
Contact information: Paul Ivanov, Redwood Center for Theoretical Neuroscience, University of California, Berkeley – Email: pivanov@berkeley.edu Web: http://redwood.berkeley.edu/

Acknowledgments
Thanks to Bruno Olshausen for providing guidance and encour-
agement. This work was supported by NEI Grant T32 EY007043
and NSF Grant IIS-0705939.

References

Damon M Chandler and David J Field. Estimates of the informa-
tion content and dimensionality of natural scenes from proxim-
ity distributions. J Opt Soc Am A Opt Image Sci Vis, 24(4):
922941, April 2007.

Andreas Kloeckner. PyCUDA, 2009. URL
http://mathema.tician.de/software/pycuda.

L.F. Kozachenko and N.N. Leonenko. On statistical estimation of
entropy of a random vector. Probl. Inform. Transm., 23:9–16,
1987.

J H van Hateren and A van der Schaaf. Independent component
filters of natural images compared with simple cells in primary
visual cortex. Proceedings of the Royal Society B: Biological
Sciences, 265(1394):359366, March 1998.

Contributions
• Implemented brute force NN search using PyCUDA.

– 53x faster than C

•Estimated entropy and dimensionality of 8 × 8 patches
using the entire van Hateren database.

•Achieved 2.95 bits per pixel estimate for natural scenes.

– slightly higher than extrapolated estimate in Chandler and Field [2007].

thanks, PyCUDA!
When I first started with CUDA, I was slowed down by the overhead
of keeping track of different versions of kernel code and Makefiles and
found it difficult to traverse the parameter space of my kernels.

PyCUDA [Kloeckner, 2009] let me concentrate on writing compute ker-
nels, instead of keeping track of makefiles, with code generation and
compilation conveniently abstracted away.

Workflow for porting to the GPU:

• write a trusted implementation (python)

• write a test suite that probes the input space and compares results
of trusted and GPU implementation:random input, different dimen-
sions, corner cases (nose)

• write a compute kernel (GPU implementation) that passes test suite

• optimize parameters and feel secure when test suite passes (pycuda)

• if performance satisfactory - done.

• else - think of a different organization for memory usage and write a
new kernel

“Evolution” of my kernels (on 8800GTX):

• shared memory (load and reduction) - 8x total speedup

• more efficient reduction - 15x total speedup

• texture instead of load from global memory - 25x total speedup

• two textures interleaved - 30x total speedup (53x on GTX 295)

GPU speedup
• Calculation for 218 neighbors takes ≈ 3 hours on CPU

• We achieve the same in 6 minutes on a 8800GTX

– (4 minutes on GTX 295 with no code changes)

• One 225 neighbor run would take 16 days on CPU

• Same was done in 12 hours 48 minutes on 8800GTX

– (7 hours 40 minutes on GTX 295 with no code changes)

C implementation ran on 2.4 GHz Intel Core2 Quad CPU (Q6600) (using one core).

All comparisons use 4096 target patches. Each patch is 64 dimensional (8 × 8).

N pyCUDA pyCUDA C speedup speedup
(8800GTX) (GTX 295) (gcc -O) (8800 GTX) (GTX 295)

4096 0.144 s 0.089 s 3.76 s 25.95 42.25
8192 0.270 s 0.159 s 7.52 s 27.80 47.30

16384 0.521 s 0.299 s 15.03 s 28.83 50.27
32768 1.029 s 0.583 s 30.04 s 29.17 51.53
65536 2.047 s 1.146 s 60.16 s 29.39 52.50

131072 4.025 s 2.276 s 120.83 s 30.02 53.09
262144 8.036 s 4.508 s 242.13 s 30.13 53.79
524288 16.064 s 9.003 s 484.50 s 30.16 53.81

1048576 32.093 s 17.989 s 969.00 s 30.19 53.87

Table 1: Speed Comparison Chart.

Estimated Entropy

20 22 24 26 28 210 212 214 216 218 220 222 224

Number of Neighbors

0

2

4

6

8

E
s
ti

m
a
te

d
 E

n
tr

o
p
y
 (

b
it

s
/p

ix
e
l)

� Ĥ(x) =3.64353

 Estimated Entropy - 8x8 Natural Scenes

Ĥ(x)

20 22 24 26 28 210 212 214 216 218 220 222 224 226 228

Number of Neighbors

0

10

20

30

40

50

60

70

D
im

e
n
s
io

n
a
li
ty

 k
,

in
fe

rr
e
d
 f

ro
m

 P
D

 Relative Dimensionality - 8x8 Natural Scenes

Gaussian

NS mean

(a) (b)

Figure 5: Estimated entropy for 8 × 8 image patches extracted from natural scenes.

⋆ Note: 218 is the largest number of neighbors used in previous work [Chandler
and Field, 2007]. We compute to 225 neighbors, as there are fewer than 226 non-
overlapping 8 × 8 patches in the van Hateren database.

The RD (Figure 5a) has not converged to the intrinsic dimension (k = 64 for 8 × 8
patches, we do not have enough data to confidently estimate the entropy. As in
Chandler and Field [2007], we fit a curve to our RD data (Figure 6b).and using this
curve extrapolate our entropy estimate to 2300 samples (Figure 6a).

20 220 240 260 280 2100 2120 2140 2160 2180 2200 2220 2240 2260 2280 2300

Number of Neighbors

0

2

4

6

8

E
s
ti

m
a
te

d
 E

n
tr

o
p
y
 (

b
it

s
/p

ix
e
l) � Ĥ(x) =3.64353

Ĥextrap(x) =2.95458

 Estimated Entropy - Extrapolated

Ĥ(x)

Ĥ(x) extrapolated

20 220 240 260 280 2100 2120 2140 2160 2180 2200 2220 2240 2260 2280 2300

Number of Neighbors

0

10

20

30

40

50

60

70

D
im

e
n
s
io

n
a
li
ty

 k
,

in
fe

rr
e
d
 f

ro
m

 P
D

 Relative Dimensionality - Extrapolated

Gaussian

NS mean

NS Fit

(a) (b)

Figure 6: Extrapolated entropy estimate for 8× 8 image patches from natural scenes.
Verification

20 22 24 26 28 210 212 214 216 218 220

Number of Neighbors

0

2

4

6

8

A
v
e
ra

g
e
 L

o
g
 N

e
a
re

st
-N

e
ig

h
b
o
r

D
is

ta
n
ce

 Proximity Distributions - Gaussian white noise� =9.43� =2.77

Figure 3: Proximity Distributions .

Method verified on data with known entropy.

For Gaussian white noise, H(x) = 1
2(log2 πeσ2) bits.

From the Proximity Distribution curves (Figure 3),
we can estimate the entropy (Figure 4a) and dimension-
ality (Figure 4b) of our data set.

When the relative dimensionality curve converges on
the intrinsic dimensionality of the data (k = 16 for 4×4
patches), we have sampled enough data to accurately
estimate the entropy.

20 22 24 26 28 210 212 214 216 218 220

Number of Neighbors

0

2

4

6

8

E
s
ti

m
a
te

d
 E

n
tr

o
p
y
 (

b
it

s
/p

ix
e
l)

Ĥ(x) =5.28929
H(x) =5.28435

Ĥ(x) =3.52919
H(x) =3.51698

 Estimated Entropy - Gaussian white noise� =9.43� =2.77

20 22 24 26 28 210 212 214 216 218 220

Number of Neighbors

0

2

4

6

8

10

12

14

D
im

e
n
s
io

n
a
li
ty

 k
,

in
fe

rr
e
d
 f

ro
m

 P
D

 Relative Dimensionality - Gaussian white noise

� =9.43� =2.77

(a) (b)

Figure 4: Estimated entropy (a) converges to the analytic result as the relative dimensionality
(b) approaches the intrinsic dimension (gray line).

Method

Figure 2: Diagram of the method (Figure 1 in Chandler and Field [2007]).

It has been shown that the average log NN distance (E[log2 D∗]) can be used
to estimate E[− log2 p(x)] without estimating p(x) [Kozachenko and Leonenko,
1987]. This binless approach has been proven to be consistent and asymptotically
unbiased.

Proximity Distribution (PD) : E[log2 D∗] as a function of the size of an
exponentially growing set of neighbors. [Chandler and Field, 2007]

Relative Dimensionality (RD): negative reciprocal of the slope (first deriva-
tive) of the PD [Chandler and Field, 2007]. The dimensionality data appear to lie
in for a given number of samples. Converges to intrinsic (“fractal”) dimension.Review

Entropy is defined as : H(X) = −

∑

x∈X

p(x) log
2
p(x)

Entropy provides:

– a measure of information

– the uncertainty of a random variable

– the number of bits needed to describe a random variable

– lower bound on the number of bits needed for compression

Another useful interpretation: H(X) = E [− log2 p(x)]

For data with a small number of discrete states, entropy can be
estimated by binning the data samples and using this empirical
distribution as the joint probability p(x). However, the binning
approach quickly becomes computationally intractable for high
dimensional data. Consider the case of image patches of pixels
with 256 gray levels. Estimating p(x) requires :

(256)1 = 256 bins for 1 × 1 pixel patches

(256)4 = 4.295 × 109 bins for 2 × 2 pixel patches

(256)9 = 4.722 × 1021 bins for 3 × 3 pixel patches

(256)16 = 3.403 × 1038 bins for 4 × 4 pixel patches

(256)25 = 1.607 × 1060 bins for 5 × 5 pixel patches

(256)36 = 4.973 × 1086 bins for 6 × 6 pixel patches

Even for the modest case of 2 × 2 patches, the number of bins
alone is onerous, yet the data necessary to obtain a reasonable
estimate of the joint probability is even larger. The number of
bins required for 6 × 6 image patches exceeds the number of
atoms in the observable universe (1081).

Motivation

All Possible Scenes

1

fα power spectrum

Natural Scenes

Figure 1: How large is the space
of natural scenes?

Characterizing the statistics of
natural scenes is an important
area of vision research. For ex-
ample, the entropy of images pro-
vides a measure of the informa-
tion content available to the vi-
sual system and as such quanti-
fies the demands placed on neu-
ral information processing mecha-
nisms. From an applications per-
spective, entropy is the theoret-
ical limit of compression – the
lower bound on any compression
scheme. Recently, Chandler and

Field [2007] used an entropy estimation algorithm to binlessly estimate
the entropy of small patches of natural images from the distribution of
nearest-neighbor (NN) distances.

The approach described by Chandler and Field [2007] is limited by re-
quiring NN calculations of an exponentially growing set. We overcome
this limitation by porting the parallel brute force NN search to the GPU.
This enables us to perform more extensive entropy and fractal dimen-
sionality analyses on the van Hateren image database [van Hateren and
van der Schaaf, 1998].

Summary
The poster provides an overview of nearest neighbor search for
entropy estimation of natural scenes. We report a 53 fold speed
increase between C and CUDA implementations of high dimen-
sional nearest neighbor search, and discuss the advantages of
using CUDA from Python with PyCUDA.

Paul Ivanov

Vision Science Graduate Program

Redwood Center for Theoretical Neuroscience
University of California, Berkeley

Estimating the Entropy of Natural Scenes from Nearest Neighbors using CUDA

