
Particle-In-Cell simulations on the GPU
Kai Germaschewski, University of New Hampshire, Durham, USA

Hartmut Ruhl, Ludwig-Maximilians-University, Munich, Germany

Introduction
The Particle-In-Cell (PIC) method is an established and

versatile approach to the kinetic simulation of plasma.

The method makes use of quasi-elements to

approximate one-particle distribution functions and a grid

to solve Maxwell’s equations. The approach is

computationally expensive. For most applications the

computational load in the particles exceeds the one in

the Maxwell solver by far. Hence, we focus on a GPU

implementation of particle pushing. While numerous

implementations of the PIC method on classical

distributed compute platforms exist GPU

implementations are still rare. Here, we present a CUDA

implementation of a quasi-particle pusher on a GPU and

compare its performance with an SSE2-optimized CPU

version of the latter.

Equations of motion
The distribution function based on quasi-elements and

the equations of motion for quasi-elements are given by

Example: Wake field simulation
To demonstrate the performance of our GPU

implementation we pick the example of a laser-driven

wake field simulation. A wake field occurs when a heavy

charged fluid (here ions) and light charged fluid (here

electrons) is perturbed by a laser pulse shorter than the

plasma wavelength. The plasma is sub-critical so that

the laser can propagate through it. The simulation

parameters are

Literature
Yu. N. Grigoryev, V. A. Vshivkov, and M. P. Fedoruk,

Numerical “Particle-In-Cell” Methods, VSP BV, ISBN 90-

6764-368-8.

H. Ruhl, Introduction to Computational Methods in Many

Body Physics, Rinton Press, ISBN 1-58949-009-6.

C. Birdsall and A. B. Langdon, Plasma Physics via

Computer Simulation. McGraw-Hill, ISBN 0-07-005371-

5.

Acknowledgements
This work has been supported by the DFG grant RU

633/3 “AMR-PIC” and the Munich Centre for Advanced

Photonics .

Particle pushing on the GPU

Current aggregation
As particles move each particle contributes to the

current density, which is computed on the field mesh and

needed to update the electromagnetic fields. Two

strategies apply: I) Atomic updates and II) reduction of

contributions from all threads within a threadblock. We

persue strategy II. The main challenge is that each

thread has to compute its current density contribution

locally before the reduction into a per threadbock result

is possible. Direct reduction in 2D requires 25 floats for

each current direction per thread or 300 bytes. Due to

shared memory limitations we employ the algorithm

sketched below

For efficient computation the particle

loop (see left) requires partitioning of

particle and field data at the same time.

Particle advance and current deposition

are treated separately. The simplest

implementation of the particle loop in

CUDA uses a separate thread for each

particle to be pushed.

The particle loop consists of loading the particle data,

loading and interpolating the field data to the particle

location as indicated in section “Equations of motion”,

updating the particles and storing the data back. Global

memory is used since particle data are only needed

once in the particle loop. Particle data in global memory

are arranged in a way that memory access is coalesced.

The measured band width is 1.4 billion particles/sec.

The field data are stored in shared memory since

typically many particles use the same field values. Up to

125 field values for each field component are needed in

3D. To make field caching possible particles need to be

sorted to cells. The following table shows results for

particle pushing on a TESLA C1060 card with and

without field caching (see kernels 1 and 2)

Results
In 2D the GPU is about 4 times faster than SSE2

optimized code on a recent INTEL XEON CPU

