High Performance and Scalable Radix Sorting
for GPU Stream Architectures

Computer Science Duane Merrill Andrew Grimshaw
atthe UNIVERSITY of VIRGINIA dgmd4d@virginia.edu grimshaw@virginia.edu
OVERVIEW RADIX SORTING METHOD
We have designed extremely efficient strategies for sorting large sequences of fixed-length keys (and values) The radix sorting method works by iterating over the digit-places of the keys from least-
using GPU stream processors. Our radix sorting methods exhibit speedup of up to 3.8x over the current state-of- significant to most-significant. For each digit-place, the method performs a stable distribution

the-art in GPU sorting. For this domain of sorting problems, we believe our sorting primitive to be the fastest
available for any fully-programmmable microarchitecture.

We refer to our approach as a strategy because we use a flexible hybrid composition of several different
algorithms. The number of steps performed by each algorithmic phase can be configured to match the target
platform, which allows us to construct a single implementation that scales well across all generations and

configurations of programmable NVIDIA GPUs.

The need to rank and order data is pervasive, and sorting operations are fundamental to many algorithms. As an
algorithmic primitive, GPU sorting facilitates many problems including:

sort of the keys based upon their digit at that digit-place. Given an n-element sequence of k-
bit keys and a radix r = 29, a radix sort of these keys will require k/d iterations of a distribution
sort over all n keys.

The distribution sort is the fundamental component of the radix sorting method. In a data-
parallel, shared-memory decomposition, each logical processor gathers its key, decodes the
specific digit at the given digit-place, and then must cooperate with other processors to
determine where the key should be relocated. The relocation offset will be the key’s global
rank, i.e., the number of keys with “lower” digits at that digit place plus the number of keys
having the same digit, yet occurring earlier in the sequence.

° I ° ° I ° I i
Binary search Sha;zlolw and transparency Texture compression Point cloud modeling DATAFLOW REPRESENTATION OF THE DISTRIBUTION SORT
e Finding the closest pair moaeting e KD-tree construction e Particle-based fluid
. . L I . . i i CTAo CTA: CTA; CTA;z
e Determining element Reyes rendering e Bounding volume hierarchy simulation ANIT— N N HT—
. bE _g—g pccumuiate $ _gig — NG g . %_égg A
uniqueness e Volume rendering via ray- construction e Parallel hashing e S - S |E=8 S | =2 S || E=8
o i . _ , o s s SH— : g == : SH—
e Finding the kt" largest casting e Collision detection e Database acceleration g £ N = N = N
. . g FIFTTETEE I T P e e
element Partlcls rendering and e Visibility culling e Data mining R ryeaz==y IR : Al N
. . . o 2 XHHE comee 2 E| recomee S IHHE ccomuie NS S| accumuiae
e |dentifying outliers ahimation : : Nfil— S (E=8 Nfil— S| E=2
. e Photon mapping e Game engine Al
e Ray tracing
GPU STREAM PROCESSORS (o ~ 5
|_
R e e e I . . N osem— t _ e v | ‘ ____________
The GPU is capable of efficiently executing large quantities of Kmhqq:ﬂqqq:i S e e e e e e e hqq:bhqq:ﬁhqq:ﬁ) ek Sk Sk Sk
concurrent, ultra-fine-grained tasks. They are SPMD (single program, NI NS N TS NS S
multiple data) machines having many hardware-scheduled execution | staredvemor))) | A N IS NSy N ISy |
contexts, or threads, that all run copies of the same imperative Q0 P e P [_{D"‘;’;M T[DRA‘;I’\‘/:‘M HDR2II:’4M lDRzll\:AM] g SRS S =S| S S | S
program, or kernel. The host orchestrates a stream of global data flow ALy [|y |aty g A N
. . . . c e ey SM Core ‘ : SIS | Z | ¥ |
by repeatedly invoking new kernel instances, each of which is initially - § . § N § N § S
. . . . ~ i 2 ~ . 2 ~ i = B . @
presented with a consistent view of the results from the previous. P =3 = Dk S
GPU processor organization entails a collection of multithreaded cores, o
eaCh Of WhiCh iS Comprised Of a SEt Of homogeneous processing i Z : : GlObal DeVice Memory i ,///// 211|122 | 302 | 232 | 300 | 021 220 :::szzzenceljj;’(e;;sl- 322-012 022| 130| | 010 121.020 101(212 220-
elements. These SM cores employ local SIMD (single instruction, ; - D e I L i - Digt i Vectors
multiple data) techniques in which a single instruction stream s D A ———-—————————— | ' | Lo bt L D LGl LG L
. . e~ e £ L L L L L Lt I TA 1A A Q ololol Halololalolalalo]l lolalol
executed by a fixed-size grouping of threads called a warp. Each SM g """"""""""""""""""""""""" Kernel B / ofofo] Hofo i - o o1o] o[o]0
core maintains and schedules amongst the execution contexts of many 3 5 s
warps. This translates into tens of warp contexts per core, and tens-of- T B 55§
. L Kernel X &
thousands of thread contexts per GPU processor for very high ! il e L] Gl erme -~
computational bandwidths. oy | -
SE§
Host GPU 83 s
g8

N

OUR SRTS RADIX SORTING PERFORMANCE

SIMD Kogge-Stone
Scan
(shmem)

O 16 32 48 64 380 96

112 128 144 160 176 192 208 224 240 256 272

(kernel fusion)

F 0s total
Our implementation (SRTS) demonstrates average Device Key-value Rate Keys-only Rate / 12?:2‘2,
sorting rates of up to 1,005 million 32-bit keys per (10° pairs / sec) (10 keys / sec)
second, and 775 million 32-bit key-value pairs per Name cUDPP SRTS Radix cUbPP SRTS Radix 58
, , Radix (speedup) Radix (speedup) S
second. We provide multiple factors of speedup Zha
. . NVIDIA GTX 480 775 1005
over the state-of-the-art GPU sorting routines /
provided by the CUDPP data parallel primitives NVIDIA Tesla C2050 581 742 _
library. NVIDIA GTX 285 134 490 (3.7x) 199 615 (2.8x) 33
We also revisit sorting comparisons in the literature NVIDIA GTX 280 1171 449 (380 | 184 34 (2.6x) | “’/ prrnn Anmeo]
between many-core CPU and GPU architectures. Our NVIDIA Tesla C1060 111 333 (3.0x) 176 524 (2.7x) " Yoloo oo s
speedups show: NVIDIA 9800 GTX+ 82 189 (2.0x) 111 265 (2.0x) i
* (G80-based GPUs to outperform Intel Core2 quad- NVIDIA 83800 GT 63 129 (2.1x) 83 171 (2.1x)
core CPUs NVIDIA Quadro FX5600 55 110 (2.0x) 66 147 (2.2x) -
e (GT200-based GPUs to outperform Core i7 quad- Intel 32-core Knight's o $
core CPUs Ferry MIC : o
e GF100-based GPUs to outperform Intel 32-core Intel quad-core i7 240 gé (ol pSfol ool [off 2 B [« [o o] (ol FaROoRe] o] [ffi] o]
Knight’s Ferry (Larrabee derivative) by as much as Intel Q9550 quad-core 138 i
1.8x. g
Q
S
2 Exchanged Keys
11 O O ~ [300[330[130]220]020[130{010020| [220[211[021]021]801 [221 [121 |a01| [122[802[232]022]122]112[322]022]
1000 N / s camin Global Scatter Offsets
10|11 |12 |13 |14 |15]|16 |17 18 |26 |27 |28 |29 |30 |31 |32 33134135[36|37|38]|39]40
00 [
o 800 - CRITICAL INSIGHTS
7))
E 700 - Our performance is derived from our ability to efficiently determine relocation offsets for scattering keys. To
g perform these distribution sorting passes, we have constructed a parallel prefix scan primitive that has been
600 —— GTX 480 augmented in two ways:
LAY A IR A M A LN LN AANAL A AL LIRS A AN AN PEA N L RO A Az aaTn]
N 1. Kernel fusion (left). We embed logic for generating and consuming prefix scan problems and results within
L oo T A L A il : ’ A —— C2050 (no ECC) the scan kernel itself.
= ‘,
ad r CTX 285 2. Increased granularity (right). We perform multiple related, concurrent prefix scans in order increase the
S 400 number of radix numerals and thus decrease the number of digit places we must iterate over.
5 —— C2050 (ECC) . e
R e BN iR s
— GTX 280 i i Kernel A% 3 i
> Lo g —— s |
200 - ﬂ .. W HT B |
I - N—anl E i
100 - 1B] T = 3 B{R 0|
9800 GTX+ - — i : mﬁ i
=l V. |
O | | | | | | | | | | | | | | | | | i : Host :i GPU
GPU : ;

Problem size (millions)

