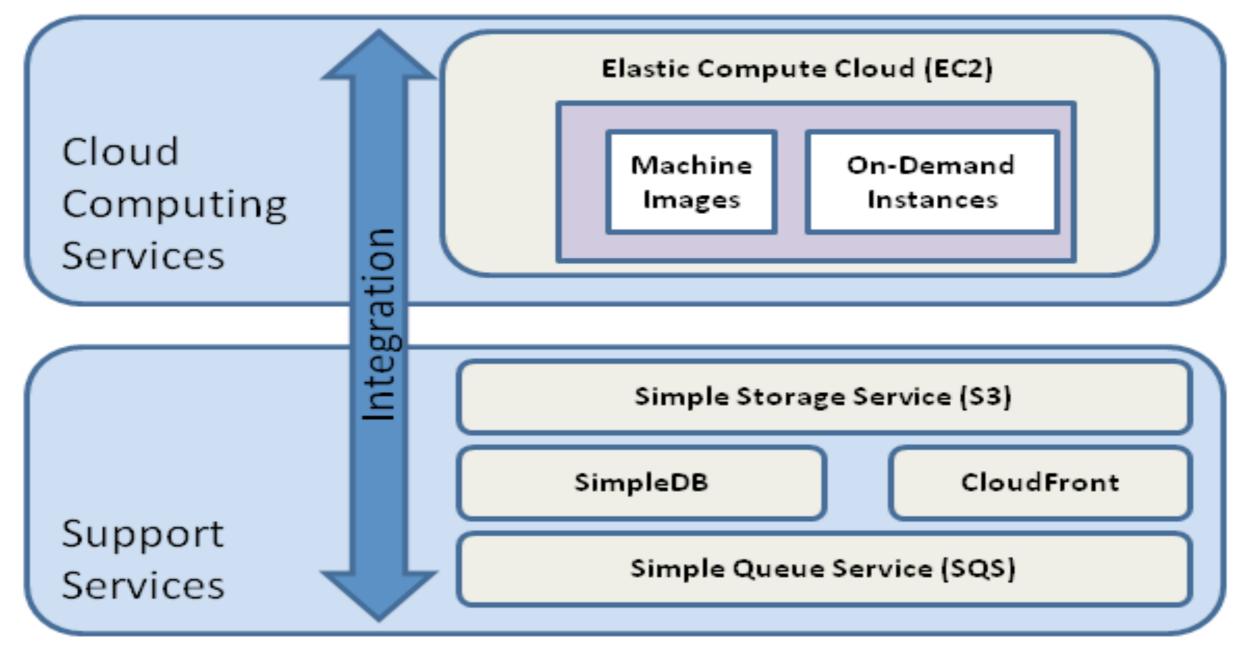
Cell Broadband Engine (since 2007)

Teraflop Playstation3 clusters:

DiCarlo Lab / MIT

Cox Lab / Harvard

Amazon Cloud Computing (since 2008)



Performance (gflops) Development Time (hours)

Performance (gflops) Development Time (hours)

Matlab

C/SSE

PS3

GT200

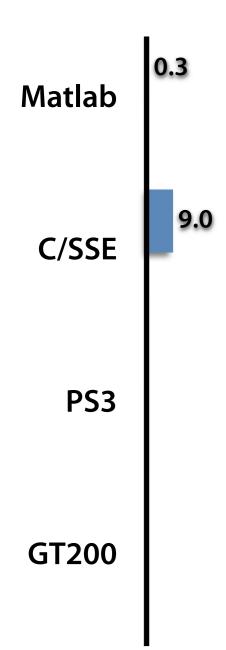
Matlab

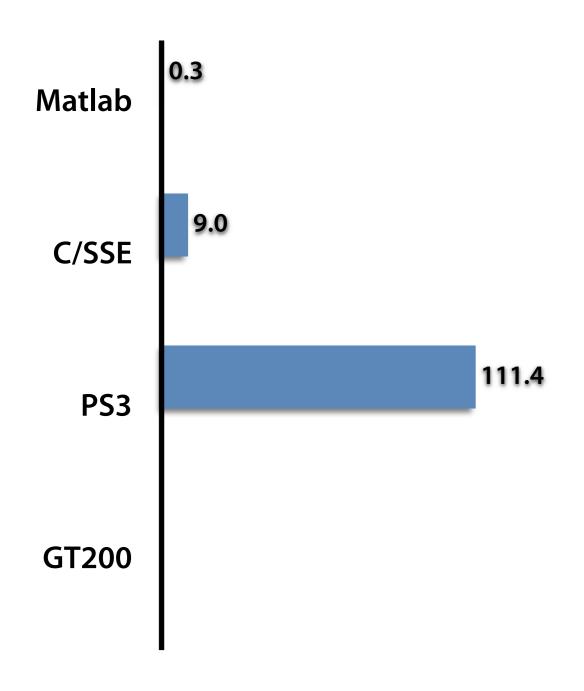
0.3

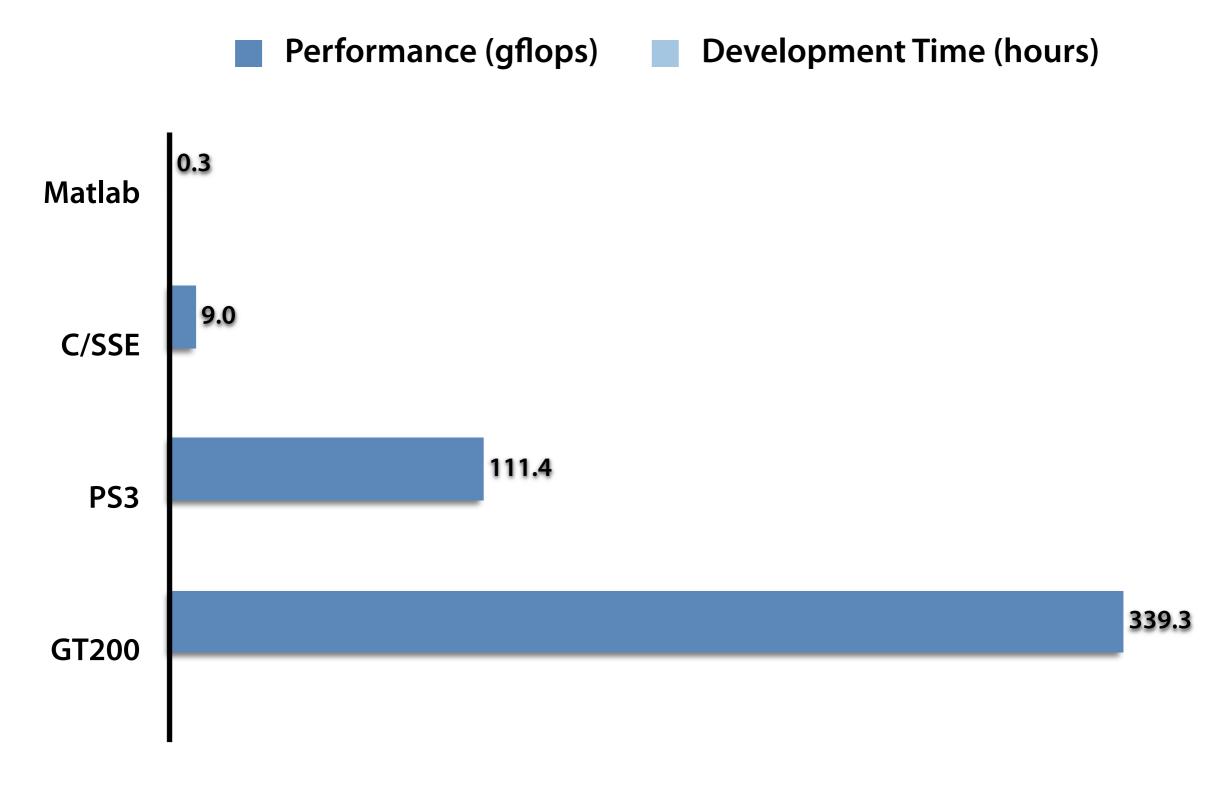
C/SSE

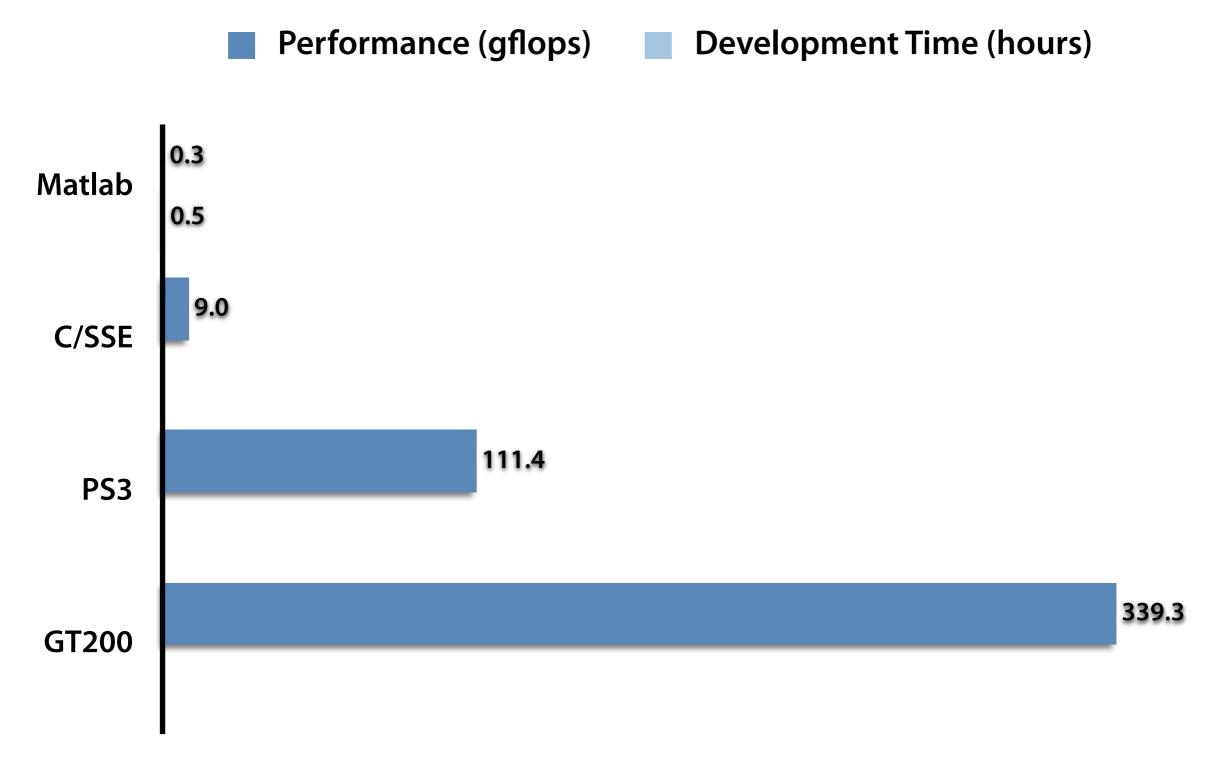
PS3

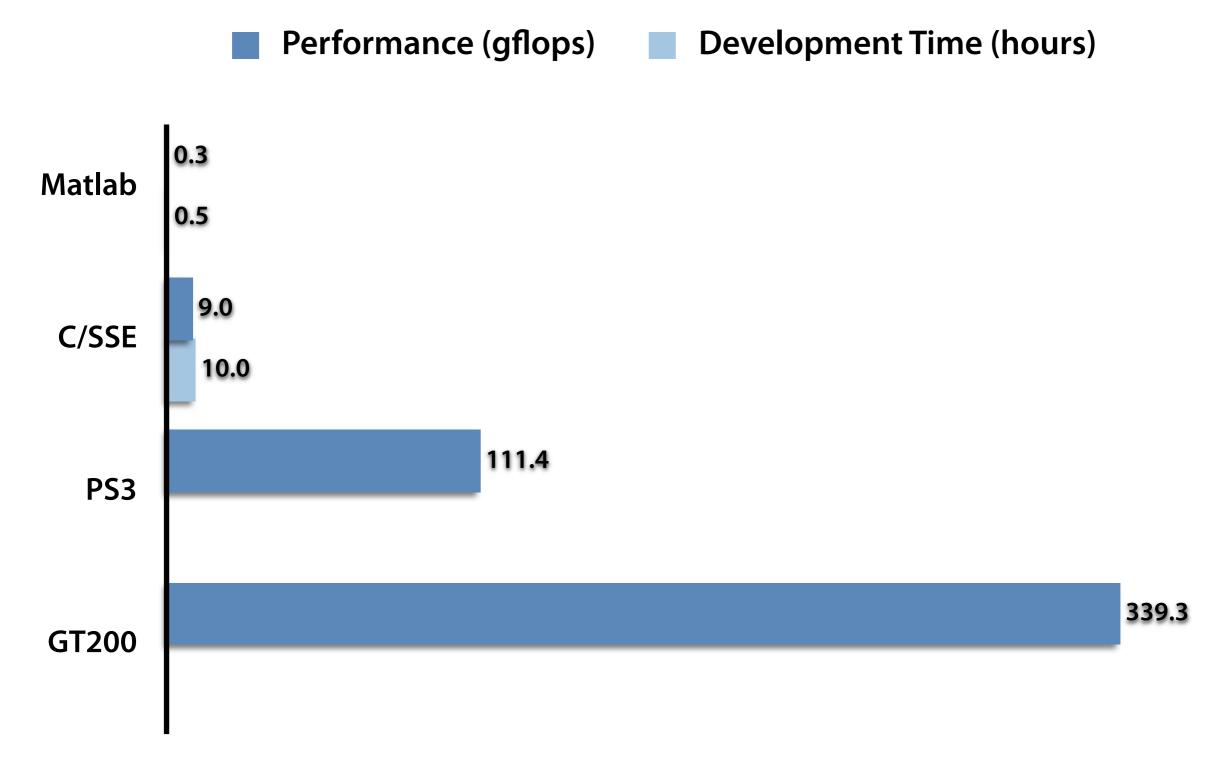
GT200

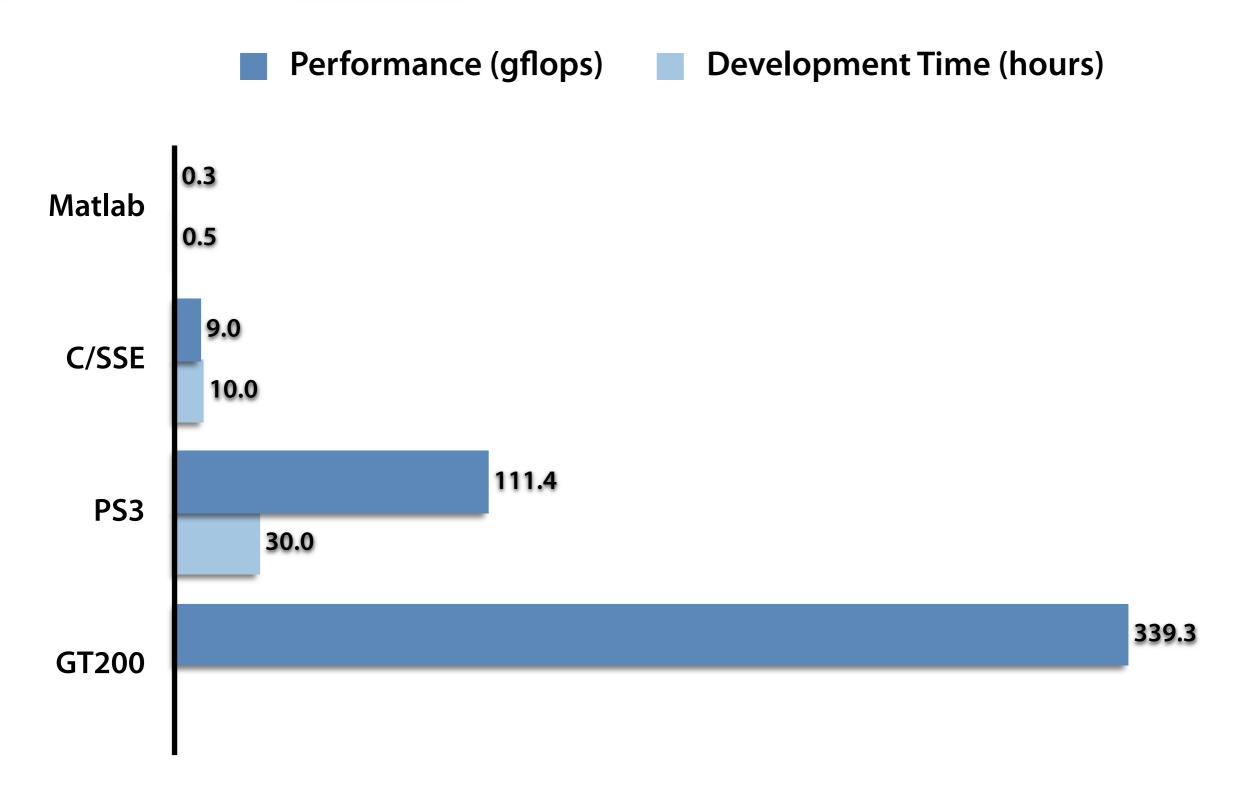


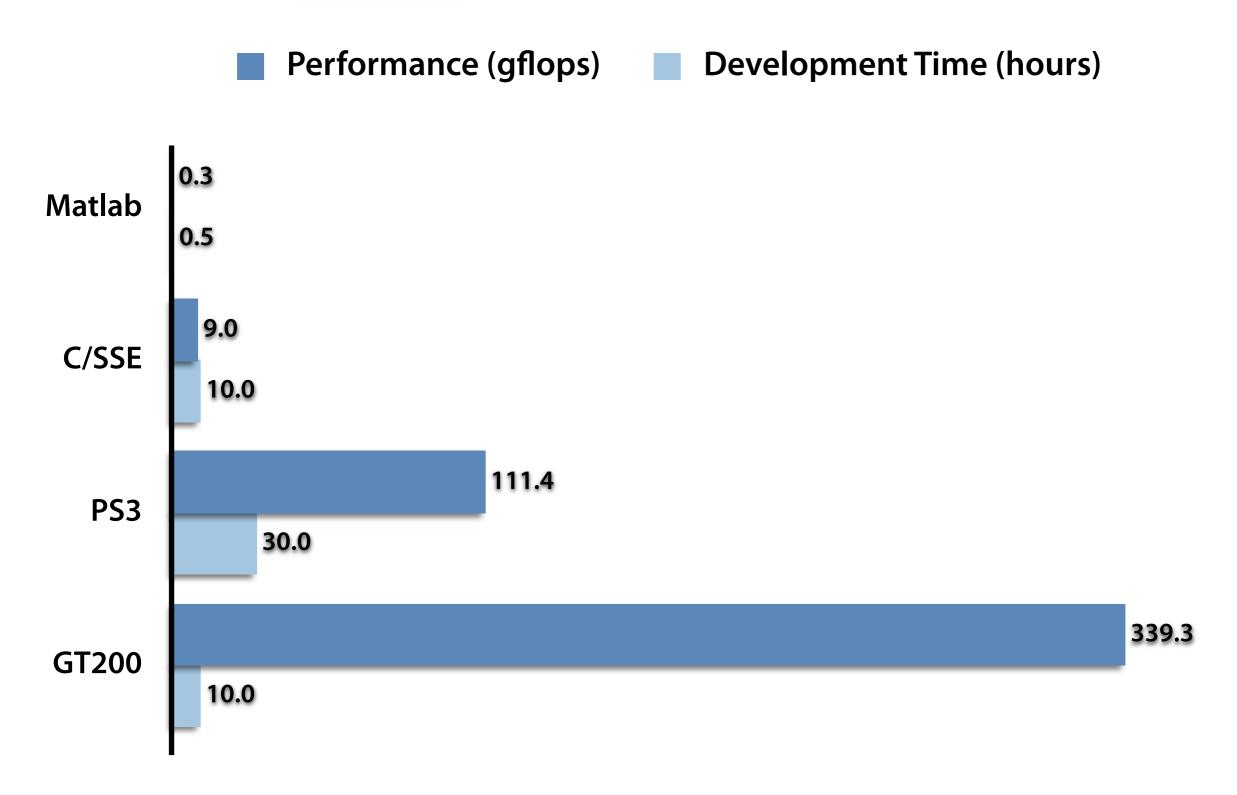




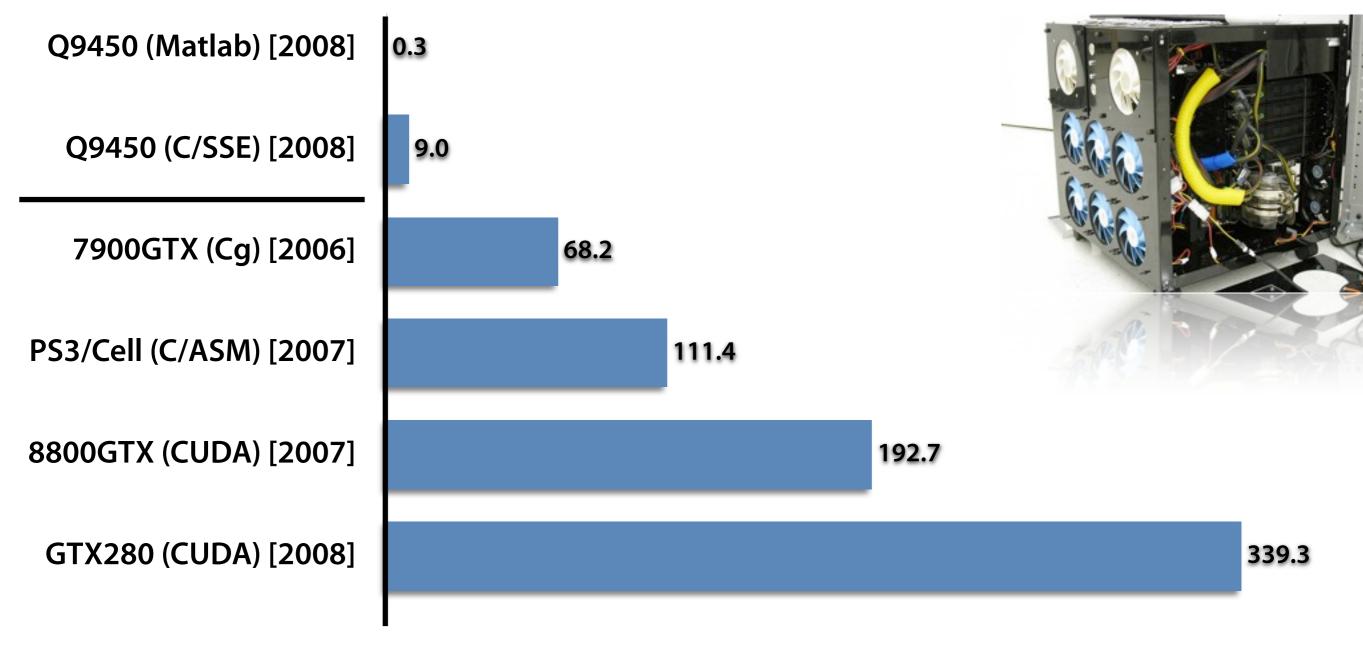








Performance (gflops)



Need for speed Hardware Software Science

What do we all want?

- Ease of use
- Maximum raw speed
- Ease of extension
- Hardware "agnostic"

You just finished your code...

You just finished your code...

1. You run it on one image: it works!

You just finished your code...

1. You run it on one image: it works!

You just finished your code...

1. You run it on one image: it works!

3. Your optimize your code: it's fast now!

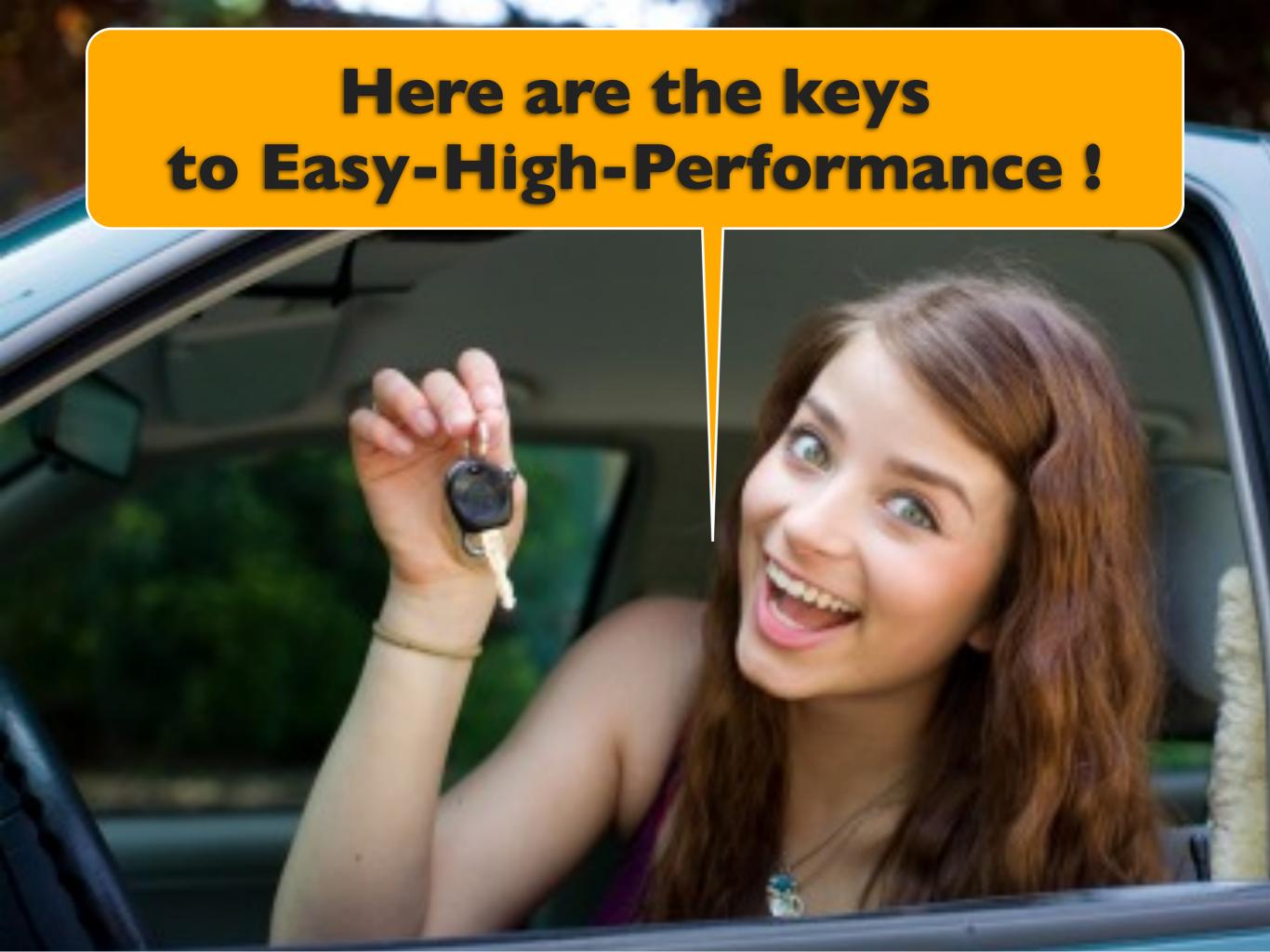
You just finished your code...

- 1. You run it on one image: it works!
- 2. You adjust your parameters: it's slow!
- 3. Your optimize your code: it's fast now!
- 4. You run it on another image: it's slow now!

A little story

You just finished your code...

- 1. You run it on one image: it works!
- 2. You adjust your parameters: it's slow!
- 3. Your optimize your code: it's fast now!
- 4. You run it on another image: it's slow now!
- 5. You repeat or you stop...

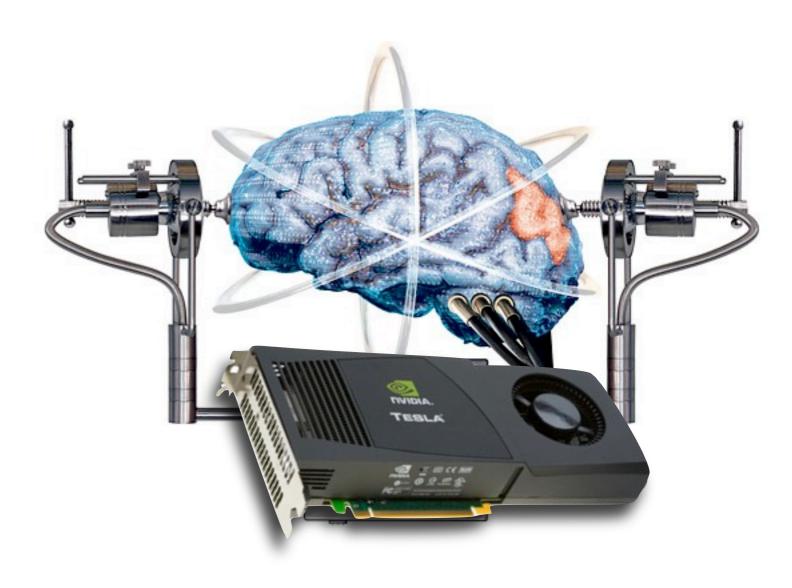


Leave the **grunt-programming** to the computer (i.e. auto-tuning like ATLAS or FFTW)

- Dynamically compile specialized versions of the same kernel for different conditions (~Just-in-Time Compilation (JIT))
- Smooth syntactic ugliness: unroll loops, index un-indexable registers
- Dynamic, empirical run-time tuning

"Instrumentalize" your solutions:

- Block size
- Work size
- Loop unrolling
- Pre-fetching
- Spilling
- etc.

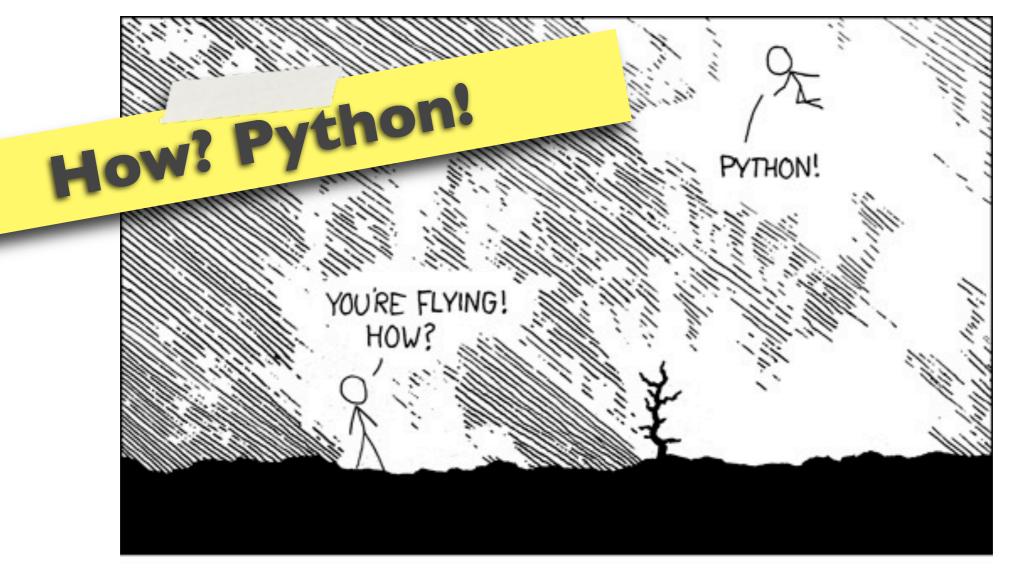


Let the computer find the **optimal code**:

- brute-force search with a global objective
- machine-learning approach with local objectives and hidden variables (advanced)
 - eg. PyCuda makes this easy:
 - Access properties of compiled code: func.{registers,lmem,smem}
 - Exact GPU timing via events
 - Can calculate hardware-dependent MP occupancy

- GPU Metaprogramming using PyCUDA: Methods & Applications
 - Andreas Kloeckner (Brown)
 - Friday 1pm @ Empire

Our mantra: always use the right tool!



I LEARNED IT LAST
NIGHT! EVERYTHING
IS SO SIMPLE!
HELLO WORLD IS JUST
Print "Hello, world!"

I DUNNO...
DYNAMIC TYPING?
WHITESPACE?

COME JOIN US!
PROGRAMMING
IS FUN AGAIN!
IT'S A WHOLE
NEW WORLD
UP HERE!

BUT HOW ARE
YOU FLYING?

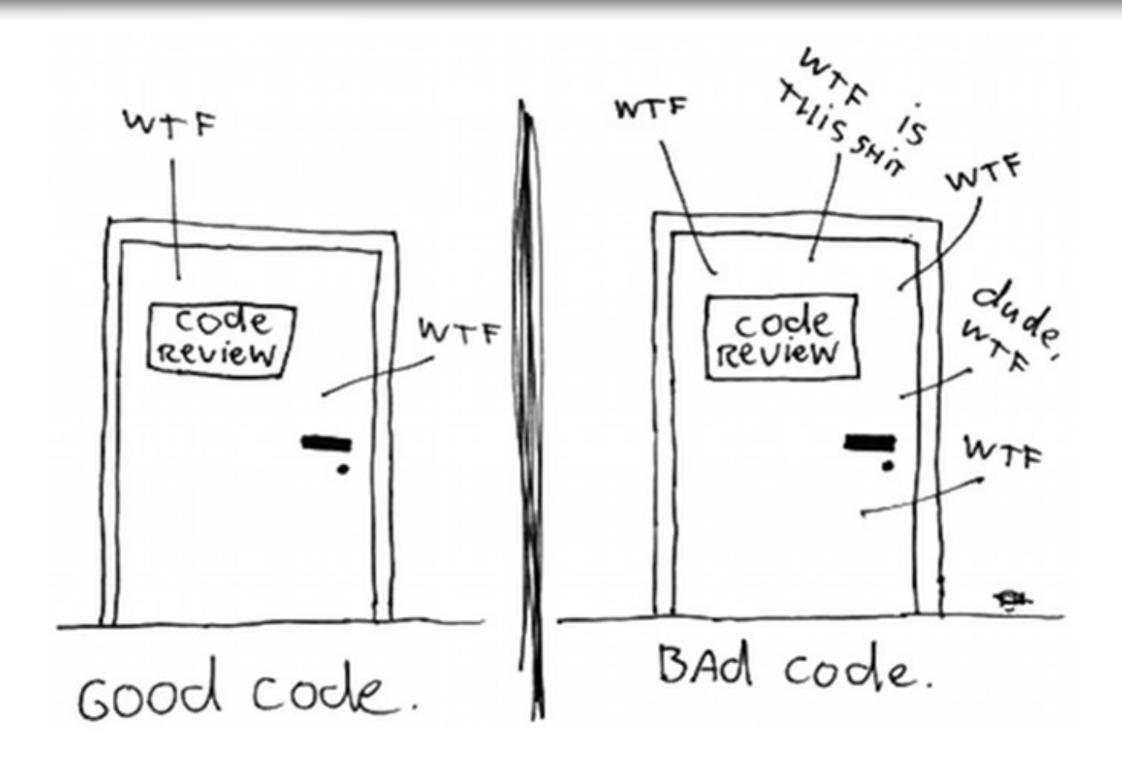
I JUST TYPED
import antigravity
THAT'S IT?

... I ALSO SAMPLED
EVERYTHING IN THE
MEDICINE CABINET
FOR COMPARISON.

BUT I THINK THIS
IS THE PYTHON.

Meta-programming requires careful engineering

Meta-programming requires careful engineering

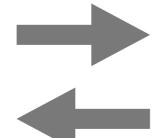


Need for speed Hardware Software Science

The Approach: Forward Engineering the Brain

REVERSE

Study Natural System



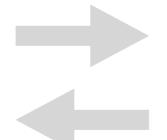
FORWARD

BuildArtificial System

The Approach: Forward Engineering the Brain

REVERSE

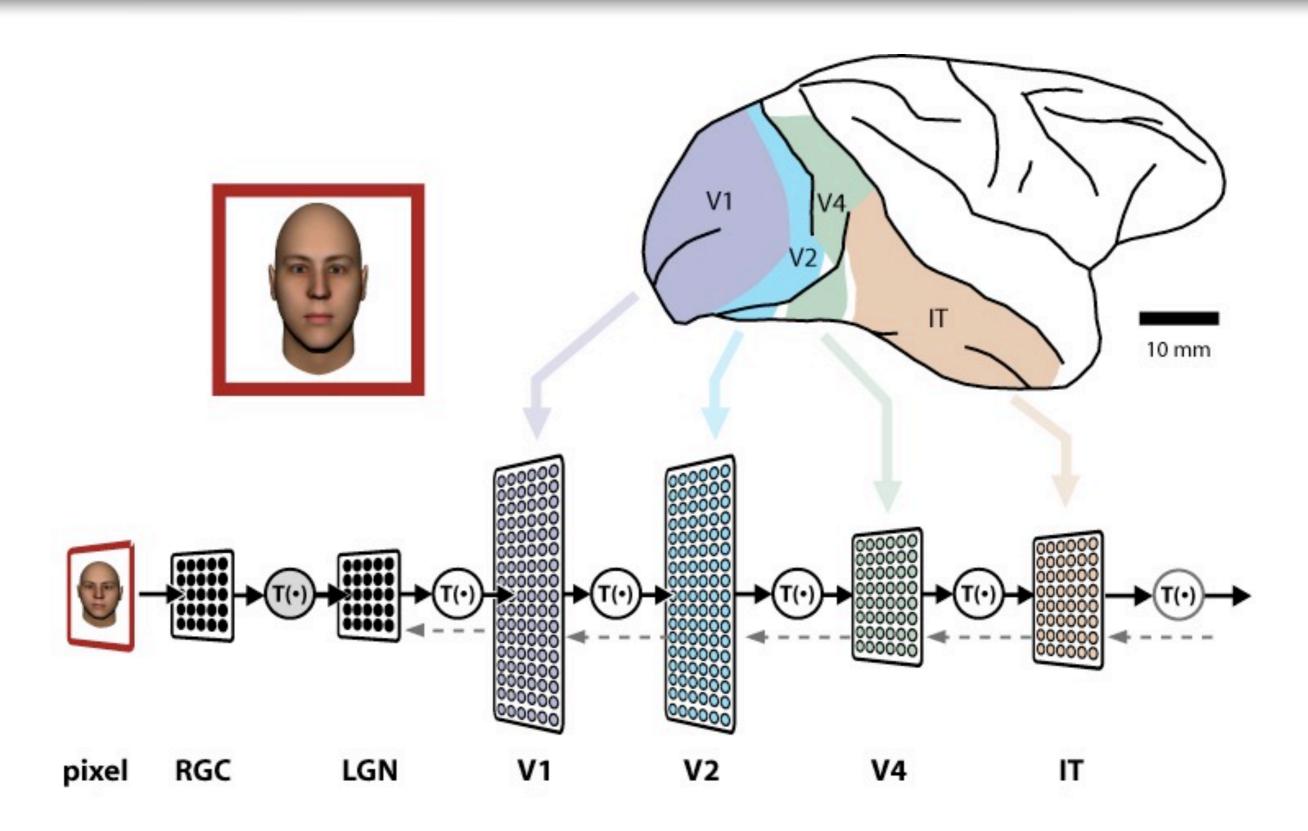
Study Natural System



FORWARD

BuildArtificial System

Visual System



Usual Formula:

1) One grad student

- 1) One grad student
- 2) One Model (size limited by runtime)

- 1) One grad student
- 2) One Model (size limited by runtime)
- 3) Performance numbers on a few standard test sets

- 1) One grad student
- 2) One Model (size limited by runtime)
- 3) Performance numbers on a few standard test sets
- 4) yay. we. rock.

- 1) One grad student
- 2) One Model (size limited by runtime)
- 3) Performance numbers on a few standard test sets
- 4) yay. we. rock.
- 5) One Ph.D.

- 1) One grad student
- 2) One Model (size limited by runtime)
- 3) Performance numbers on a few standard test sets
- 4) yay. we. rock.
- 5) One Ph.D.

1) One grad student

- 1) One grad student
- 2) One Hundreds of Thousands of BIG Models

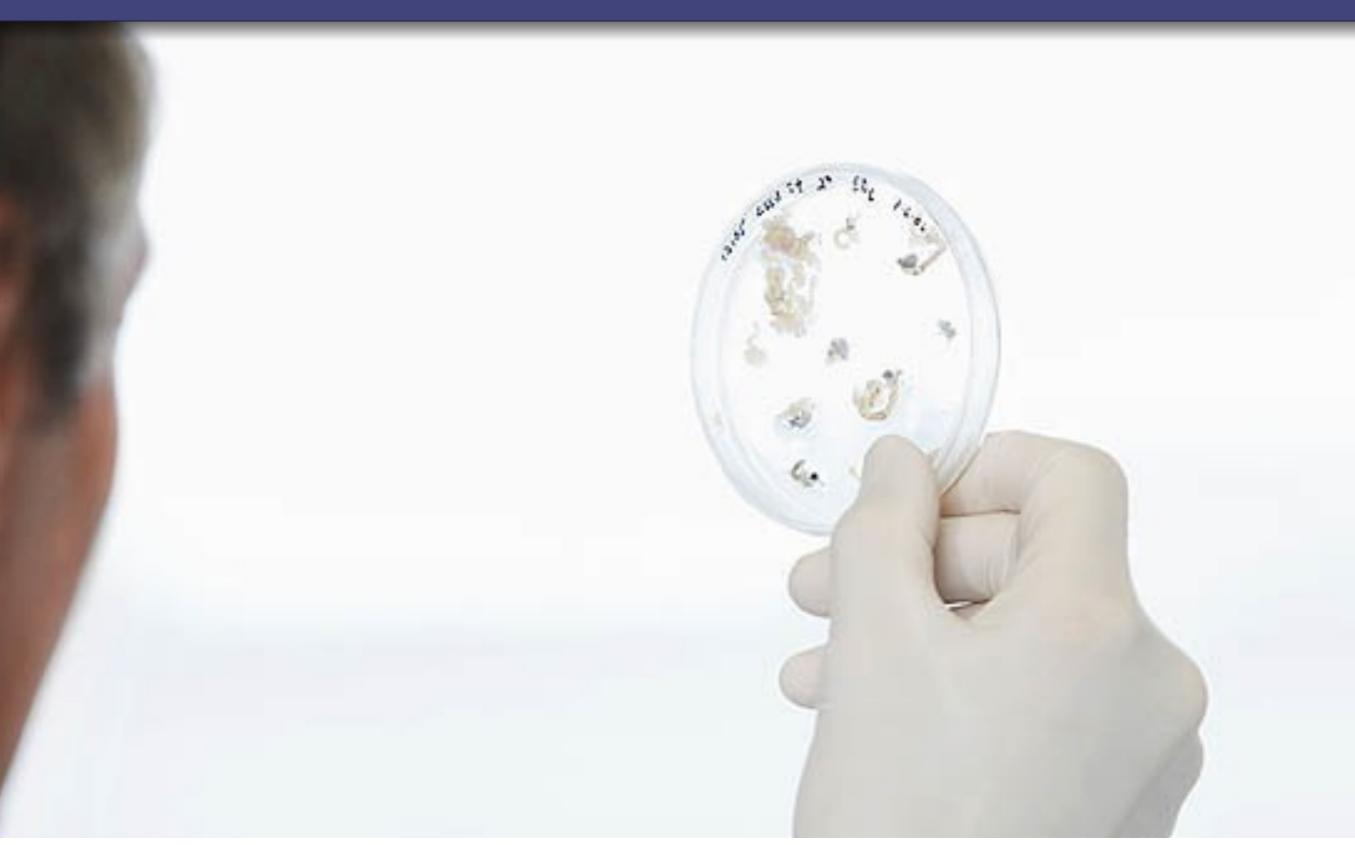
- 1) One grad student
- 2) One Hundreds of Thousands of BIG Models
- 3) Performance numbers on a few standard test sets

- 1) One grad student
- 2) One Hundreds of Thousands of BIG Models
- 3) Performance numbers on a few standard test sets

- 1) One grad student
- 2) One Hundreds of Thousands of BIG Models
- 3) Performance numbers on a few standard test sets
- 4) yay. we. rock.

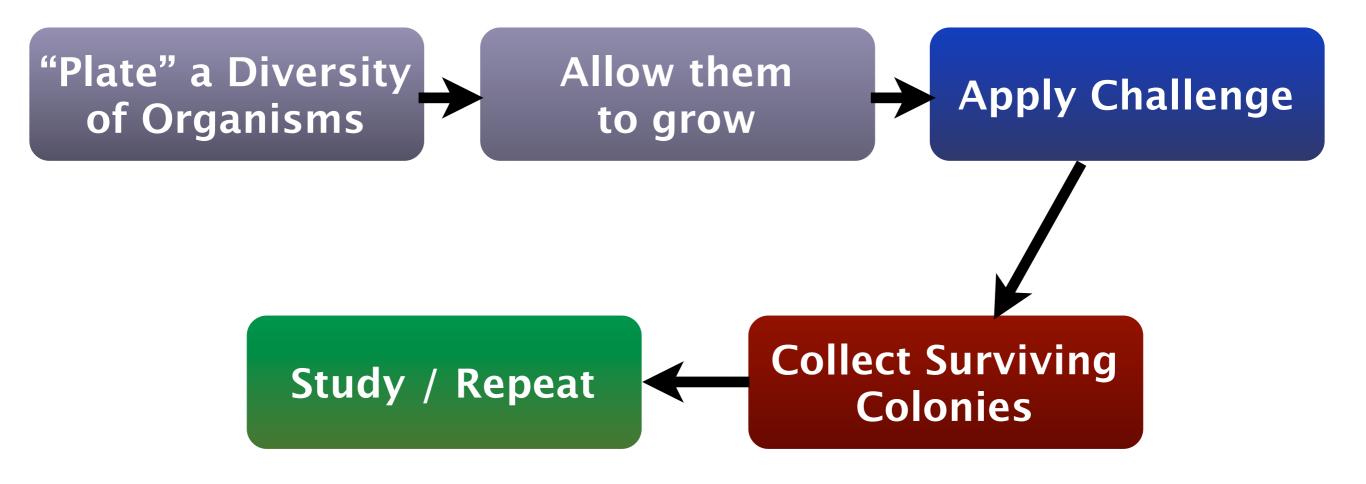
- 1) One grad student
- 2) One Hundreds of Thousands of BIG Models
- 3) Performance numbers on a few standard test sets
- 4) yay. we. rock.
- 5) Hundreds of Thousands One PhD?

High-Throughput Screening

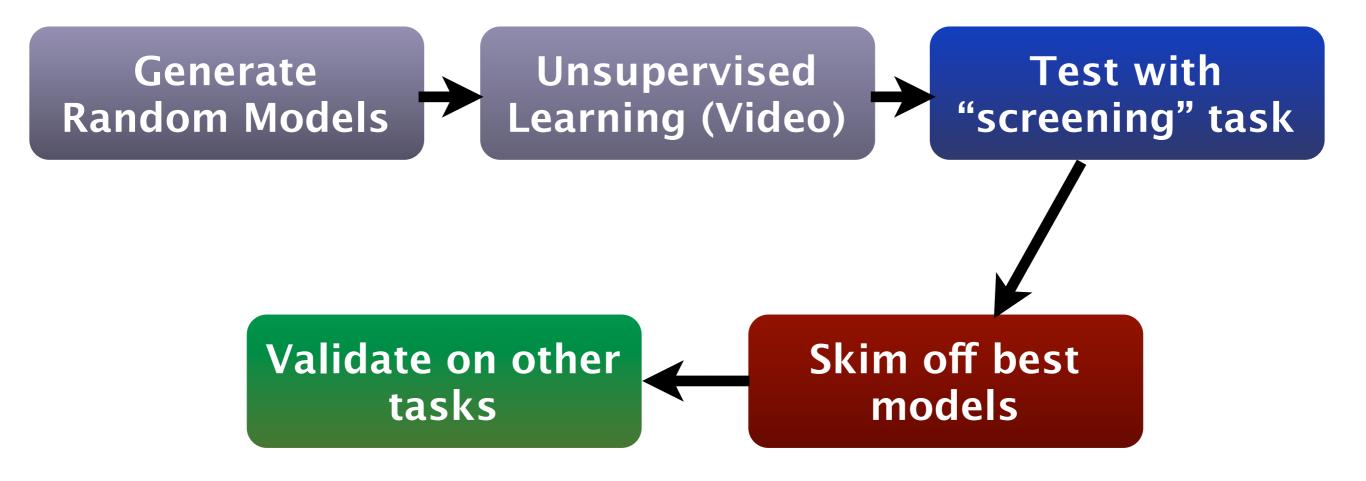


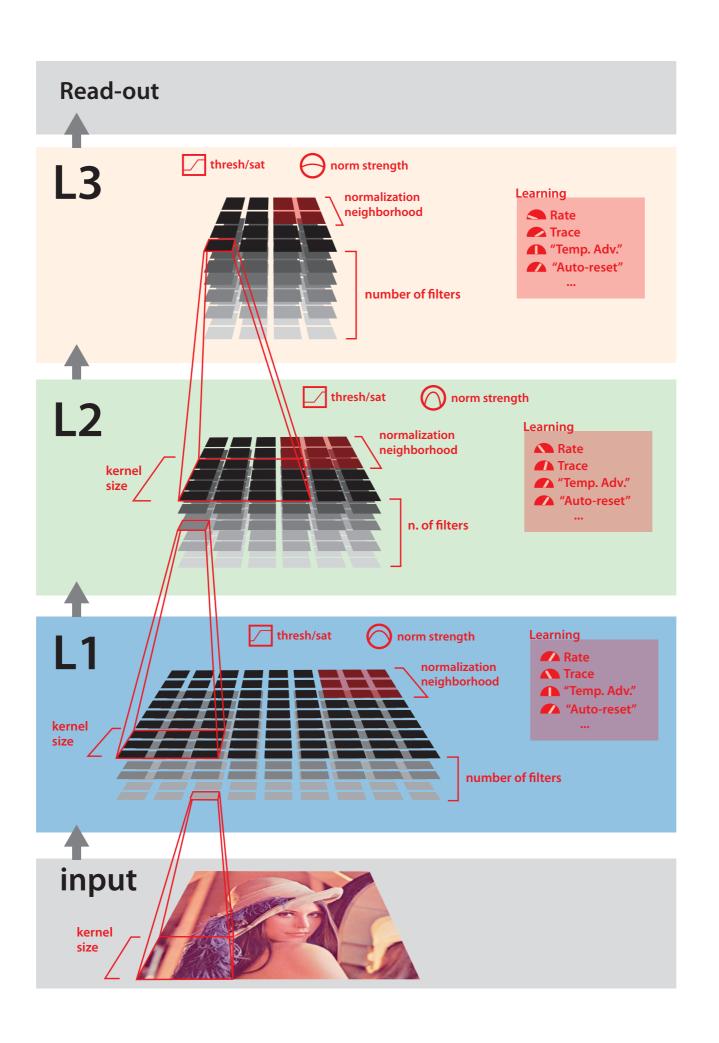
High-Throughput Screening

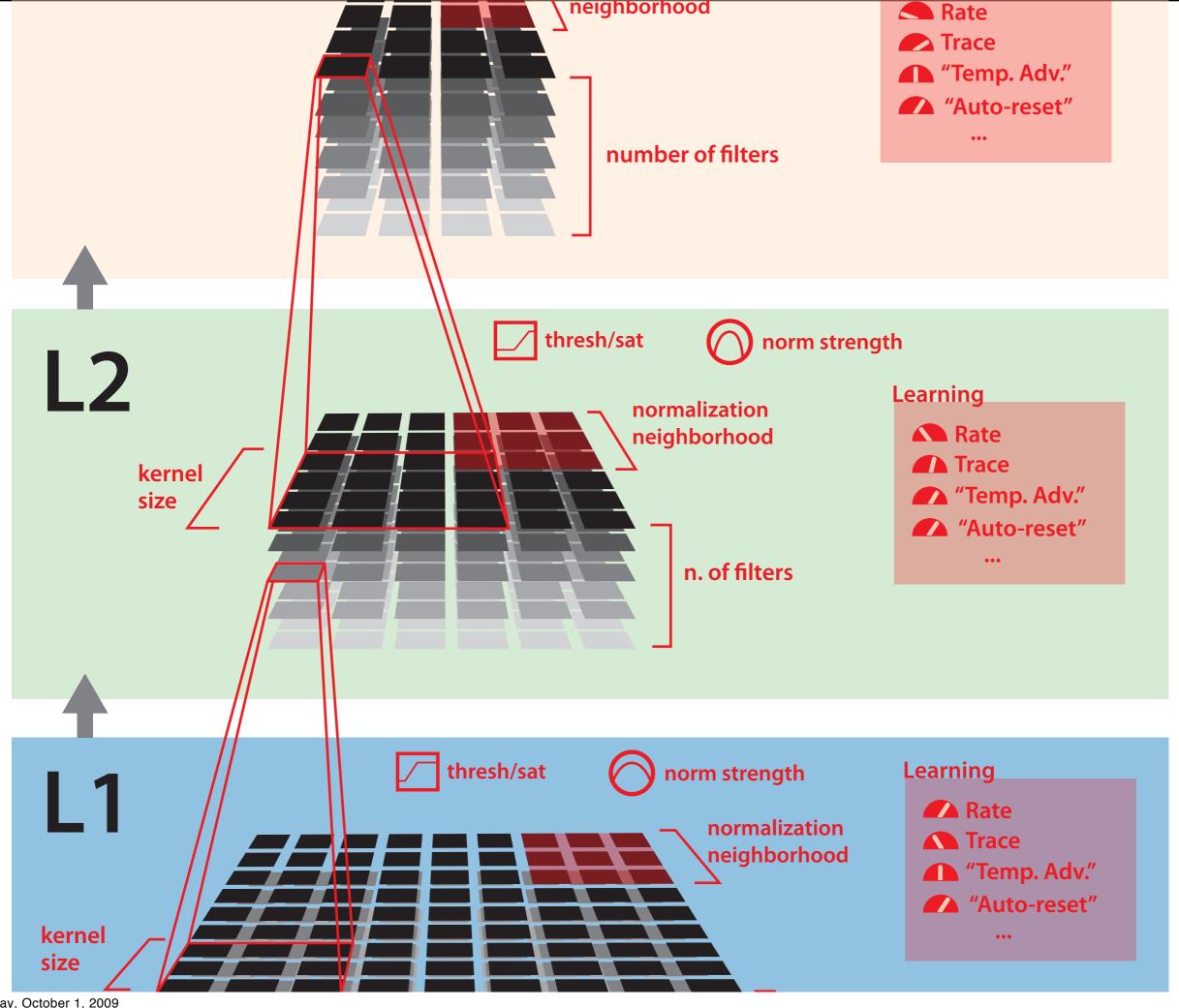
Pipeline: Biology



Pipeline: Biology-Inspired Vision







Normalize

 $N_i = Input_i / norm(Input_{neighborhd})$

Compute Filter Responses

 $R_i = F_i \otimes N$

 R_i < thresh: R_i = thresh

 $R_i > sat: R_i = sat$

Determine a "Winning Filter"

 $R_i' = (\sum T_k * H_k) * R_i$

winner: $max(R_i')$

Update Filter

 $F_{winning} = F_{winning} + learning rate * N$

Normalize

 $N_i = Input_i / norm(Input_{neighborhd})$

Compute Filter Responses

 $R_i = F_i \otimes N$

 R_i < thresh: R_i = thresh

 $R_i > sat: R_i = sat$

Determine a "Winning Filter"

 $R_i{}' = (\Sigma T_k * H_k) * R_i$

winner: max(R_i')

Update Filter

Fwinning = Fwinning + learning rate * N

Optimize "Coverage"

Normalize

 $N_i = Input_i / norm(Input_{neighborhd})$

Compute Filter Responses

 $R_i = F_i \otimes N$

 R_i < thresh: R_i = thresh

 $R_i > sat: R_i = sat$

Determine a "Winning Filter"

 $R_i{'} = (\Sigma T_k * H_k) * R_i$

winner: $max(R_i')$

Update Filter

F_{winning} = F_{winning} + learning rate * N

• Optimize "Coverage" (filters span the range of observed inputs)

Normalize

 $N_i = Input_i / norm(Input_{neighborhd})$

Compute Filter Responses

 $R_i = F_i \otimes N$

 R_i < thresh: R_i = thresh

 $R_i > sat: R_i = sat$

Determine a "Winning Filter"

 $R_i' = (\sum T_k * H_k) * R_i$ winner: max(R_i')

Update Filter

Fwinning = Fwinning + learning rate * N

- Optimize "Coverage" (filters span the range of observed inputs)
- Privilege movement of filters in certain directions using temporal information

Normalize

 $N_i = Input_i / norm(Input_{neighborhd})$

Compute Filter Responses

 $R_i = F_i \otimes N$

 R_i < thresh: R_i = thresh

 $R_i > sat: R_i = sat$

Determine a "Winning Filter"

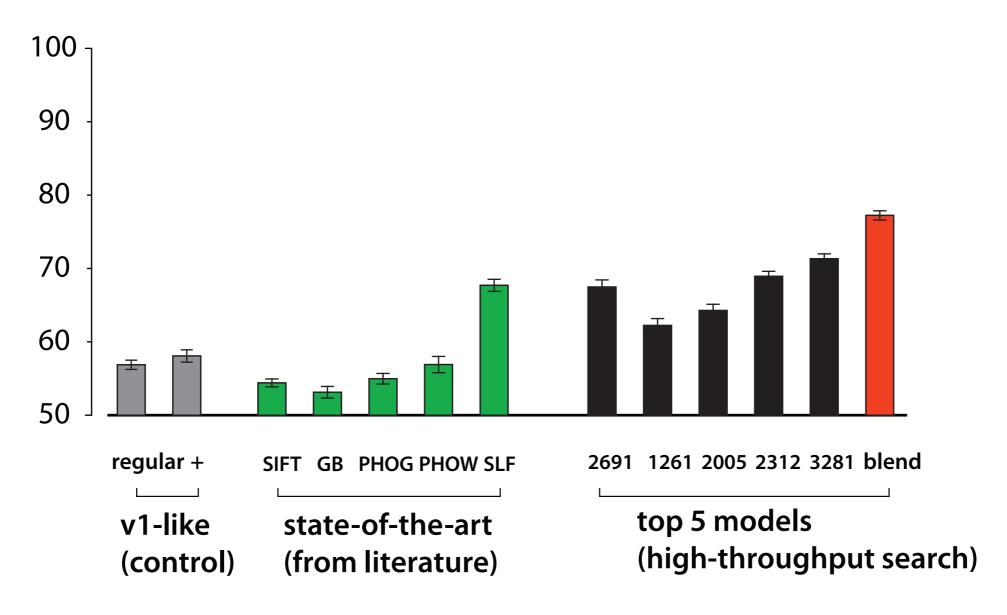
 $R_i' = (\sum T_k * H_k) * R_i$ winner: max(R_i')

Update Filter

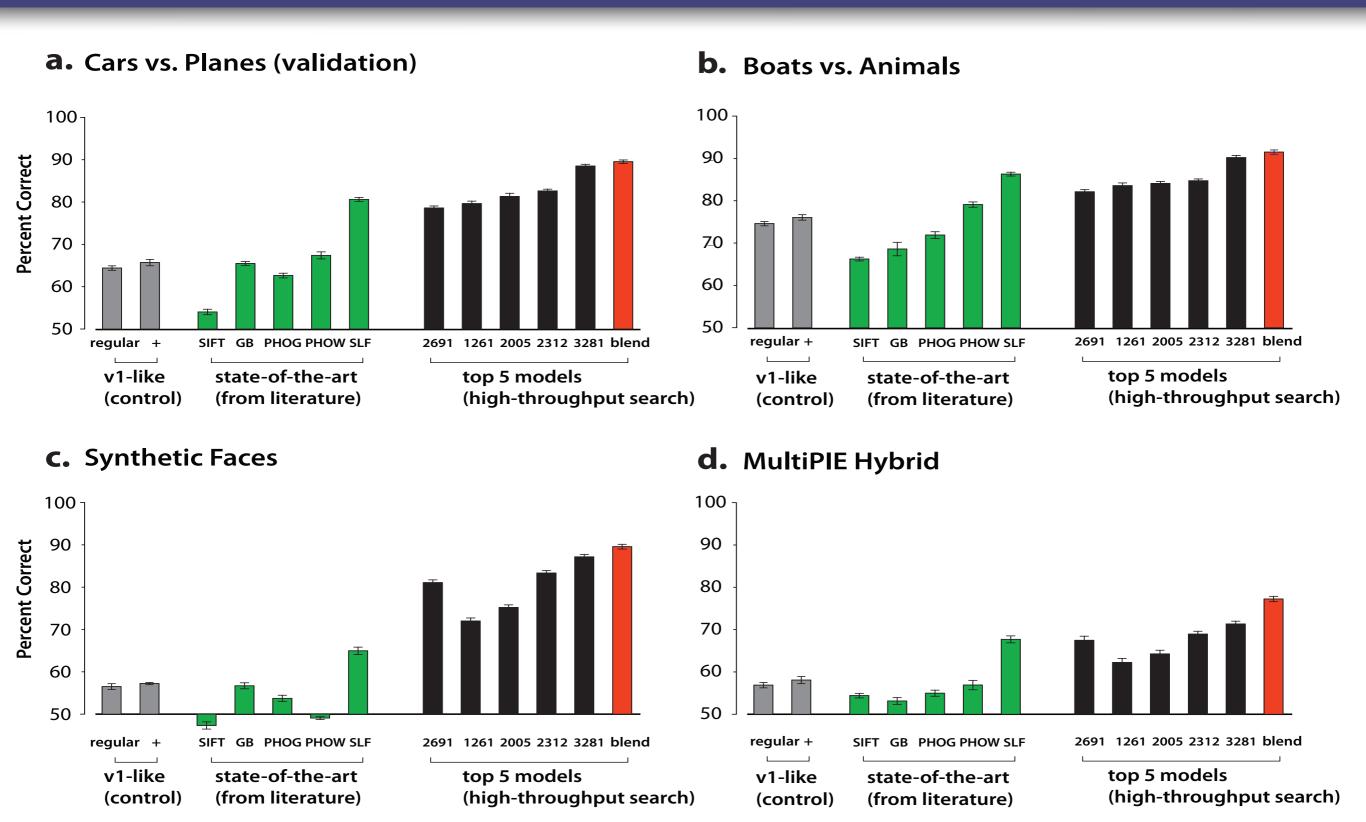
F_{winning} = F_{winning} + learning rate * N

- Optimize "Coverage" (filters span the range of observed inputs)
- Privilege movement of filters in certain directions using temporal information
- Expand dimensionality greatly and then scale back as layers progress

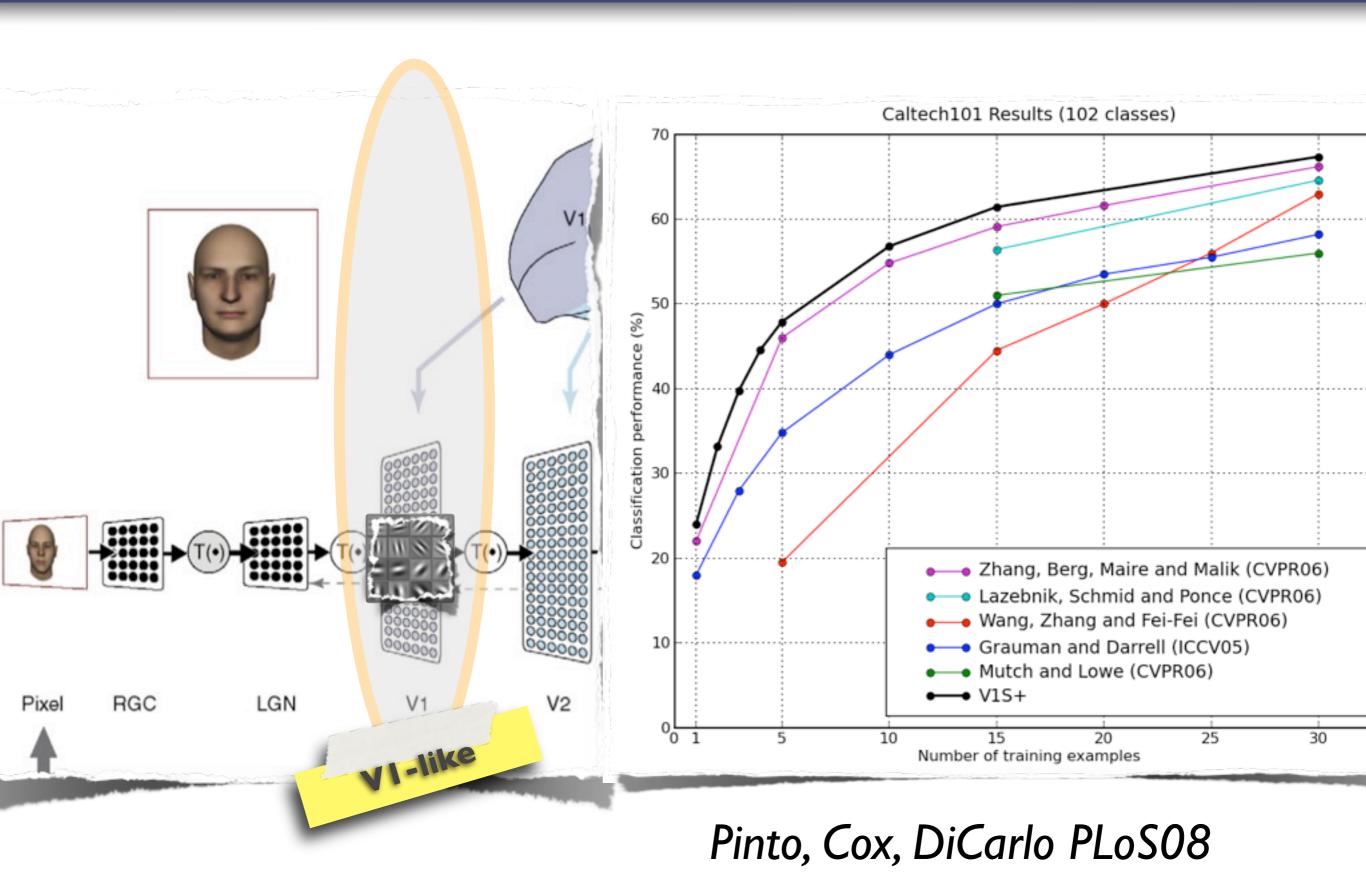
d. MultiPIE Hybrid

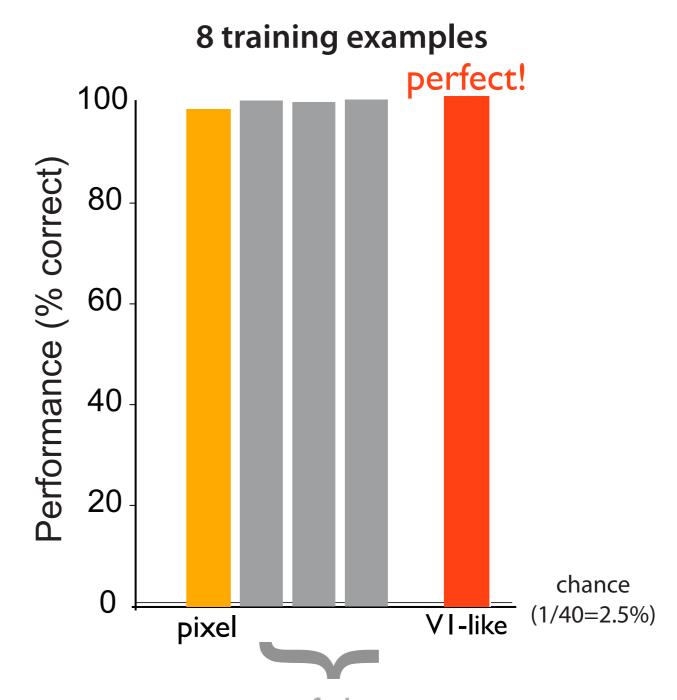


Pinto, DiCarlo, Cox (in review)



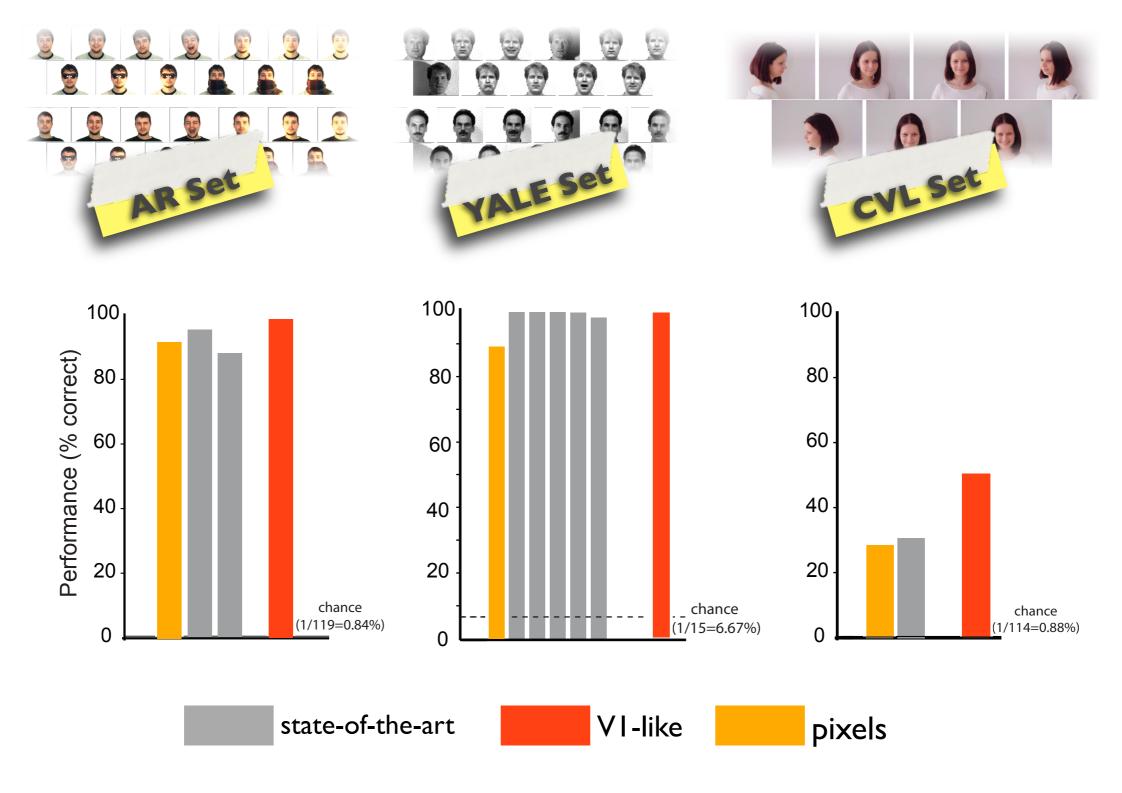
Pinto, DiCarlo, Cox (in review)





Pinto, DiCarlo, Cox ECCV08

state-of-the-art



Pinto, DiCarlo, Cox ECCV08

Reference	Methods	Performance
Huang08 [6]	Nowak [8]	73.93%±0.49
	MERL	$70.52\% \pm 0.60$
	Nowak+MERL	$76.18\% \pm 0.58$
Wolf08 [17]	descriptor-based	$70.62\% \pm 0.57$
	one-shot-learning*	$76.53\% \pm 0.54$
	hybrid*	$78.47\% \pm 0.51$
This paper	Pixels/MKL	68.22%±0.41
	V1-like/MKL	$79.35\% \pm 0.55$

Table 3. Average performance comparison with the current state-of-the-art on LFW. *note that the "one-shot-learning" and "hybrid" methods from [17] can't directly be compared to ours as they exploit the fact that individuals in the training and testing sets are mutually exclusive (i.e. using this property, you can build a powerful one-shot-learning classifier knowing that each test example is different from all the training examples, see [17] for more details. Our decision not to use such techniques effectively handicaps our results relative to reports that use them).

Pinto, DiCarlo, Cox CVPR09

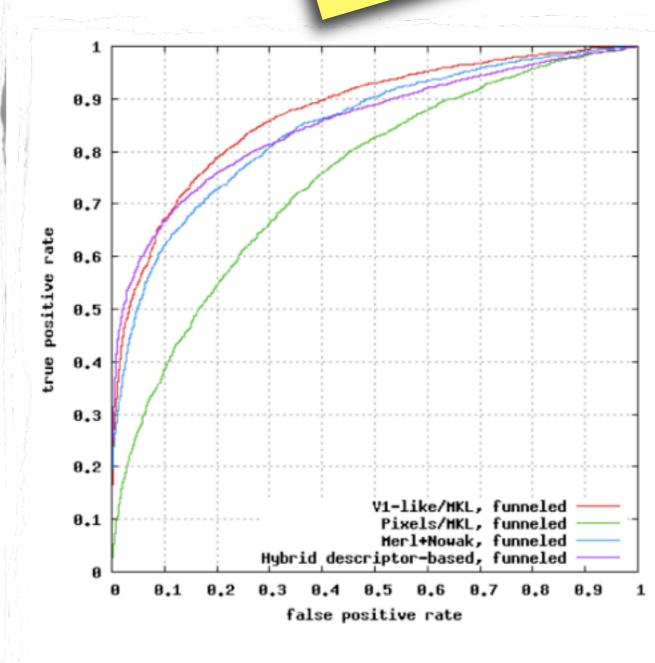


Figure 1. ROC curve comparison with the current state-of-the at on LFW. These curves were generated using the standard procedure described in [24].

Acknowledgements Acknowledgements

DiCarlo Lab @ MIT

The Visual Neuroscience Group

@ The Rowland Institute at Harvard

NIDIA

Thursday, October 1, 2009

Back Pocket Slides

slide by David Cox