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OVERVIEW RADIX SORTING METHOD
We have designed extremely efficient strategies for sorting large sequences of fixed-length keys (and values) The radix sorting method works by iterating over the digit-places of the keys from least-
using GPU stream processors. Our radix sorting methods exhibit speedup of up to 3.8x over the current state-of- significant to most-significant. For each digit-place, the method performs a stable distribution

the-art in GPU sorting. For this domain of sorting problems, we believe our sorting primitive to be the fastest
available for any fully-programmmable microarchitecture.

We refer to our approach as a strategy because we use a flexible hybrid composition of several different
algorithms. The number of steps performed by each algorithmic phase can be configured to match the target
platform, which allows us to construct a single implementation that scales well across all generations and

configurations of programmable NVIDIA GPUs.

The need to rank and order data is pervasive, and sorting operations are fundamental to many algorithms. As an
algorithmic primitive, GPU sorting facilitates many problems including:

sort of the keys based upon their digit at that digit-place. Given an n-element sequence of k-
bit keys and a radix r = 29, a radix sort of these keys will require k/d iterations of a distribution
sort over all n keys.

The distribution sort is the fundamental component of the radix sorting method. In a data-
parallel, shared-memory decomposition, each logical processor gathers its key, decodes the
specific digit at the given digit-place, and then must cooperate with other processors to
determine where the key should be relocated. The relocation offset will be the key’s global
rank, i.e., the number of keys with “lower” digits at that digit place plus the number of keys
having the same digit, yet occurring earlier in the sequence.
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OUR SRTS RADIX SORTING PERFORMANCE
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E 700 - Our performance is derived from our ability to efficiently determine relocation offsets for scattering keys. To
g perform these distribution sorting passes, we have constructed a parallel prefix scan primitive that has been
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