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Resultants is a fundamental algebraic tool in the elimination theory. They have numerous 

applications, for instance in topological study of  algebraic curves or computer graphics.

Resultant of  two bivariate polynomials f and g is the determinant of  Sylvester matrix S:

Computing resultant involves a substantial amount of  symbolic operations 

which rapidly becomes a bottleneck for many exact geometric algorithms

Following the ideas of  classical “divide-conquer-combine” modular algorithm of  Collins [1]: 

• given two bivariate polynomials with large integer coefficients use modular and evaluation
homeomorphisms to reduce the problem to a simpler domain:

• compute univariate resultants over a prime field in parallel on the graphics hardware:

• interpolate resultant polynomial over a prime field (GPU):

• lift the polynomial coefficients using Chinese remaindering (partly on the GPU):

Motivation

High-level structure of  the algorithm

Problem: the amount of  parallelism exhibited by the modular algorithm is far too low to 

satisfy the needs of  massively-threaded architecture like that of  GPU

Introduction to Displacement structure

Solution: reduce the problem to computation with structured matrices because matrix 

operations typically map very well to the graphics hardware

Computation of  the resultant reduces to triangular factorization of  Sylvester matrix S which 

is shift-structured [2]:

The Generalized Schur Algorithm computes matrix factorization in O(n2) time by operating solely 

on matrix generators:

are generator matricesis a down-shift matrix

Reduce the top rows of

G and B (vector updates)

Collect factors of  

the resultant

Shift down the first 

columns of  G and B

Iterate until generators 
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Division-free generator 

recurrences

Abstract: we present the first implementation of  a modular resultant algorithm on GPUs [4,5]. With recent developments taking advantage of  new NVidia

Fermi GPU architecture and instruction set we have been able to achieve about 150x speedup over a CPU-based resultant algorithm from Maple 13.

Polynomial interpolation over a prime field 

kernel 1

kernel 2

CPU 
sequential 
code

reduce polynomial coefficients modulo 31-bit primes

Gather results for different evaluation 

points. For each modulus in parallel

Factorization of  Sylvester

matrix using Schur algorithm

Solving Vandermonde system 

using Schur algorithm, see [5]

CPU 
sequential 
code Recover resultant coefficients from Mixed-radix representation

Gather results for different 

moduli

Polynomial evaluation:

Computing univariate resultants:

For each modulus and each 

evaluation point in parallel

Eliminate ‟‟bad‟‟ evaluation points

Divide by the denominator: 

kernel 3

Polynomial interpolation:

kernel 4

Compute mixed-radix digits using CRA

Division using Montgomery 

modular inverse, see [4]

grid size: 

N × M

N: number of  moduli

M: number of  evaluation points

Reduce the problem to solving the Vandermonde system

using the generalized Schur algorithm in O(n2) time (see [5]):

Schematic view of  the GPU algorithm 

Realization of  31-bit modular arithmetic on the GPU

NVidia Fermi architectural features:
• native 32-bit integer multiplication support (instead of  24-bit multiplication on GT200) 

• full-speed double-precision arithmetic (8x faster than that of  GT200)

• modulo operation („%‟) is costly: implement modular reduction in floating-point

• new set of  video instructions: can do several arithmetic operations at a time (PTX assembly [3])

Raw performance: up to 154 GMad/s on the 
GTX480 graphics processor.

GMad/s = 109 modular multiply-adds per second.

Input polynomials in

Divide by the denominator: 
For each evaluation point in parallel

// D2I_TRUNC = (double)3^51 (fast mantissa truncation)

// inv_m = (double)1 / m

double f = (double)b * (double)c * inv_m + D2I_TRUNC;

unsigned s = b * c - __double2loint(f) * m;

// equivalent to min(s, s + m)

asm volatile(“vadd.u32.u32.u32.min %0,%1,%2,%3;” :

“=r”(s) : “r”(s), “r”(m), “r”(s));

s += a;

// equivalent to min(s, s - m)

asm volatile(“vsub.u32.u32.u32.min %0,%1,%2,%3;” :

“=r”(s) : “r”(s), “r”(m), “r”(s));

return s;

Modular multiply-add: Vector updates:

// inv_m = (double)1 / m

double f1 = (double)a * (double)b;

double f2 = (double)c * (double)d;

double f = (f1 – f2) * inv_m;

unsigned r = (unsigned)__double2int_rd(f);

unsigned s = a * b – c * d – r * m;

// equivalent to min(s, s + m)

asm volatile(“vadd.u32.u32.u32.min %0,%1,%2,%3;” :

“=r”(s) : “r”(s), “r”(m), “r”(s));

// equivalent to min(s, s - m)

asm volatile(“vsub.u32.u32.u32.min %0,%1,%2,%3;” :

“=r”(s) : “r”(s), “r”(m), “r”(s));

return s;
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Block 1

Efficient stream compaction on Fermi:

• use ballot voting primitive to obtain zero-one pattern across each warp separately

• compute element shifts per warp using population count (popc intrinsic)

• propagate shifts to subsequent warps through addition in shared memory

1 1 1 1 1 n n2 2 2 2 22 n n…
Block 2 Block n

2 2 2 2 2 2 … 1 1 1 1 1 … n n n n

n nn n

Block write offset is controlled by a global memory variable  changed atomically

(the relative order of  evaluation points does not matter for interpolation)

Computing univariate resultants over a prime field

For comparison: 2.5GHz Quad-Core Xeon 
E5420 can do about 1 GMad/s per core.

GTX280 using 24-bit modular arithmetic vs GTX480 using 31-bit modular arithmetic

Performance depending on y-degree of  polynomials

with coefficients bit-length fixed

Performance as function of  coefficient bit-length 
with polynomials‟ x/y-degrees fixed

grid size: 

N × M / 128

grid size: 

N × 1

grid size: 

M × 1

Performance comparison with the resultant algorithm from 32-bit Maple 13 (deterministic)
Target graphics card: GeForce GTX480  Host machine: Dual-Core AMD Opteron 2220SE, Linux platform

Instance Maple 

time

GPU 

time

CUDA blocks 

executed

Instance Maple 

time

GPU time CUDA blocks 

executed

degxf: 40 degxg: 39

degyf: 19 degyg: 17

bits: 32     dense 

12.2 s 0.057 s 56 × 1372

32×2 threads

degxf: 42 degxg: 33

degyf: 31 degyg: 20

bits: 32   dense

101.2 s 0.48 s 223 × 1874

64 threads 

degxf: 36 degxg: 42

degyf: 19 degyg: 17

bits: 320  dense

114.4 s 0.781 s 488× 1353

32×2 threads

degxf: 10 degxg: 7

degyf: 95 degyg: 93

bits: 16   sparse

157.8 s 1.24 s 206 × 1604

96 threads

degxf: 40 degxg: 30

degyf: 31 degyg: 20

bits: 100 sparse

56.7 s 0.4 s 215 × 1740

32×2 threads

degxf: 10 degxg: 7

degyf: 95 degyg: 93

bits: 120  dense

timed out 

(> 15

min)

6.35 s 951 × 1604

96 threads
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degx/y – degrees in x/y of  polynomials f and g; bits – coefficient bit-length; sparse/dense – varying density of  
polynomials; CUDA blocks executed: # of  blocks run by 1st resultant kernel (N × M) and # of  threads per block

Multiply all collected factors 

using parallel reduction


