
The Future of GPU Computing

Bill Dally

Chief Scientist & Sr. VP of Research, NVIDIA

Bell Professor of Engineering, Stanford University

November 18, 2009



The Future of Computing

Bill Dally

Chief Scientist & Sr. VP of Research, NVIDIA

Bell Professor of Engineering, Stanford University

November 18, 2009



Outline

Single-thread performance is no longer scaling

Performance = Parallelism

Efficiency = Locality

Applications have lots of both

Machines need lots of cores (parallelism) and an 

exposed storage hierarchy (locality)

A programming system must abstract this

The future is even more parallel



Single-threaded processor 

performance is no longer scaling



Moore’s Law

In 1965 Gordon Moore predicted 

the number of transistors on an 

integrated circuit would double 

every year.

Later revised to 18 months

Also predicted L3 power scaling 

for constant function

No prediction of processor 

performance

Moore, Electronics 38(8) April 19, 1965



More
Transistors

More
Value

More
Performance

Architecture Applications



The End of ILP Scaling 

1e+0

1e+1

1e+2

1e+3

1e+4

1e+5

1e+6

1e+7

1980 1990 2000 2010 2020

Perf (ps/Inst)

Dally et al., The Last Classical Computer, ISAT Study, 2001



Explicit Parallelism is Now Attractive

1e-4

1e-3

1e-2

1e-1

1e+0

1e+1

1e+2

1e+3

1e+4

1e+5

1e+6

1e+7

1980 1990 2000 2010 2020

Perf (ps/Inst)

Linear (ps/Inst)

30:1

1,000:1

30,000:1

Dally et al., The Last Classical Computer, ISAT Study, 2001



Single-Thread Processor 

Performance vs Calendar Year

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

P
e

rf
o

rm
a

n
c
e

 (
v
s
. 

V
A

X
-

25%/year

52%/year

20%/year

Source: Hennessy & Patterson, CAAQA, 4th Edition



Single-threaded processor 

performance is no longer scaling

Performance = Parallelism



Chips are power limited

and most power is spent moving data



CMOS Chip is our Canvas

20mm



4,000 64b FPUs fit on a chip

20mm
64b FPU

0.1mm2

50pJ/op

1.5GHz



Moving a word across die = 10FMAs

Moving a word off chip = 20FMAs

20mm
64b FPU

0.1mm2

50pJ/op

1.5GHz

64b 1mm 

Channel

25pJ/word
10

m
m

 2
50

pJ
, 

4c
yc

le
s

64b Off-Chip 

Channel

1nJ/word

64b Floating Point



Chips are power limited

Most power is spent moving data

Efficiency = Locality



Performance = Parallelism

Efficiency = Locality



Scientific Applications

Large data sets

Lots of parallelism

Increasingly irregular (AMR)

Irregular and dynamic data structures

Requires efficient gather/scatter

Increasingly complex models

Lots of locality

Global solution sometimes bandwidth 

limited

Less locality in these phases



Performance = Parallelism

Efficiency = Locality

Fortunately, most applications have lots of both.

Amdahl’s law doesn’t apply to most future applications.



Exploiting parallelism and locality requires:

Many efficient processors

(To exploit parallelism)

An exposed storage hierarchy

(To exploit locality)

A programming system that abstracts this



Tree-structured machines

P P P P

L1 L1 L1 L1

Net

L2

Net

L3



Optimize use of scarce bandwidth

Provide rich, exposed storage hierarchy

Explicitly manage data movement on this hierarchy

Reduces demand, increases utilization

Compute

Flux

States

Compute

Numerical

Flux

Element

Faces

Gathered

Elements

Numerical

Flux

Gather

Cell

Compute

Cell

Interior

Advance

Cell

Elements

(Current)

Elements

(New)

Read-Only Table Lookup Data

(Master Element)

Face

Geometry

Cell

Orientations

Cell

Geometry



Fermi is a throughput computer

512 efficient cores

Rich storage 

hierarchy
Shared memory

L1

L2

GDDR5 DRAM

D
R

A
M

 I
/F

H
O

S
T

 I
/F

G
ig

a
 T

h
re

a
d

D
R

A
M

 I
/F

D
R

A
M

 I/F
D

R
A

M
 I/F

D
R

A
M

 I/F
D

R
A

M
 I/F

L2



Fermi



Avoid Denial Architecture

Single thread processors are in denial about parallelism 

and locality

They provide two illusions:

Serial execution - Denies parallelism

Tries to exploit parallelism with ILP - inefficient & limited 

scalability

Flat memory - Denies locality

Tries to provide illusion with caches – very inefficient 

when working set doesn’t fit in the cache

These illusions inhibit performance and efficiency



CUDA Abstracts the GPU Architecture

Programmer sees many cores and 

exposed storage hierarchy, but is isolated 

from details.



CUDA as a Stream Language

Launch a cooperative thread array

foo<<<nblocks, nthreads>>>(x, y, z) ;

Explicit control of the memory hierarchy

__shared__ float a[SIZE] ;

Also enables communication between threads of a 

CTA

Allows access to arbitrary data within a kernel



Examples

146X

Interactive 

visualization of 

volumetric white 

matter connectivity

36X

Ionic placement for 

molecular dynamics 

simulation on GPU

19X

Transcoding HD video 

stream to H.264

17X

Fluid mechanics in 

Matlab using .mex file 

CUDA function

100X

Astrophysics N-body 

simulation

149X

Financial simulation 

of LIBOR model with 

swaptions

47X

GLAME@lab: an M-

script API for GPU 

linear algebra

20X

Ultrasound medical 

imaging for cancer 

diagnostics

24X

Highly optimized 

object oriented 

molecular dynamics

30X

Cmatch exact string 

matching to find 

similar proteins and 

gene sequences



Current CUDA Ecosystem

Applications Libraries

FFT
BLAS

LAPACK
Image 

processing
Video processing

Signal 
processing

Vision

Consultants OEMs

Languages

C, C++
DirectX
Fortran
OpenCL
Python

Compilers

PGI Fortran
CAPs HMPP

MCUDA
MPI

NOAA Fortran2C
OpenMP

UIUC
MIT

Harvard
Berkeley

Cambridge
Oxford

…

IIT Delhi
Tsinghua

Dortmundt
ETH Zurich

Moscow
NTU
…

Over 200 Universities Teaching 
CUDA

ANEO

GPU Tech

Oil & 

Gas
Finance

Medical Biophysics

Numerics

Imaging

CFD

DSP EDA

http://www.supermicro.com/
http://en.wikipedia.org/wiki/File:Logo_groupe_bull.jpg
http://images.google.com/imgres?imgurl=http://fishtrain.com/wp-content/uploads/2007/09/cray_logo.gif&imgrefurl=http://fishtrain.com/2007/09/03/nvidias-playbook/&usg=__mBEPjqB6tUo0mps50ld866NdmmI=&h=70&w=160&sz=3&hl=en&start=8&sig2=erIWlru80_C67bxBapde6g&tbnid=ooG9_suq3ywK-M:&tbnh=43&tbnw=98&prev=/images?q=cray+logo&gbv=2&hl=en&ei=aHYpSvyWEo-ctgPd-dXxCg
http://www.google.com/imgres?imgurl=http://blog.taragana.com/wp-content/uploads/2009/05/nec-logo.jpg&imgrefurl=http://blog.taragana.com/index.php/t/east-asia/&h=354&w=354&sz=8&tbnid=YJa5kHMJJ5aMmM:&tbnh=121&tbnw=121&prev=/images?q=NEC+logo&hl=en&usg=__vqs8CIGTn2HFsKXlXcsnKjhGaww=&ei=Q98zSsTUG4vWsgPysrDODg&sa=X&oi=image_result&resnum=2&ct=image


Ease of Programming

Source: Nicolas Pinto, MIT





The future is even more parallel



CPU scaling ends, GPU continues

Source: Hennessy & Patterson, CAAQA, 4th Edition
2017



DARPA Study Indentifies four 

challenges for ExaScale Computing

Report published September 28, 2008:

Four Major Challenges

 Energy and Power challenge

 Memory and Storage challenge

 Concurrency and Locality challenge

 Resiliency challenge

Number one issue is power

 Extrapolations of current architectures and 

technology indicate over 100MW for an Exaflop!

 Power also constrains what we can put on a chip

Available at 

www.darpa.mil/ipto/personnel/docs/ExaScale_Study_Initial.pdf



Energy and Power Challenge

Heterogeneous architecture

A few latency-optimized processors

Many (100s-1,000s) throughput-optimized processors

Which are optimized for ops/J

Efficient processor architecture

Simple control – in-order multi-threaded

SIMT execution to amortize overhead

Agile memory system to capture locality

Keeps data and instruction access local

Optimized circuit design

Minimize energy/op

Minimize cost of data movement

* This section is a projection based on Moore’s law and does not represent a committed roadmap



An NVIDIA ExaScale Machine in 2017

2017 GPU Node – 300W (GPU + memory + supply)

2,400 throughput cores (7,200 FPUs), 16 CPUs – single chip

40TFLOPS (SP) 13TFLOPS (DP)

Deep, explicit on-chip storage hierarchy

Fast communication and synchronization

Node Memory

128GB DRAM, 2TB/s bandwidth

512GB Phase-change/Flash for checkpoint and scratch

Cabinet – ~100kW

384 Nodes – 15.7PFLOPS (SP), 50TB DRAM

Dragonfly network – 1TB/s per node bandwidth

System – ~10MW

128 Cabinets – 2 EFLOPS (SP), 6.4 PB DRAM

Distributed EB disk array for file system

Dragonfly network with active optical links

RAS
ECC on all memory and links

Option to pair cores for self-checking (or use application-level checking)

Fast local checkpoint
* This section is a projection based on Moore’s law and does not represent a committed roadmap



Conclusion



Performance = Parallelism

Efficiency = Locality

Applications have lots of both.

GPUs have lots of cores (parallelism) and an exposed storage 

hierarchy (locality)


