
Octavian Nitica

Research Advisor: John Cavazos
Department of Computer and Information Sciences

University of Delaware High Performance Computing Fellow

Abstract

Introduction to ACO Algorithm

Conclusions

Observations on ResultsTravelling Salesmen Problem

Platform and Result Graphs

Parallel Ant Colony Optimization Using CUDA

The Ant Colony Optimization (ACO) Algorithm is a metaheuristic that is used

to find shortest paths in graphs. Because of the structure of the ACO

algorithm it is amenable to being parallelized. By using CUDA to implement a

ACO algorithm, we achieved significant improvement in performance over a

highly-tuned sequential CPU implementation. We also found that we could

run multiple ant colonies in parallel. Running more ant colony simulations

allowed obtain a better distribution of results, which resulted in a better

overall solution. The construction step of the ACO algorithm consists of each

ant creating an independent solution, and this step is where most of the

computation is spent. Since the construction step is the same for most ACO

variations, parallelizing this step will also allow for easy adaptation to

different pheromone updating functions. Currently, our research tests this

hypothesis on the travelling salesmen problem (TSP).

The ACO algorithm gets its name from real ants, because it models the way

ants search for food. Ants in the real world begin by randomly searching for

food. As ants find sources of food, they leave pheromone trails that allow

other ants to find the food. Over time, ants converge to the nearest food

source, because it has the strongest pheromone trail. Pheromones also

evaporate over time, which is important so ants do not continue to go to the

same food source after it has disappeared. The ACO algorithm works in a

similar way. It has two main stages: the construction phase and the

pheromone update phase. In the construction phase, individual ants

construct a sample solution to the problem using a probabilistic function.

The function uses a heuristic function and the amount of pheromone on the

edges to decide which city to choose next. Once all ants have constructed

their respective solution, the ants enter the next phase. In the pheromone

update phase, certain solutions (generally the best ones), deposit

pheromones on the edges of their solutions. Also, old pheromone trails have

their potency decreased during this stage to prevent early convergence to a

suboptimal solution. After a certain time period, ants will converge to a near-

optimal path through the graph.

Photo used under Creative Commons from http://en.wikipedia.org/wiki/File:Aco_branches.svg

The travelling salesmen problem is a classic

computer science problem. It is often used as a

sample problem for graph search algorithms, due to

the fact that it is easy to explain and understand.

The problem consists of a graph where each node

is a city. Each city has weighted edges connected to

every other city. The problem is to find the shortest

path through all the cities. This problem was chosen

for several reasons. For one, there is lots of

research done in this area, and their are problem

sets of available that include sample city sets and

solutions. Also, since the nodes are strongly

connected and symmetrical, it requires less

checking when choosing the next city. Finally, there

already existed highly-tuned CPU ACO sample code

that could be modified and compared against.

Server Specifications:

•CPU: Intel Xeon E5335 @ 2.00Ghz

•GPU: Nvidia 8800GTX 1GB (128 stream processors)

•System Memory: 2GB

0

2

4

6

8

10

12

1173 2392 7937 14461

S
p

e
e

d
u

p
 (

x
 F

a
s
te

r)

City Size Performance Comparison

Number of Cities

0

1

2

3

4

5

6

7

8

4096 8192 12288

S
p

e
e

d
u

p
 (

x
 F

a
s
te

r)

Number of Ants Performance
Comparison

1173 Cities

2392 Cities

Number of Ants

Acknowledgements

•Thomas Stuetzle. ACOTSP, Version 1.0. Available from

http://www.aco-metaheuristic.org/aco-code, 2004.

•University of Delaware PetaApps Cloud Physics Group for funding my

research

•Problem specific values:

•Alpha – 1 (influence of heuristic information)

•Beta – 5 (influence of pheromone trails)

•Rho – 0.5 (pheromone evaporation rate)

•N – Number of cities (varies)

•N_Ants – Number of ants (varies)

The results show a definite improvement in execution time when using our

CUDA implementation over the CPU implementation on large sized graphs and

a high number of ants. As we increase the problem size (i.e., number of cities)

or number of ants, the performance gap between the CPU implementation and

the CUDA implementation also increases. Since the construction step in the

ACO algorithm is general and applicable to many pheromone update functions,

these speedups are achievable for several variations of the ACO algorithm.

Some of the variations include Max/Min, Elitist, Ant System, and Rank Based

System. It is important to note that the solution qualities for the CUDA

implementation were equal to the CPU implementation for small problems and

better for larger problems.

Our initial research results are promising. There is significant speedup when

running larger problem sizes on the GPU versus the CPU, and we believe a

much greater speedup can be achieved once the entire algorithm is ported

to the GPU. The speedup should be enough to allow several colonies to run

at once, allowing for much more potential improvements to the algorithm.

The speedup already gained is significant for larger simulations, taking a

normal number of iterations down to under five minutes from thirty minutes in

some cases.

Figure 1. Example of ants searching for food.

Figure 2. Comparison of CUDA code speedup versus the sequential version as city

size is increased.

Figure 3. Comparison of CUDA code speedup versus the sequential

version as the number of ants is increased.

Figure 4. Comparison of solution quality between the two versions of code. The

7937 city example tour value has been divided by 100 to allow for better scaling.

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

1173 2392 4461 7937T
o

u
r

V
a
lu

e
 (

L
o

w
e
r

is
 B

e
tt

e
r)

Number of Cities

Solution Quality Comparision

CUDA Version

Sequential Version

